
Review Article
Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

Ryan A. Denu1,2,3 and Peiman Hematti2,3

1Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison,
Madison, WI 53705, USA
2Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, School of Medicine and Public Health,
Madison, WI 53705, USA
3University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA

Correspondence should be addressed to Peiman Hematti; pxh@medicine.wisc.edu

Received 15 March 2016; Accepted 29 May 2016

Academic Editor: Alessandra Ricelli

Copyright © 2016 R. A. Denu and P. Hematti. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Mesenchymal stromal/stem cells (MSCs) aremultipotent stem cells present inmost fetal and adult tissues.Ex vivo culture-expanded
MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here
we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general,
increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic
differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo
expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method
to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative
and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo
expansion and in vivo engraftment, function, and longevity.

1. Introduction

Mesenchymal stromal/stem cells (MSCs) are multipotent
cells characterized by their ability to differentiate into
adipocytes, chondrocytes, and osteoblasts, their expression of
surface markers CD73, CD90, and CD105, and their lack of
hematopoietic lineage markers [1–4]. MSCs were initially
studied for their ability to support hematopoietic stem cells
in the bone marrow, but now they are being studied for their
regenerative and immunomodulatory properties, as they
home to injured tissues and contribute to tissue repair and
suppression of inflammatory damage [5, 6]. MSCs have been
isolated from a number of different tissues, including bone
marrow, adipose, heart, vocal cord, and pancreatic islets [7–
10]. They are also present in the tumor microenvironment,
where they support the growth of tumor cells, activate mito-
gen and stress signaling, and increase resistance to cytotoxins
[11–13].

MSCs have immunomodulatory properties and suppress
the proliferation of CD4+ T cells, CD8+ T cells, B cells, and
NK cells, while they induce the proliferation of regulatory T
cells (Tregs) [5, 6, 14–21]. In addition,MSCs alternatively acti-
vate macrophages and bias them toward an immunosuppres-
siveM2 phenotype [22]. Further evidence of MSCs creating a
more anti-inflammatory state includes the following actions:
induction of type 1 dendritic cells to reduce TNF𝛼 secretion
and type 2 dendritic cells to increase IL-10 secretion [16, 23,
24]; causingTh1 cells to decrease IFN𝛾 secretion andTh2 cells
to increase IL-4 secretion [16]; decreasing NK cell prolifera-
tion and IFN𝛾 secretion [14]; and converting macrophages to
an anti-inflammatory immunophenotype [22]. At the same
time, MSCs express low levels of MHC class I and no MHC
class 2 and costimulatorymolecules CD40, CD80, and CD86,
preventing alloreactive antibody production and destruction
[25, 26]. Due to these multimodal properties, MSCs are
being studied for their potential use in different modes
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of therapy: (1) produce new tissues (e.g., cartilage repair);
(2) assist with healing tissue damage (e.g., cardiovascular
disease); (3) improve engraftment of other cells and tissues
(e.g., hematopoietic cells and pancreatic islets); and (4) treat
immune based pathologies (e.g., graft versus host disease,
GVHD) [27–37].

MSCs have also been extensively studied because of their
ability to differentiate into adipocytes, chondrocytes, and
osteoblasts, which has significant potential in the field of
regenerative medicine. However, MSCs are much farther
from reaching clinical utility in regenerative medicine as
compared to their utility in immunomodulation.Their chon-
drogenic ability has arguably gained the most attention [38]
and could be utilized to aid in reconstitution of connective
tissue loss in many joints, namely, the knee, which is crucial
given the fact that chondrocytes are terminally differentiated,
quiescent cells and do not regenerate damaged tissue.

While MSCs have been utilized with some success in
the clinic, there is room for improvement in order for them
to reach their full clinical potential. First, MSCs are rare
cells in situ and must be expanded ex vivo in order to
be utilized in the clinic. However, MSCs undergo replica-
tive senescence, limiting the number of divisions [39–41].
Furthermore, this replicative senescence also compromises
their immunomodulatory and differentiation functions and
possibly their clinical activity against GVHD and other
inflammatory pathologies [42, 43]. In addition, there is a lack
of a well-defined and accepted potency assay to functionally
assess MSC products [37, 44].

Another problem is the loss of transplanted MSCs at
the site of graft, particularly after ex vivo culture [45, 46],
which could possibly be due to loss of chemokine recep-
tors [47]. Reactive oxygen species (ROS) and nonspecific
inflammation generated at the ischemic site of injury have
been hypothesized to lead to loss of transplanted MSCs from
this site [48–50]. Therefore, there is great need to identify
methods to manipulate MSCs to reduce ROS in both the
MSCs themselves during their culture expansion production
phase and in the injured tissue microenvironment in order
to promote MSC engraftment and enhance tissue repair.
First, this requires an understanding of the contributions of
oxidative stress to MSC biology.

2. Oxidative Stress and MSC Differentiation

Oxidative stress is characterized by deregulated production
and/or scavenging of reactive oxygen and nitrogen species
(ROS and RNS, resp.). ROS are primarily generated from
mitochondrial complexes I and III and NADPH oxidase
isoformNOX4 duringMSC differentiation [51].The accumu-
lation of free radicals can damage essentially all biomolecules,
including DNA, protein, and lipids. High ROS levels cause
cellular damage and dysfunction, but it is thought that a low
basal level of ROS is necessary and advantageous in order to
maintain cellular proliferation, differentiation, and survival
[52–54]. Indeed, at baseline, MSCs have low levels of ROS
and high levels of glutathione, the major cellular antioxidant
[55]; however, other reports suggest that MSCs have low

antioxidant activity and are more sensitive to oxidative stress
compared to more differentiated cell types [56, 57]. In MSCs,
excess ROS or exogenous addition of H

2
O
2
can impair self-

renewal, differentiation capacity, and proliferation [57–61];
concordantly, antioxidants stimulate MSC proliferation [62].

With regard to osteogenic differentiation, most studies
suggest that ROS inhibit osteogenic differentiation [63]. Fur-
thermore, addition of exogenous H

2
O
2
reduces osteogenic

differentiation in human and murine MSCs and osteoblast
precursors [63–65]. In addition, MSCs from older donors
demonstrate decreased osteogenic potential [66]. In vitro
induction of osteogenesis in human MSCs is associated with
an upregulation of mtDNA copy number, protein subunits
of respiratory enzymes, superoxide dismutase 2 (SOD2, alias
MnSOD), catalase oxygen consumption rate, and antioxi-
dant enzymes, but a decrease in ROS [63]; undifferentiated
MSCs showed higher levels of glycolytic enzymes and a
higher lactate production rate, suggesting that MSCs rely
more on glycolysis for energy supply in comparison with
MSC-differentiated osteoblasts, which rely more on oxidative
mitochondrial metabolism. These findings support the idea
that ROS and oxidative stress must decrease to allow for
osteogenic differentiation to proceed. However, it appears
that at least a basal level of ROS may be required, as some
reports show that ROS enhance calcification and osteogenesis
[67]; one caveat is that this study investigatedmurine vascular
smooth muscle cells, which could explain the difference. In
summary, ROS and aging inhibit MSC osteogenesis.

With regard to adipogenesis, ROS increase as MSCs
differentiate into adipocytes, but it is unclear whether this is a
cause or consequence of adipogenesis. Antioxidant enzymes
such as SOD, catalase, and GPX are upregulated during adi-
pogenesis in humanMSCs [68]. It has been reported that ROS
and the addition of exogenous H

2
O
2
induce adipogenesis in

human and murine MSCs and adipocyte precursors [51, 68,
69], lending credence for the idea that ROS play a causal role
in adipogenesis. Furthermore, this effect of H

2
O
2
is dose-

dependent, as higher doses of H
2
O
2
increased adipogenesis

[70]. Consistent with ROS stimulating adipogenesis, the ROS
scavenger N-acetylcysteine (NAC) inhibited adipogenesis in
the mouse MSC cell line 10T1/2 [71]. In addition, it has
been demonstrated that ROS generated by mitochondrial
complex III are imperative for the activation of adipogenic
transcription factors [72]. Similar to osteogenic differenti-
ation, mitochondrial biogenesis and oxygen consumption
increase significantly during adipogenesis [73, 74]. Addition-
ally, inhibiting mitochondrial respiration significantly sup-
presses adipogenic differentiation [73], which makes sense
for two reasons: (1)mitochondrial biogenesis andmetabolism
are thought to be important for MSC differentiation [74]
and (2) inhibiting mitochondrial metabolism reduces ROS,
and ROS are thought to stimulate adipogenesis. There is
an increase in SOD3 expression with the differentiation of
humanMSCs into adipocytes [75] and during the early stages
of adipogenic differentiation in 3T3-L1 cells [54]. However,
there are some reports that contradict the idea that ROS
stimulate adipogenesis; these reports demonstrate that aging
and senescence, which are often associatedwith higher oxida-
tive stress, decrease adipogenic differentiation [41, 76–78].
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Additionally, RNAi-mediated depletion of MnSOD, which
results in higher ROS, reduces the expression of late adipo-
genesis markers such as adiponectin and fatty acid-binding
protein 4 (FABP4) [79]. Nevertheless, the prevailing view is
that ROS and aging enhance adipogenesis [54].

ROS generally increase during chondrogenesis, and ROS
generated by NADPH oxidases 2 and 4 are necessary for
chondrogenic differentiation of murine primary chondro-
cytes and the ATDC5 cell line [80]. Consistent with this,
SOD3 levels were reduced upon chondrogenesis [75]; SOD3
is known to help reduce ROS in the extracellular matrix. Fur-
thermore, ROS scavenging with NAC blocked chondrogenic
differentiation [80]. Consistent with this, increasing ROS
levels stimulated chondrocyte hypertrophy, and this effect
was inhibited by NAC [81].

3. Oxidative Stress and
MSC Immunomodulation

Evidence of the direct role of oxidative stress in MSC
immunomodulation is lacking. However, we do know that as
MSCs are expanded ex vivo, proliferation decreases, oxidative
stress increases, the level of certain surface antigens decreases
(e.g., CD13, CD29, and CD44), and the ability to suppress
T cell proliferation diminishes [41, 82, 83]. Similarly, MSCs
from older donors, which also likely have greater oxidative
stress, have reduced capacity to inhibit T cell proliferation
[84, 85]. In addition, MSCs from human patients with
atherosclerosis and type 2 diabetes, two diseases associated
with elevated oxidative stress, have reduced ability to inhibit
T cell proliferation [85]. However, some studies conflict
with the assertion that donor age negatively impacts MSC
suppression of T cell proliferation [86, 87]; one of these
studies analyzed 53 humandonors rangingwithin 13–80 years
demonstrated no significant correlation between age and T
cell suppression capability [86].

As most of the clinical uses of MSCs are dependent on
their immunomodulatory properties, it will be important
to continue to elucidate how oxidative stress affects MSC
immunomodulation and whether or not modulating ROS
and oxidative stress can enhance MSC ex vivo expansion,
immunomodulation, and clinical utility.

4. Sirtuins, Oxidative Stress, and Ex Vivo
Expansion of MSCs

Oxidative stress also affects ex vivo culture expansion and
longevity of MSCs, which has implications for cell therapy.
As MSCs are continuously passaged and grown ex vivo, they
undergo replicative senescence, and proliferation decreases
[39–42, 88, 89]. Aging and senescence are associated with
greater oxidative stress, which limit the number of times that
MSCs can be passaged and the quality of the cells [90, 91].
Therefore, there is great need to identify methods to prevent
oxidative stress and replicative senescence in MSCs.

One potential method to reduce oxidative stress in
MSCs is by modulating sirtuin expression and/or activity.
Sirtuins are protein deacetylases that are thought to play

evolutionarily conserved roles in lifespan extension [92–94].
Humans have seven sirtuins (SIRT1–7) that localize to distinct
subcellular compartments and serve very distinct functions
[95, 96]. In general, sirtuins are protective against age-related
pathologies such as hearing loss [97], neurodegeneration
[98], metabolic disease [99, 100], and cancer [101, 102]. Their
roles inMSCs have not been fully elucidated and represent an
interesting avenue of future research.

SIRT1, SIRT6, and SIRT7 localize to the nucleus.
SIRT1 deacetylates a number of protein substrates includ-
ing p53, DNA methyltransferase 1 (DNMT1), NF-𝜅B, fork-
head transcription factors, PGC-1𝛼, and histones [103–108];
an unbiased mass spectrometry-based acetylome analysis
has revealed many more potential substrates [109]. SIRT1
knockdown decreases MSC proliferation and differentiation
and increases senescence, and the opposite occurs with
SIRT1 overexpression [110]. Consistently, SIRT1 activation
with resveratrol enhances MSC osteogenesis [111]. SIRT1 is
downregulated during human embryonic stem cell (ESC) dif-
ferentiation at bothmRNAand protein levels [112].Therefore,
SIRT1 is crucial for stem cell maintenance and differenti-
ation. SIRT6 deacetylates histones H3K9Ac and H3K56Ac
[113, 114] and is an imperative regulator of metabolism,
transcription, telomere maintenance, and DNA repair in
response to oxidative stress [115, 116]. It ADP-ribosylates
and thereby activates PARP1, allowing for efficient double-
strand break repair in the face of oxidative stress [116]. Fur-
thermore, SIRT6 rescues the decline of base excision repair
and homologous recombination repair during replicative
senescence in primary human fibroblast strains [117, 118].
A study of human dermal fibroblasts from older subjects
demonstrated that reprogramming into induced pluripotent
stem cells (iPSCs) with Yamanaka factors was less efficient
than in fibroblasts from older subjects, but that adding SIRT6
improved the efficiency of reprogramming [119]. Specific to
MSCs, knockdown of SIRT6 inhibited while overexpression
enhanced osteogenesis in ratMSCs [120]. Recent studies have
demonstrated the possibility of activating SIRT6 with long-
chain fatty acids [121], whichmay represent away tomodulate
MSC function and longevity.The final nuclear sirtuin, SIRT7,
has been less well characterized but localizes to the nucleolus
and regulates rDNA transcription [122].This is dependent on
the deacetylation of U3-55k, a component of the U3 snoRNP
complex, and this deacetylation enhances rRNA transcrip-
tion and processing [123]. It is also important for proliferation
and inhibition of apoptosis [122], perhaps via deacetylation
of p53 [124]. In addition, SIRT7 has been recently shown to
promote the regenerate capacity of aged hematopoietic stem
cells, as inactivation increased mitochondrial protein folding
stress and reduced regenerative capacity [125].

SIRT3, SIRT4, and SIRT5 localize to the mitochondria,
where approximately 90% of ROS are produced inmitochon-
dria [126]. SIRT3 is the major mitochondrial deacetylase and
reprograms mitochondrial metabolism away from carbohy-
dratemetabolism in favor ofmore efficient electron transport,
which is thought to result in reduced ROS production
[127–130]. SIRT3 deacetylates and thereby activates isocitrate
dehydrogenase 2 (IDH2), an enzyme that catalyzes the TCA
cycle redox conversion of isocitrate to 𝛼-ketoglutarate and
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serves as a major source of NADPH production [97, 131,
132]. SIRT3 also deacetylates and thereby activates superoxide
dismutase 2 (SOD2, alias MnSOD), which also neutral-
izes ROS [133–135]. One of the only studies of SIRT3 on
stem cell function demonstrated that SIRT3 is not required
for hematopoietic stem cell (HSC) maintenance and tissue
homeostasis at a young age in mice; however, SIRT3 is
imperative in HSCs at an older age and under stress [136].
Importantly, SIRT3 expression decreases with aging, and this
is accompanied by a concomitant decrease in SOD2 activity;
overexpressing SIRT3 in these aged HSCs reduces oxidative
stress and improves their regenerative capacity [136]. SIRT3
overexpression can also protect against low-oxygen and low-
glucose stresses [137]. Similarly, SOD2 acetylation, a target of
SIRT3 deacetylation, increases with age in rats and humans,
which can be restored in vitro by adding recombinant SIRT3
[138]. The next mitochondrial sirtuin, SIRT4, mono-ADP-
ribosylates and thereby inhibits glutamate dehydrogenase,
which slows the conversion of glutamate to 𝛼-ketoglutarate
[139–141]. SIRT4 is also a lipoamidase that hydrolyzes the
lipoamide cofactors from the E2 component of the pyruvate
dehydrogenase (PDH) complex, which reduces the activity of
the complex [142]. Defects in the PDH complex have been
shown to increase ROS and oxidative stress [143]. Similarly,
SIRT4 andROS are upregulated during replicative senescence
and in response to DNA damage [144, 145]; however, one
study shows that SIRT4 depletion reduces ROS [144] and
therefore suggests that inhibiting SIRT4 may be a strategy
to prevent oxidative stress in MSCs, while another believes
that SIRT4 is required for appropriate recovery from cellular
stresses [145]. Further study of SIRT4 in MSCs is war-
ranted. The final mitochondrial sirtuin, SIRT5, is the major
mitochondrial desuccinylase [146, 147]. It desuccinylates and
activates SOD1 to facilitate the elimination of ROS [148].
SIRT5 has not been studied in stem cells, but based on these
known functions, we hypothesize that SIRT5 helps maintain
ROS at low levels to preserve stem cell function and longevity.

SIRT2 is a cytoplasmic sirtuin that deacetylates and
therefore destabilizes 𝛼-tubulin [149]. Furthermore, SIRT2
deacetylates p300, a histone acetyltransferase crucial for
many biological processes including cellular proliferation
and differentiation, which increases the affinity of p300 for
preinitation complexes [150]; in this way, SIRT2 may help
control transcription of genes needed for MSC differenti-
ation. SIRT2 gene expression increases with differentiation
of mouse ESCs [151]. In stem cells, SIRT2 has been shown
to inhibit the expression of keratin 19, which is a stem cell
marker [152]. These two studies suggest that SIRT2 is more
important for differentiation. However, it may be specific to
the type of differentiation being discussed; downregulation
of SIRT2 promotes 3T3L1 adipocyte differentiation [153], and
SIRT2 knockdown in mouse ESCs promotes differentiation
intomesodermal and endodermal tissues and diminishes dif-
ferentiation into ectodermal tissues [151]. Lastly, SIRT2 may
play a role in autophagy, the catabolic process that allows the
cell to recycle damaged proteins and organelles and has been
shown to be important for stem cell function, particularly in
the face of oxidative stress [154]; however,morework needs to
be done here, as the exact role of autophagy in MSC biology

is unclear. Nevertheless, most reports suggest that SIRT2
inhibits autophagy. One report shows that depletion of SIRT2
activates autophagy [155]. Consistent with this, another study
shows that the FoxO1 transcription factor is required for
autophagy caused by oxidative stress, and that dissociation
from SIRT2 increases FoxO1 acetylation and induction of
autophagy [156]; this suggests that SIRT2 inhibits autophagy.
Therefore, modulation of SIRT2 expression and activity is
worth further pursuing.

5. Conclusions

MSCs have immense therapeutic potential; yet this potential
has not been reached for a number of reasons. Perhaps one
of these reasons is the effect of oxidative stress on MSC ex
vivo expansion, leading to problems with in vivo function
and engraftment. Therefore, there is great need to identify
novel methods to optimize ROS levels in MSCs to enhance
their immunomodulatory and regenerative abilities so that
their full therapeutic potential can be realized. The sirtuins
represent a potential way to achieve this and warrant further
study in MSCs. Many of the sirtuins may help enhance our
ability to expand MSCs ex vivo for eventual clinical use.
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