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Introduction

Enthesis is a key component of the tendon and ligament 
that forms a bridge between soft and hard tissues (tendon/
ligament and bone) through the fibrous, unmineralized 
fibrocartilagenous, mineralized fibrocartilagenous, and 
bony regions.1,2 Enthesis also supports the mechanical 
transmission of tensile stress and force from the main body 
of the tendon/ligament to the bone surface.3–5 Because of its 
location between the tendon/ligament and the bone, the 
enthesis is frequently damaged during avulsion fracture 
and ankylosing spondylitis.6,7 The incidence rate of enthe-
sis orthopedic injury has increased markedly in recent 
years, and each year, around 30 million people undergo 
enthesis reconstruction in the United States and Europe, 
which costs over 163 billion dollars.8,9 For example, in the 
USA, it is estimated that >100,000 reconstructions are 
done for anterior cruciate ligament (ACL) enthesis each 
year at a cost of >1.5 billion dollars.10 Thus, effective strat-
egies for regenerating injured enthesis are urgently needed.

Traditional surgical treatments for enthesis include the 
reconstruction of enthesis with broken tendon/ligament 

terminals.11–13 This is achieved through: (a) direct insertion 
of the broken enthesis into the bone tunnel, (b) mechanical 
anchoring of the reconstructed tissue using sutures or 
screws, and (c) minimizing externally-loaded forces to 
avoid accidental loosening or re-rupture after surgery.14–19 
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Because traditional surgical treatments mainly focus on 
reestablishing enthesis anatomy while overlooking enthesis 
tissue regeneration, their efficacy in enthesis repair is lim-
ited. For instance, the reestablished enthesis may remain 
weakly connected to the bone for an extended time, leading 
to the formation of scar tissue instead of the desired healthy 
enthesis tissue, and in severe cases degeneration and lysis 
may occur, resulting in the loss of the anatomical reconnec-
tion between the enthesis and the bone.20–23 Currently, the 
lack of effective methods of regenerating native enthesis 
but not the weak scar tissue is a major clinical challenge, 
and in recent decades, enthesis tissue engineering has 
emerged as a way of overcoming these limitations in the 
traditional surgical treatments.24,25

Enthesis tissue engineering has led to the development 
of several novel methods of improving enthesis regenera-
tion. The advanced methods that are currently used in 
enthesis tissue engineering can be divided into the bio-
logical scaffold strategy, the cell strategy, the growth 
factor strategy, and the biophysical modulation strategy 
(Figure 1).3,26–28 These strategies can be used alone or in 

combination to promote enthesis regeneration. The biggest 
challenge in enthesis regeneration is the lack of effective 
ways of generating the typical four-layered histological 
structure at the interface between the bone and the broken 
enthesis tissue.24 The biological scaffold strategy focuses on 
producing biocompatible enthesis scaffolds using various 
biomaterials and fabrication techniques to mimic the native 
structure of enthesis tissue as closely as possible.29–31 
The use of biomimetic enthesis scaffolds also seeks to 
provide a favorable environment for enthesis tissue regen-
eration and to offer an extra platform for the growth and 
infiltration of regenerative enthesis tissue. To ensure that 
the enthesis scaffold is highly biomimetic, a multilayered 
enthesis scaffold fabricated using an elaborate design on 
the inner structure is required.32 The cell strategy of enthe-
sis tissue engineering relies on enthesis-associated cells to 
promote regeneration at the site of injury.26,33 The growth 
factor and biophysical modulation strategies have been 
found to markedly promote enthesis regeneration.34,35 
Mounting evidence indicates that compared with traditional 
surgical treatments, these enthesis tissue engineering 

Figure 1. The common strategies in enthesis tissue engineering.
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strategies can improve regeneration of the immature four-
layered enthesis tissue in situ at a markedly accelerated 
rate.36,37 For example, the use of a co-electrospinning PCL 
nanoscaffold and collagen for the reconstruction of rat 
enthesis, has been shown to successfully lead to the  
formation of fibrocartilage tissue and the regeneration of 
an enthesis-like structure at the scaffold–bone interface 
8 weeks after operation.38 Another study reported signifi-
cantly accelerated regeneration of the rotator cuff tendon 
enthesis after using a chemotactic decellularized fibrocar-
tilaginous matrix graft.39

In this review, we first describe the characteristics of 
enthesis tissue, followed by a detailed discussion of the 
four strategies of enthesis tissue engineering, their practi-
cal applications, and their effects on enthesis regenera-
tion. In the final part of the review, we discuss the current 
state and future research perspectives on enthesis tissue 
engineering.

Characteristics of enthesis tissue

Enthesis tissue usually refers to the tendon/ligament–bone 
interface and not the muscle–tendon enthesis tissue. 
Tendons and ligaments are highly similar tissues and with 
the exception of the main bodies, their bony terminals—
enthesis tissue—are almost identical.40–42 Studies have 
also shown that injuries occurred in enthesis tissue are 
common enough.43–45 In this section, we try to introduce 
the background information on enthesis tissue and to high-
light its complex histological compositions and the natural 
healing process of enthesis tissue in detail.

Enthesis tissue structure

Based on closeness to the bone surface, enthesis tissue is 
divided into the fibrous region (Zone I), unmineralized 
fibrocartilagenous region (Zone II), mineralized fibro-
cartilagenous region (Zone III), and bony region (Zone 
IV)40,42,46 (Figure 2(a)–(d)).

The fibrous region. The fibrous region (Zone I) is made of 
regular special axial–hierarchical structures47 (Figure 2(e)). 
Its basic structural unit is collagen type I, which first twists 
in clusters of five to form microfibrils, the primary fiber 
bundles. Next, large microfibril bundles spatially repeat 
along the axis and in parallel, forming the second fiber 
bundle, fibril. The fibril has a diameter of 100–500 nm, 
depending on the number of microfibrils it contains. How-
ever, based on electron microscopic examination, all fibrils 
have a biomolecular structure with the same periodicity 
(the D-band) irrespective of diameter. The D-band spa-
tially recurs every 67 nm along the fibril and it dose can 
indicate how regularly microfibrils are distributed and 
combined.48 Next, through the action of various biomole-
cules, including proteoglycans, many fibrils are crosslinked 
and wrapped by the primary endotenon, forming a collagen 

fiber. Collagen fibers are then encapsulated by a second 
endotenon and an epitenon, forming a fascicle that com-
pletes the Zone I structure.49,50 Both the collagen fiber and 
fascicle possess inner activity because the membrane and 
sheathe that wraps them are in free contact with each other, 
which allows the collagen fibers and fascicles to slightly 
move and glide transversally.47–51 With regard to histologi-
cal nutrient exchange in Zone I, the vascular networks, 
together with some tiny nerves and lymphatic capillaries, 
are mainly distributed in the external layer (epitenon) and 
the second endotenon, and is rarely observed in the central 
region.50–52 These microvessels have a small average 
diameter and blood flow through them is very slow. This 
indicates that total blood volume in the enthesis is much 
lower than in other tissues like the skin and muscles, and 
that the nutrient/waste–product exchange in the inner 
region of enthesis tissue mainly depends on diffusion 
through the matrices, which is not sufficient for cellular 
metabolic needs. This nutrient shortage may be severer 
during accelerated cell growth, reproduction, or differen-
tiation. Thus, the limited nutrient exchange caused by its 
anatomical features can explain why the enthesis has low 
cellular density, with 55%–70% of the enthesis being 
extracellular matrix (ECM), which mainly contains 
water.53 This may also explain why enthesis tissue healing 
is slow after injury.

With regard to cellular composition, Zone I is made  
of several cell types, including fibrocytes, fibroblasts, 
vascular endothelial cells, nerve cells, and various 
immune cells, including mast cells, neutrophils, and mac-
rophages).54 Fibrocytes are the most common cell type in 
Zone I, accounting for 90%–95% of all cells.53 Fibrocytes 
are mostly derived from fibroblasts, which are locally 
embedded in intra-fibril spaces and have a larger variation 
potential and a higher reproduction rate than fibro-
cytes.49,55–57 Fibrocytes and fibroblasts are the main pro-
ducers of the ECM in Zone I and they produce almost all 
ECM components. Without considering water, the ECM 
of Zone I is mainly made of collagen fibrils, which make 
60%–85% of the dry weight. Collagen type I makes up 
most (80%–90%) of the total collagen content, followed 
by collagen type III (1%–10%) and collagen type II (2%). 
The ECM of Zone I also contains a small amount of 
elastin, proteoglycans, glycosaminoglycans (GAGs), and 
glycoproteins. These functional biomolecules can enhance 
the biomechanical properties of Zone I, such as its stiff-
ness, toughness, and viscoelasticity.49,58 In enthesis tissue 
engineering, the factors influencing fibrogenesis might 
mainly function in Zone I.

The unmineralized fibrocartilagenous region. The unmineral-
ized fibrocartilagenous region (Zone II) is characterized 
by an acute change in tissue composition, with the ECM 
components changing into collagen type II and III, which 
in humans, are typical components of the hyaline carti-
lage.59 Zone II also contains small amounts of collagen 
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Figure 2. (a) Hematoxylin & Eosin image of the structure of rat enthesis,40 (b) Sanderson staining and Van Gieson staining image of 
the structure of sheep enthesis,42 (c) Giemsa staining image of the structure of sheep enthesis.46 (d) A schematic representation of 
transition across the four zones. (e) The special axial hierarchical structure of Zone I. (f) The upper three figures are a microscopic 
image, a collagen distribution map under FTIR-I, and a mineral distribution map under FTIR-I in tibial ACL enthesis. The lower figure 
is a quantitative analysis of the collagen and mineral distribution in the enthesis fibrocartilage region.74 (g) Raman spectral mapping 
of the gradient transition of collagen and mineral content in the fibrocartilage region of an ACL enthesis.75 (h) Upper figure: an 
elastographic analysis of ACL enthesis in tension shows the distribution of mechanical stress experienced through the enthesis 
(yellow–green–blue).78 Lower figure: strain response curve of an ACL enthesis under uniaxial compression.79

F: fibrous region; UMF: unmineralized fibrocartilagenous region; MFC: mineralized fibrocartilagenous region; B: bony region; ACL: anterior cruciate 
ligament; FTIR-I: fourier transform infrared spectroscopic imaging.



Luo et al. 5

type I and X, GAGs, and proteoglycans.60–63 The proteo-
glycans in Zone II are mostly aggrecan and versican, which 
are large chondroitin sulfate proteoglycans (hyalectans).62–64 
With the exception of hyalectans, some small leucine-rich 
repeat proteoglycans (SLRP), such as chondroadherin and 
biglycan, are highly abundant in Zone II than in Zone I.65,66 
Hyalectans and SLRP, which occur on the surface of 
fibrils, are both negatively charged proteoglycans located 
in the gaps of collagen type II fibrils.65,67 The molecular 
and electrostatic repulsive forces between proteoglycans 
and collagen fibrils cause collagen type II fibrils to diverge. 
The alignment of the collagen fibrils becomes slightly 
unparallel and irregular, and the fibrils can slide along 
each other, which markedly increases the degree of anisot-
ropy.68 These biomolecular features illustrate why enthesis 
tissue endure tensile or compressive mechanical forces in 
all directions. Moreover, fibrochondrocytes in Zone II are 
substituted for fibrocytes, which become the main cell 
type. However, the morphology of fibrochondrocytes is 
highly similar to that of fibrocytes, which are spindle-like 
or flat and stretched along the enthesis axis.69

The mineralized fibrocartilagenous region. Zone II and the 
mineralized fibrocartilagenous region (Zone III) are both 
fibrocartilagenous tissues but differ in their degree of tis-
sue calcification. In Zone III, collagen type X is the sec-
ond most abundant component of collagen fibrils instead 
of collagen type III, and collagen type II is still predomi-
nant although its overall fibril alignment is more random 
and anisotropic, which may be caused by increased levels 
of aggrecan and versican.59,62,63 Although tissue minerali-
zation starts to appear in this region, it is incomplete. The 
mineral in this area is amorphous calcium phosphate 
(ACP), which does not directly interact with collagen 
molecules but can interact with other structural biomole-
cules like proteoglycans, GAGs, and glycoproteins via 
their charged amino acid residues, particularly the nega-
tively charged residues on carboxyl groups.70,71 Because 
of the low amount of non-collagenous protein and their 
binding capability with ACP, the mineralization process 
in Zone III is interrupted in the early stage. This may be 
why no crystalline calcium phosphate can be formed 
ulteriorly.72 In Zone III, the cells are predominantly fibro-
chondrocytes with different morphologies and distribu-
tions. Fibrochondrocytes have a larger volume and 
rounder shape and are stochastically distributed in the 
network of collagen fibrils.69 In enthesis tissue engineer-
ing, strategies for promoting chondrogenesis usually tar-
get both Zone II and III.

Bony region. The bony region (Zone IV) has the maximum 
level of histological mineralization. The predominant col-
lagen fibrils, mineralized by hydroxyapatite, revert to col-
lagen type I while osteocytes, osteoblasts, and osteoclasts, 
become randomly scattered in the bony ECM network.73 
In enthesis engineering, the enhancement of osteogenesis 

via various strategies can vastly improve Zone IV 
regeneration.

The structure transition from Zone I to Zone IV. It is clear 
that progression from Zone I to Zone IV is accompanied 
by an abrupt change from soft to hard tissue. In enthesis 
tissue, structural transition is compositionally distinct and 
graded in the interfaces between Zone I and II as well as 
Zone III and Zone IV, while at the same time, there is also 
a continuous structural gradient from Zone II to Zone III 
(Figure 2(f)).74,75 In the Zone II–Zone III span, hydroxy-
apatite levels increase continuously but relatively more 
rapidly in Zone III, whereas collagen levels decrease grad-
ually, indicating the existence of a gradient transition 
between the two fibrocartilagenous zones (Figure 2(g)).75 
With regard to the structure–function relationship in the 
four zones, the typical multi-layered tissue transition and 
its spatial heterogeneity closely correlate with the distribu-
tion of the mechanical stress experienced through the 
enthesis.76–79 An elastographic analysis of tension-loaded 
ACL enthesis found that the highest displacement was in 
Zone I and that the peak value decreased gradedly from 
Zone I to Zone II, gradiently from Zone II to Zone III, and 
gradedly from Zone III to Zone IV, indicating an overall 
increase in tissue stiffness that corresponded with struc-
tural transition through the four zones (Figure 2(h)).78 
Moreover, an analysis of region-dependent strain response 
by the ACL enthesis under uniaxial unconfined compres-
sion found that incremental displacement decreased con-
tinuously from Zone II to Zone III, which may indicate 
that increasing tissue stiffness corresponds to structural 
transition in these two zones (Figure 2(h)).79 Taken 
together, the characteristics of enthesis tissue discussed 
above are key in minimizing stress concentration and pro-
moting gradual load transfer from the soft to hard tissue. 
These characteristics might also explain why this small 
soft–hard region (within a few hundreds of micrometers) 
endure relatively high local tensile/compressive stresses 
and forces without failure, deformation, or tear.

The natural healing process of enthesis

The natural healing process of enthesis is complex and can 
be divided into three phases: a) the inflammatory and 
necrotic phase (early period), b) the rapid proliferative 
phase (middle period), c) the gradual remodeling phase 
(final period).80–82 The inflammatory and necrotic phases 
usually occur in the first week of injury. Inflammation is 
triggered by inflammatory factors that target fibroblasts, 
fibrocytes, and vascular endothelial cells, resulting in 
cytonecrosis of the damaged tissue.83–89 During this period, 
the biological structure and biomechanical properties of the 
injured enthesis deteriorate rapidly, severely limiting regen-
eration capacity. Therefore, suppressing inflammation in 
the early period is crucial for good recovery.90,91 Because 
the levels of the inflammatory mediators interleukin 
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(IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF), matrix 
metalloproteinase (MMP)-1, MMP-3, and MMP-13 are 
upregulated in the early period of enthesis healing,92,93 
there are several potential targets for effectively inhibiting 
inflammatory reactions. After inflammation subsides, the 
injured enthesis enters the rapid proliferation phase, which 
usually lasts from the first to the third or fourth week of 
injury and leads to marked increases in the number of 
nearly all cell lineages in the enthesis, including fibrocytes, 
fibroblasts, fibrochondrocytes, osteocytes, and vascular 
endothelial cells. The production and secretion of the ECM, 
which is mainly made of collagen type III, also acceler-
ates.94 This results in new enthesis tissue although at this 
stage it is immature and fragile, and its biomechanical 
properties have not met healing requirements. The last 
phase of healing is the long remodeling period which typi-
cally lasts several months or years. This process is charac-
terized by a significant decrease in the total cellular density 
and a continuous increase in the number of fibroblasts, 
decrease in ECM content and overall production of colla-
gen and GAGs, and a gradual increase in the production of 
collagen type I.95,96 In this period the typical four-layer 
physiological structure of the enthesis slowly rebuilds and 
the maximum stress loading capacity rises.97–99 However, 
after natural recovery, the enthesis tissue is far weaker than 
the uninjured tissue. Perfect natural healing is not achieva-
ble and there is risk that the regenerated enthesis tissue may 
re-rupture and undergo resorption.94,95 Moreover, enthesis 
healing is nonuniform and intrinsic healing process is rela-
tively slower than extrinsic healing, probably because of 
the heterogeneity of the vascular network distribution in 
enthesis tissue.100–102

Based on the natural characteristics of enthesis tissue 
listed above, numerous recent studies have attempted to 
promote enthesis regeneration and identified several factors 
that may effectively improve enthesis regeneration, includ-
ing bio-gels, scaffolds, growth factors, and stem cells.103–107

Tissue engineering strategies for 
enthesis reconstruction

The field of tissue engineering (TE) involves several disci-
plines, such as cytology, histology, molecular biology, 
biochemistry, material science, engineering science, and 

clinical medicine. The concept of TE was first introduced 
in 1993 by Langer and Vacanti and its overall aim is to 
develop feasible methods of artificially rebuilding various 
tissues and organs.108,109 TE, which not only seeks to 
reconstruct histological structures, but also to restore origi-
nal biological functions, has been widely applied in ortho-
pedics and there are several strategies for repairing bone 
defects.110–112 However, the development of enthesis TE is 
not as advanced and the successful reconstruction of enthe-
sis tissue has not yet been achieved.3,26,113–115 Studies on 
the use of TE in enthesis repair involve four strategies, the 
biological scaffold, cell, growth factor, and biophysical 
modulation strategies. Of these, the biological scaffold 
strategy has attracted the most interest (Table 1).

The biological scaffold strategy

A suitable biological enthesis scaffold should have the 
following properties: (a) a biomimetic structure, (b) 
mechanically biomimetic properties, (c) mouldability, (d) 
biodegradability, and (e) biocompatibility (should not be 
cytotoxic or inflammatory).3,42,116–118 These requirements 
markedly limit the number of materials that can be used as 
biological scaffolds in enthesis TE. Enthesis scaffolds can 
be natural or artificial.119–127 Artificial enthesis scaffolds 
are fabricated using synthetic polymeric biomaterials, 
whereas natural ones are made of natural materials like 
collagen, silk fibroin, and hyaluronic acid. The most 
straightforward approach for developing enthesis biologi-
cal scaffolds involves decellularized enthesis tissue from 
laboratory animals or human donors. In the following sec-
tions we discuss the common types of scaffolds in detail.

Decellularized scaffolds. Decellularized enthesis scaffolds, 
which are the most readily available, fall into three  
categories based on their origin—autogenous enthesis 
scaffolds, allogeneic enthesis scaffolds, and xenogeneic 
enthesis scaffolds.128,129 Although their tissue sources are 
different, the principle of scaffold-making is largely the 
same and involves depletion of the cellular component of 
raw enthesis tissue to obtain the ECM only, which can 
form a enthesis biological scaffold.130 The main advan-
tage of decellularized enthesis scaffolds are that they are 
easy to obtain and the tissue’s biomimetic capacity is 

Table 1. The biological scaffolds, cells, growth factors, and biophysical modulations applied in enthesis tissue engineering.

Biological scaffolds Cells Growth Factors Biophysical Modulations

Natural Scaffolds Artificial Scaffolds

Decellularized enthesis Polyolefins Osteoblasts BMPs Stress stimulation
Collagen Poly(urethanes) Fibroblasts FGFs Electromagnetic field
Silk PLA CDSCs TGFs  
HA PCL TSPCs GDFs  

PGA ADSCs PDGFs  
PLGA MSCs VEGF  
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guaranteed (especially when the scaffold is based on the 
same anatomical site).131,132

A study by Xu et al. which developed a porcine decel-
lularized Achilles enthesis scaffold using a new protocol, 
found that the decellularized enthesis scaffold preserved 
the typical histological structure of enthesis tissue well 
(Figure 3(a)).133 Additionally, their biomechanical assess-
ment showed that the decellularized enthesis scaffold 
retained mechanical properties that were appropriate for 
practical applications (Figure 3(b)).133 A study by Su et al. 
produced a porcine decellularized Achilles enthesis scaf-
fold using a refined protocol and found that it promotes 
enthesis regeneration in vitro and in vivo (Figure 3(c)).134 
Compared with the control group (a simple decellularized 
tendon scaffold), more mesenchymal stem cells (MSCs) 
adhered, proliferated, and infiltrated the decellularized 
enthesis scaffold (Figure 3(d)). The MSCs in this scaffold 
significantly upregulated osteogenesis-associated genes 
like RUNX2, OPN, and ALP, as well as tenogenesis-asso-
ciated genes like SCX, THBS4, and VIM (Figure 3(e)), 
and when implanted into rabbit tibia, the enthesis scaffold 
induced the regrowth of enthesis tissue (Figure 3(f)).134

These experiments indicate that decellularized enthesis 
scaffolds have enormous potential for use in enthesis  
TE. However, decellularized scaffolds have limitations. 
Although the harvest of raw enthesis tissue is not difficult, 
decellularization and manufacturing protocols should be 
improved to increase efficiency.134 The cellular component 
of raw enthesis tissue still cannot be removed radically and 
the structural and biomechanical properties of the enthe-
sis’s ECM may be disrupted during decellularization.133,135 
To improve enthesis scaffold decellularization, Shi et al. 
developed a vacuum aspiration system (VAS), which pro-
vides a negative pressure environment that maintains a 
continuous flow of phosphate buffered saline. Their exper-
iments showed that the VAS considerably improves ECM 
preservation while minimizing the amount of remnant 
cells in the decellularized enthesis scaffold. Compared 
with traditionally-decellularized scaffolds, the mechanical 
properties of their optimized decellularized scaffold were 
significantly improved. Moreover, VAS-mediated scaffold 
decellularization effectively enhanced enthesis regenera-
tion and osteogenic, chondrogenic, and tenogenic differen-
tiation capacities were all elevated in the corresponding 
zones of this scaffold.136 Therefore, VAS may significantly 
improve the production of decellularized enthesis scaf-
folds. Another key shortcoming of decellularized enthesis 
scaffolds is that scaffold size and its inner structure are 
uncontrollable and fixed individually in the different 
scaffolds. Currently, uniform decellularized enthesis scaf-
folds cannot be produced and their structures are hard to 
modulate.

Collagen scaffolds. Biomaterials based on collagen, the main 
component of the enthesis ECM, are widely used in medi-
cine because of their relatively assured biocompatibility. 

Collagen biomaterials have been certified by the US Food 
and Drug Administration for decades and collagen scaf-
folds have been widely used in TE.137 Collagen is easily 
accessible and is present several tissues types, including 
bone and skin.138–140 In the past, collagen was extracted 
from bone, tendon and fascia tissues via several steps that 
included digestion and hydrolysis,141,142 which preserved 
its amino acid sequence, molecular structure, and bio-
mechanical properties, and therefore its biocompatibility. 
After extraction, collagen would be dissolved in a buffer 
solution that was then used to make collagen enthesis scaf-
folds using various methods.143–155

The electrospun collagen enthesis scaffold, an easily 
accessible scaffold fabricated using an electrospinning 
device, is one of the most commonly used TE scaffolds 
and it effectively supports enthesis regeneration.38,117 
Based on the poly(ϵ-caprolactone) (PCL) electrospun 
nanofiber membrane scaffold fabricated using a simple 
PCL organic solution, Lin et al. added a collagen I (COL-1) 
solution into PCL solution and successfully fabricated a 
new type of a COL-1/PCL hybrid nanofiber membrane 
scaffold.156 Mechanical and in vitro experiments, revealed 
that COL-1 markedly increased the porosity, hydrophilicity, 
and dissolution rate of the nanofiber membrane scaffold, 
indicating that COL-1 may improve the cellular affinity 
and biodegradability of the enthesis scaffold.156 Moreover, 
tendon stem/progenitor cells (TSPCs) seeded on this 
COL-1/PCL hybrid scaffold exhibited a faster prolifera-
tion rate and a more widely spread cellular morphology, 
and highly upregulated several osteogenic differentiation 
genes, including Col1a1, OCN, RUNX-2, and OCT-4. 
Experiments in which the blending volume ratios of 
COL-1 and PCL solution were adjusted to fabricate differ-
ent scaffolds revealed that the beneficial effects men-
tioned above were better in the hybrid nanofiber membrane 
scaffold made from a 1:2 (v/v) COL-1/PCL solution 
(Figure 4(a)–(d)).156 Together, these findings highlight col-
lagen as an ideal biomaterial for enthesis regeneration, and 
show that the electrospun collagen enthesis scaffold may 
simultaneously promote regeneration in Zone I and IV. 
Apart from electrospun collagen enthesis scaffold, freeze-
dried collagen enthesis scaffold is frequently applied in 
enthesis tissue engineering (TE). Through tuning the col-
lagen solution temperature, the solvent (water) is first  
frozen to successfully segregate the dissolved collagen and 
the solvent, the mixture is freeze-dried to remove the ice 
crystal and then a porous spongy-like collagen enthesis 
scaffold is generated. By adjusting the concentrations of 
the collagen solute or choosing different manufacturing 
protocols, both the inner structures and the overall mechan-
ical properties of the collagen scaffold can be artificially 
controlled.157–159

Based on this freeze-frying fabricating process, 
Caliari et al. designed and manufactured a freeze-dried 
biphasic collagen and a GAG (CG)/GAG and Calcium 
phosphate (CGCaP) enthesis scaffold. The scanning 
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Figure 3. (a) Native enthesis tissue before and after decellularization,133 (b) The decellularized enthesis scaffold exhibits 
good biomechanical properties (maximum force, Young’s modules, strain at maximum force),133 (c) The process of obtaining 
decellularized enthesis scaffolds,134 (d) Successful infiltration and proliferation of MSCs in the decellularized enthesis scaffold,134  
(e) Osteogenesis-associated genes (RUNX2, OPN, ALP) and tenogenesis-associated genes (SCX, THBS4, VIM) were upregulated in 
the decellularized enthesis scaffold, and134 (f) More tissue was regenerated in the decellularized enthesis scaffold.134

T: tendon; I: interface; B: bone; D-T: decellularized tendon scaffold; D-BFT: decellularized bone-fibrocartilage-tendon scaffold.
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electron micrographs (SEM) of this biphasic enthesis 
scaffold demonstrated that the pores in the non-mineral-
ized CG layer were longitudinally aligned and regular 
(corresponding to Zone I), while the pores in the miner-
alized CGCaP layer were relatively more isotropic and 
random (corresponding to Zone IV). Besides, at the 
interface between the two layers, the transforming  
collagen trabeculae were smooth and continuous (corre-
sponding to Zone II and Zone III) (Figure 4(e)).160  
All the structures generated in this scaffold perfectly 
mimicked the native composition of the enthesis tissue. 
In vitro analysis of the scaffold showed that several 
fibronectin-related integrins (α4, α5, αV, β1, β3) and 
tenogenic genes (COL1A1, TNC, SCX) were highly 
expressed in the tendinous (CG) layer, while several 
osteogenic genes (BSP, ALP, OCN) were overexpressed 
in the osseous (CGCaP) layer.160 Therefore, the freeze-
dried CG/CGCaP biphasic enthesis scaffold had an 
excellent effect on enthesis regeneration, and could be 
applied in enthesis TE to promote Zone I and Zone IV 
regeneration in the enthesis tissue. In their follow-up 
studies, the researchers added a polyethylene glycol 
(PEG) hydrogel layer between the two layers (CG and 
CGCaP) to fabricate a CG-PEG-CGCaP triphasic enthe-
sis scaffold, followed by a detailed analysis of its inner 
topology and mechanical properties (Figure 4(f)).161 
This triphasic enthesis scaffold had even more similarity 
with the native enthesis tissue, and thus once its biofunc-
tions on enthesis regeneration is certified, it would pos-
sibly be another effective enthesis scaffold to be utilized 
in enthesis TE.

Besides the above scaffolds, the utility of electrochemi-
cal collagen enthesis scaffold in enthesis TE is also remark-
able. After application of an electric field to the collagen 
solution, there is electrolysis of water which creates a pH 
gradient from the anode to the cathode. Thereafter, the dis-
solved collagen molecules slowly migrate and assemble at 
the isoeletric point (pI) region. Finally, simple collagen 
threads, sheets or membranes are generated, which are 
ulteriorly fabricated into more complex scaffolds.162–164 
Using this convenient fabricating process, Younesi et al. 
produced a plate-arcade-plate composite electrochemical 
collagen scaffold to emulate natural interdigitated arcade 
structure of the cartilage (Figure 4(g)). After seeding 
MSCs into the scaffold and culturing them for different 
periods, the studies showed that both the cell number and 
the scaffold weight gradually increased. H&E and Masson-
trichrome staining showed that cartilage ECM slowly 
filled the scaffold pores with time. On the other hand, 
Safranin O staining demonstrated that the GAG compo-
nents were produced by day 14 and were more abundant 
on day 28. In addition, immunostaining assay showed high 
generation of collagen type II and aggrecan molecules, 
which are the two major compositions of cartilage tissue. 
Moreover, Young’s modulus of the cell-seeded scaffold 

increased to around 60% to a cartilage-nearing value of 
1.33 ± 0.37 MPa. These findings demonstrated that the 
composite electrochemical collagen scaffold had enor-
mous potential for cartilage regeneration, and it could be 
applied in enthesis TE to help regenerate the chondral 
parts of enthesis tissue, which correspond to the Zone II 
and Zone IV.165

Unlike the decellularized enthesis scaffold with a fixed 
collagen layout, the collagen enthesis scaffold is funda-
mentally fabricated with collagen molecules and its fibers 
in different methods, which has a higher degree of modu-
lability of the scaffold inner architectures. Because the 
artificial collagen fibers possess excellent stiffness and 
toughness, the collagen enthesis scaffolds often have 
advanced mechanical properties.166 Besides, since the 
natural collagen molecules are kept unchanged in the 
whole process, some cell adhesion signal targets in the 
collagen can be preserved, which explains why collagen 
scaffolds could promote cellular adhesion and prolifera-
tion as well as effective enthesis regeneration.3,117,167–169 
Different collagen enthesis scaffolds may target on the 
different regions of enthesis tissues and exert different 
bioeffects on enthesis regeneration. Therefore, it is fea-
sible to hybridize these scaffolds to fabricate a more 
omnipotent enthesis scaffold, such as the hybridization of 
electrochemical collagen enthesis scaffold and electro-
spun collagen enthesis scaffold.

Although collagen enthesis scaffold exhibits many 
advantages with relatively clear functions on enthesis 
regeneration, collagen is mostly extracted from experi-
mental animal tissues (rat tail or bovine Achilles tendons) 
or the donor’s tissues.170–172 Before being further pro-
cessed and fabricated into scaffolds, collagen needs pre-
conditioning to inactivate the xenoantigen or alloantigen. 
Collagen extracted from other animal species require 
mandatory preconditioning processes for biocompatibil-
ity adaptation.173,174 Besides, the process of sterilization 
for collagen is also necessary to eliminate potential patho-
gens. However, it is still difficult to fully eliminate the 
antigens and pathogens without damaging the collagen 
molecules.175–177 Another challenge with collagen enthe-
sis scaffold is the degradation rate. After being implanted, 
the structures and the biomechanical properties of colla-
gen enthesis scaffolds inevitably deteriorate in a short 
time, which severely impacts its actual biofunctions.178–180 
Therefore, if the biocompatibility and the degradation rate 
of collagen enthesis scaffold could be improved, its appli-
cations for enthesis regeneration will become more 
widespread.

Silk scaffolds. Natural silk is a protein polymer produced 
by insects such as silkworms, scorpions, and spiders. Out 
of all the available silks, silkworm silk (Bombyx Mori 
silk), is the most widely used in the field of TE.181–183 A 
key component of silk material is the silk fibroin (SF). 
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Figure 4. Addition of collagen material increased the porosity and hydrophilicity of the electrospun PCL scaffold (a), upregulated 
the osteogenic-related genes (Col1a1, OCN, RUNX-2, OCT-4) (b), enhanced the proliferation rate of TSPCs seeded in the scaffold 
(c) and conferred a widely-spread morphology (d).156 (e–g) The different biomimetic collagen enthesis scaffolds.160,161,165

PCL: poly (ε-caprolactone); COL: collagen; CG: collagen and GAG; CGCaP: collagen, GAG and calcium phosphate; PEG: polyethylene glycol; MSCs: 
mesenchymal stem cells.
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There are at least two major types of fibroins in the silk 
composition, which are referred to as the light chain 
(25 kDa) and the heavy chain (325 kDa). These two core 
biocompatible fibroin molecules constitute the composite 
silk fibers characterized by an anti-parallel β-sheet crystal 
conformation in space which confer the ideal mechanical 
properties to the silk material. Besides, a glue-like sericin 
protein coat binds the SF to reinforce the molecular struc-
ture of the silk fibers.184 Before being utilized in the fabri-
cation of the biological scaffold, the silk should be fully 
degummed, dissolved, dialyzed, and then centrifuged from 
the SF solution, which is the common source of material 
for silk scaffold fabrications.184–186 Silk is a biocompatible 
material with ideal mechanical properties, and to uncover 
the possible applications of silk material in enthesis TE, 
there have been many attempts on silk enthesis scaffold to 
explore the influence on enthesis regeneration.

For instance, in 2021, Chen et al. successfully manufac-
tured a gradient-mineralized electrospun silk enthesis scaf-
fold. Briefly, a nanofibrous silk membrane was fabricated 
by an electrospinning device, and then the silk membrane 
was placed vertically in a 10× simulated body fluid (SBF) 
to produce a spatial decrease in mineralization degree from 
the bottom to the top of the silk membrane (Figure 5(a)). 
SEM images showed a regular topology from the bottom 
to the top of the scaffold, and the energy-dispersive X-ray 
spectroscopy (EDS) and Fourier transform infrared spec-
troscopy (FTIR) analyses further confirmed the existence 
of the gradient mineral deposition. These experiments 
demonstrated that the scaffold was highly like the native 
structure of the enthesis tissue. Next, the osteochondral 
inductivity of this gradient-mineralized silk enthesis scaf-
fold was fully analyzed. Compared to the no-mineralized 
silk scaffold, the gradient-mineralized silk enthesis scaf-
fold could simultaneously promote both bone and cartilage 
tissue growth. Specifically, the area with higher degree of 
mineralization had larger osteogenic differentiation induc-
tivity, while the area with lower degree of mineralization 
had more chondrogenic differentiation inductivity (Figure 
5(b)). Due to these unique characteristics, the gradient-
mineralized silk enthesis scaffold can be applied to restore 
the natural composition of enthesis tissue, which could 
fuel the regeneration of Zone II, Zone III and Zone IV.187

Besides trying electrospun silk enthesis scaffold in 
enthesis TE, there are attempts to explore salt-leached silk 
enthesis scaffold for use in enthesis regeneration. Although 
the manufacturing protocols are diverse, the overall fabri-
cating processes of the salt-leached silk enthesis scaffolds 
are nearly the same. Briefly, porogen particles (such as 
sodium chloride) are first added into the SF solution, 
soaked and dissolved in water, and then a porous silk 
scaffold is successfully leached out.188

Based on the fabrication process of salt-leaching,  
Yan et al. manufactured a Silk/Silk-nanoCaP bilayered 
salt-leached enthesis scaffold. The whole scaffold had an 

amorphous conformation, which presented a special 
macro/microporous interconnective topology that highly 
mimicked the enthesis ECM. At the interface of the two 
layers, the transformation on the CaP content and scaf-
fold porosity were gradient, and these two different lay-
ers proved to be perfectly integrated, which corresponded 
to the native region of Zone II and Zone III (Figure 5(c)). 
Both in vitro and in vivo experiments with this bilayered 
enthesis scaffold showed that the Silk-nanoCaP layer  
had more osteogenesis and angiogenesis capacities, while 
the Silk layer had higher chondrogenesis capacity. In the 
Silk layer of the scaffold, there was more proliferation  
of chondrocytes in the normal round phenotype, more 
infiltration of cartilage tissue, and more generation of 
GAG and collagen type II. In the Silk-nanoCaP layer, 
newly-formed subchondral bones and vessels were fully 
observed, and the immunohistochemical staining showed 
presence of an angiogenic marker (SNA-lectin) (Figure 
5(d)).189 Therefore, this Silk/Silk-nanoCaP bilayered 
salt-leached enthesis scaffold was demonstrated to be an 
efficient scaffold to be applied in enthesis TE, which 
could enhance angiogenesis, osteogenesis and chondro-
genesis in the enthesis tissue. Besides the nanoCaP parti-
cles, glycerol can also be used in salt-leached silk scaffold 
to achieve higher enthesis biomimetic degrees. In a study 
by Xiao et al. glycerol was added into the scaffold to 
manipulate the structural characteristics of the silk scaf-
fold. SEM images revealed that the silk scaffold had a 
more amorphous structure in nano-scale that corre-
sponded to the microstructure of native enthesis after 
addition of the glycerol.190 These findings showed that 
salt-leached silk scaffold could be another enthesis scaf-
fold used in enthesis TE. Indeed, previous evidence 
showed that salt-leached silk scaffold might positively 
affect the process of neurogenesis.191 Since the enthesis 
and nerve injuries in the spine region often occur simul-
taneously, this scaffold could be more curative in the 
applications of spinal injuries.192,193

In addition to the electrospun and salt-leached silk 
enthesis scaffolds, freeze-dried silk enthesis scaffold is 
another potential silk scaffold in enthesis TE. The overall 
fabricating process resembles that of the freeze-dried  
collagen scaffold, and a spongy-like porous silk scaffold 
can also be generated, which contains a splendid ECM-
biomimetic inner architecture. The pore sizes of the freeze-
dried silk scaffold usually vary from tens to hundreds of 
microns, and within reasonable range of modification, the 
higher freezing temperature can cause a larger pore size, 
demonstrating an ideal modulability.194,195

Based on the freeze-drying theories, Sang et al. designed 
a novel type of amorphous silk porous scaffold and fabri-
cated it to explore its possible biofunction in angiogenesis 
of soft tissues. Through tuning of different freeze-drying 
temperatures from −20°C to −5°C, the researchers suc-
cessfully produced a sequence of amorphous silk porous 
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scaffolds. The amorphous silk porous scaffolds had similar 
ECM-mimicking inner microstructures, and analysis of 
scaffold characteristics revealed that the scaffold gener-
ated at the higher temperature had a slower degradation 
rate and a larger compressive modulus, which corre-
sponded to better stability and better mechanical proper-
ties, respectively (Figure 6(a)). Furthermore, in vitro and 

in vivo experiments showed that the scaffold produced at 
the higher temperature had great enhancements on the pro-
liferation of MSCs, the growth of collagen content and the 
neovascularization capacity (Figure 6(b)–(d)).196 Because 
the enthesis tissue is a collagen-rich composite tissue con-
taining the soft tissue components in Zone I, Zone II and 
Zone III, this amorphous silk porous scaffold could also be 

Figure 5. (a) The fabrication and structural layout of a gradient-mineralized electrospun silk enthesis scaffold.187 (b) In the 
gradient-mineralized scaffold, areas with a higher degree of mineralization had more osteogenic differentiation inductivity (shown 
by Alizarin Red staining and the absorbance of staining extracts; collagen I concentration of cells seeded on the scaffold; gene 
expression levels of RUNX2 and ON) and lower chondrogenic differentiation inductivity (shown by Safranin O staining; collagen II 
concentration of cells seeded on the scaffold; gene expression levels of COL2A1 and Sox9).187 (c) The structural characteristics of 
the Silk/Silk-nanoCaP bilayered salt-leached silk scaffold.189 (d) Chondrogenesis capacity is higher in the Silk layer. Osteogenesis and 
angiogenesis capacities are higher in the Silk-nanoCaP layer.189
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utilized for enthesis regeneration. In addition, since the 
vascular network distribution is poorer in enthesis tissue 
compared to other tissues, this silk scaffold is believed to 
effectively stimulate angiogenesis in the enthesis regener-
ation process, which could tremendously enhance the 
regeneration of the injured enthesis tissues. The inner 
architecture of this amorphous silk porous scaffold could 
be easily controlled by tuning the different fabricating 
temperatures, thus the scaffold might be feasibly used to 
produce a refined hierarchical enthesis scaffold, which is 
stratified with multiple amorphous layers, which mimics 
the histological structures of the different regions of the 
enthesis tissue. This amorphous silk porous scaffold has a 
big potential in enthesis TE, and thus there is a need for 
more relevant research of this silk scaffold on enthesis 
regeneration.

In summary, silk enthesis scaffold is an ideal kind of a 
biological scaffold with great mechanical properties in 

enthesis TE. The properties include good strength, great 
toughness, and excellent elasticity, good biodegradability 
and bioresorbability. Besides, its main component, silk 
fibroin can be easily digested by proteases, yielding degra-
dation products including amino acids or some small pep-
tide molecules, which can directly be absorbed by body 
tissues. After being implanted, silk enthesis scaffold is 
totally degraded and absorbed within a year with the par-
ticipation of macrophages.197 However, the silk enthesis 
scaffold is still limited by few challenges which restrict its 
applications. Compared with the silk fibroin, the element 
of sericin is far less compatible with the human immuno-
system which could induce Type I allergic reaction in 
human bodies.198,199 Although majority of the sericin com-
ponent in silk material was removed in the preparation 
process of the SF solution, there could still be few sericin 
remnants which could act as an allergen in the enthesis 
scaffold.198,199 Moreover, in the silk scaffold fabrication 

Figure 6. (a) A sequence of insoluble amorphous silk enthesis scaffolds freeze-dried at different temperatures and their mechanical 
properties.196 The scaffold produced at a higher temperature has faster cell proliferation rate (b), larger neovascularization capacity, 
(c), and more regeneration of collagen content (d).196 NSF-9, insoluble scaffolds derived from amorphous silk nanofiber solution 
and frozen at −9°C; NSF-7, insoluble scaffolds derived from amorphous silk nanofiber solution and frozen at −7°C; NSF-5, insoluble 
scaffolds derived from amorphous silk nanofiber solution and frozen at −5°C.
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process, organic solvents or some harmful materials may 
inevitably be residual, which may increase the toxicity of 
the silk scaffold.200 Therefore, there is a need to develop 
strategies to circumvent these problems associated with 
the application of silk enthesis scaffold in enthesis TE.

HA hydrogel. Apart from the above-described collagen and 
silk, the Hyaluronic acid (HA) biomaterial also draws a lot 
of attention in enthesis TE. HA is a subunit of GAGs, 
which has a relatively looser molecular structure and a 
weaker mechanical property, thus it is mainly made into 
hydrogel and appended into other types of scaffolds. HA is 
a widespread molecule in various extracellular matrices of 
our human bodies, which is also an essential component of 
the enthesis tissue. It can reinforce molecular connection 
of collagen fibers, increase histological viscoelasticity, and 
can function as a lubricant in collagen fibers to decrease 
friction and occurrence of fiber breakage.201 Therefore, 
incorporation of enthesis scaffold with HA could increase 
its mechanical properties and endurance. Frizziero et al. 
applied a repeated HA injection into the peri-Patellar ten-
don region of a detrained rat, and showed that HA could 
increase collagen I content, decrease collagen III content 
and could have a positive effect on maintenance of the 
enthesis structure from detraining-associated damage.202 
Furthermore, HA is also an anti-inflammatory biomole-
cule. Addition of this element could lead to alleviation of 
the inflammatory response intrigued by the implanted 
scaffold, thus promoting the scaffold biocompatibility and 
exerting a positive effect in enthesis regeneration.203–207 
Therefore, the HA hydrogel might be another promising 
natural biomaterial useful in enthesis TE.

Polyolefins and Poly (urethanes). Conservative Polyolefins, 
such as poly tetrafluoroethylene and poly propylene were 
the initial synthetic polymeric biomaterials used in enthe-
sis TE. Initially, researchers focused on the restoration  
of the anatomy using the Polyolefin materials. They used 
these materials to reconnect the tear and gap or to refill the 
large void defect of the enthesis and thus rebuild the  
histological completeness. There was no consideration of 
the cellular ingrowth or tissue regeneration, and the final 
outcomes did show many poor effects of these bio-inert 
materials: the maximum bearable tensile forces were 
weaker, external strengths could easily deform the 
implanted polymers, deterioration of injured enthesis 
without any regeneration, and lack of any biodegradability 
for these biomaterials.208,209 Because of these shortcom-
ings, the Polyolefin materials were rendered obsolete.

Apart from the Polyolefins, researchers have also tried 
Poly (urethanes) in enthesis TE due to their superior 
mechanical properties. Poly (urethanes) are polymers 
synthesized by condensation polymerization reactions 
between different isocyanates and polyols, which are usu-
ally accelerated by some catalysts or activated by UV radi-
ation. Compared with Polyolefins, the tunability of the 

Poly (urethanes) is slightly higher. By altering the different 
kinds or ratios of isocyanates and polyols, the molecular 
architectures and mechanical properties of these polymers 
become tunable.210–212 The biggest advantage of the Poly 
(urethanes) is that the polymers have high tensile proper-
ties, which are capable of enduring large extensions with-
out rupture. Besides, Poly (urethanes) have good elasticity 
and shape-memory properties, where they can recover to 
the primary shapes immediately following withdrawal of the 
tensile forces applied on the Poly (urethane) materials.213 
Due to these excellent mechanical merits, Poly (urethanes) 
are ideal synthetic polymeric biomaterials used to mimic 
the native tendon and ligament tissues. Furthermore, Poly 
(urethane) scaffolds have better bioactivities, with improved 
cellular adhesion and attachment on those materials.214,215

Although the overall properties of the Poly (urethane) 
scaffolds have tremendously increased compared to the 
conventional Polyolefin scaffolds, these scaffolds are still 
associated with some disadvantages. For instance, the cel-
lular proliferating effects on their surface were not very 
satisfactory, and the cells seeded on Poly (urethane) scaf-
folds often have slow proliferation rates.216,217 Moreover, 
the hydrophilicity of the Poly (urethane) scaffolds is not 
very well, and their biodegradability is still insufficient. 
Besides, the overall degradation rates of the Poly (ure-
thane) scaffolds are quite slow: some in vitro analyses 
revealed that only around 12 wt % of the Poly (urethane) 
scaffolds was degraded at 37°C after 120 days, and around 
21 wt % was degraded in vivo after 100 days.218 Extension 
of time span of the in vitro experiment on Poly (urethane) 
degradation to 260 days did not significantly increase scaf-
fold weight loss.219 Furthermore, the degraded Poly (ure-
thane) scaffolds could release some toxic organic products, 
which could potentially harm normal tissues and organs.220 
Therefore, the applications of Poly (urethanes) materials in 
enthesis TE is partially limited.

Poly (esters). More investigations have unearthed more 
advantageous groups of synthetic polymeric biomaterials, 
and Poly (esters) are presently the most widely used bio-
materials in enthesis TE. Poly (esters) are synthetic poly-
mers whose monomers are interconnected by ester groups 
produced from esterification reactions. In theory, Poly 
(esters) are hydrolysable due to existence of the ester 
groups. However, in practice, only a few kinds of Poly 
(esters) (e.g. the aliphatic Poly (esters)) possess better bio-
degradability and are capable of being used as biological 
scaffolds.221 As of now, the Poly (esters) frequently-applied 
in TE are PLA (Polylactic acid), PGA (Polyglycolic acid), 
PCL (Poly(ϵ-caprolactone)), and PLGA (Polylactid-co-
glycolid acid), and they are often fabricated into various 
scaffolds in form of Poly (esters) fibers.222–225

Among the Poly (esters), PLA draws our biggest atten-
tion because of its superior biocompatibility. PLA is a sim-
ple monomer synthesized organic polymeric biomaterial, 
which is only composed of lactic acid (LA) molecules. 
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Since LA is in the form of either L (levogyrate) or D (dex-
trorotatory) isomer, PLA can be further divided into PLLA 
(poly-L-lactic acid), PDLA (poly-D-lactic acid) or PDLLA 
(poly-D,L-lactic acid), whose molecular architectures and 
mechanical properties are slightly different.226–233 As the 
main degradation products of PLA, LA is one of the most 
critical energy substrates besides glucose and aliphatic 
acids. These small molecules can be easily transported 
across the cytomembrane into the cellular plasm and par-
ticipate in cellular anaerobic respiration.234–238

Based on its biosafety and biocompatibility characteris-
tics, PLA is a superior biomaterial for enthesis TE applica-
tions. Indeed, Uehlin et al. found that aligned electro-spun 
PLLA nanofiber mats whose surfaces had been treated  
via controlled NaOH hydrolysis were a feasible scaffold 
for both cell adhesion and proliferation of hMSCs. This 
NaOH-treated PLLA scaffold had more enhanced osteo-
genic differentiation of hMSCs than untreated scaffolds. 
Furthermore, soaking this PLLA scaffold in bovine throm-
bin and fibrinogen not only added an extra layer of fibrin 
to its surface but also subsequently generated more con-
nective topological structures within it resulting in 
decreased mobility of the PLLA fibers. This PLLA/fibrin 
hybrid scaffold had good mechanical properties, and due 
to the additional fibrin layer, it had an increased capacity 
for osteogenic differentiation (Figure 7(a)).239 Thus, it is 
possibly applicable in enthesis TE as it can contribute to 
the mineralization process of enthesis regeneration. 
Relatedly, Li et al. fabricated a dual-layer organic/inor-
ganic bipolar PLLA enthesis scaffold with an electro-
spinning device. The layers were from pure PLLA and 
nano-hydroxyapatite-PLLA fibers to simulate the non-
mineralized and mineralized enthesis regions respectively 
(Figure 7(b)). Their simulated body fluid (SBF) minerali-
zation-inducing in vitro experiment showed the good min-
eralization capacity of the nHA-PLLA layer (Figure 7(c)). 
This bipolar enthesis scaffold significantly increased,  
in vivo, GAG formation and collagen generation in regen-
erated enthesis tissues (Figure 7(d)–(f)).240 Based on its 
favorable fibrogenesis, chondrogenesis, osteogenesis, and 
inductive capacities, it is most applicable in enthesis TE.

Apart from PLA, other biodegradable materials used in 
enthesis regeneration are PGA, PLGA, and PCL. Low 
molecular weight PCL debris are safe, and permeate blood 
microvessels for transportation to the kidney and liver, 
from where they are excreted via urine and bile respec-
tively.241,242 For both PGA and PLGA, glycolic acid is the 
main degradation product, which is then oxidized to gly-
oxylic acid that enters the human tricarboxylic acid cycle. 
Therefore, these biodegradable biomaterials are applica-
ble in enthesis TE. Cao et al. manufactured a PCL/PCL-
tricalcium phosphate (TCP) /PCL-TCP multi-layered 
porous scaffold via a three-dimensional (3D) printing 
device, which mimicked the natural tendon-fibrocartilage-
bone histological multilayers of the enthesis tissue 

(Figure 8(a)). This scaffold was designed with three differ-
ent layers that corresponded to the composition and thick-
nesses of Zone I, Zone II-Zone III, and Zone IV of native 
enthesis tissue and thus primarily giving it biomimetic 
characteristics. Indeed, it promoted fibrogenesis and chon-
drogenesis, cell proliferation, and ECM deposition that 
was spatially distinct among the three layers (Figure 
8(b)).243 Romeo et al. implanted a PGA/poly-L-lactide-co-
ε-caprolactone (PLCL) nanofiber scaffold at the rotator 
cuff tendon enthesis site of a sheep, and after a period of 
12 weeks, the native enthesis tissue structures successfully 
recurred in the scaffold-treated group.42 Relatedly, Smith 
et al. fabricated a porous PLGA scaffold via salt-leaching 
and etched it with NaOH to modify its surface topography. 
The resultant scaffold had higher porosity and rougher 
nano-surface topography than unetched PLGA scaffolds, 
and this corresponded to the typical tissue structure of 
Zone IV (Figure 8(d)).244 The adhesion of osteoblasts  
on it significantly increased, whereas that of fibroblasts 
decreased (Figure 8(e)). Thus, this special NaOH-etched 
PLGA scaffold is likely to improve Zone IV regeneration 
whereas the unetched PLGA scaffold would be beneficial 
for regeneration of Zone I in enthesis TE applications —
fabricating a curative multi-layered PLGA scaffold for 
enthesis regeneration is a worthwhile venture.244 Further-
more, Erisken et al used a new processing method of 
twin-screw extrusion/electrospinning (TSEE) to fabricate 
a special PCL scaffold with a continuously-increasing 
amount of β-tricalcium phosphate in its inner structure that 
was similar to the native structures of Zones II and III of 
enthesis tissues.245 Using the same method, they fabricated 
a similar insulin/PCL/β-glycerophosphate scaffold, which 
contained simultaneous gradients of increasing and 
decreasing insulin and β-glycerophosphate respectively. 
Its insulin- and β-glycerophosphate-rich regions had high 
capacities for chondrogenesis and osteogenesis respec-
tively.246 Thus, this scaffold is also applicable in enthesis 
TE—it would predominantly effectively enhance regener-
ation in Zones II and III.

Taken together, synthetic polymeric scaffolds can be 
effectively applied in enthesis TE as they have higher 
degrees of tunability and reproductivity, and better 
biosafety profiles—since they lack potential inherent 
antigens/pathogens—than naturally-sourced enthesis 
ones.108,247,248

Biological strategies are considered a most critical 
aspect of enthesis TE. For example, the use of biological 
scaffolds provides a biomimetic platform that gives a bio-
active environment for the regeneration and infiltration of 
the injured enthesis tissue. Thus, enthesis scaffolds should 
be designed and fabricated with either three layers that 
correspond to the tendon, fibrocartilage, and bone or four 
layers that correspond to the tendon, unmineralized fibro-
cartilage, mineralized fibrocartilage, and bone. Moreover, 
to better emulate the native structures of Zones II and III, 
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enthesis scaffolds with inner structures and topologies that 
have gradients are indispensable.

Cell strategy

Enthesis-related cells are applicable in promoting enthesis 
regeneration and this is the basis of cell strategies in 
enthesis TE. Such cells include osteoblasts, fibroblasts, 
costal-cartilage-derived stem cells (CDSCs), tendon stem/

progenitor cells (TSPCs), adipose-derived stem cells 
(ADSCs), and mesenchymal stem cells (MSCs). The spe-
cific effects of these cells in enthesis TE have been pre-
viously investigated.

Cooper et al. seeded opposite ends of a commer-
cially purchased PLA scaffold with both osteoblasts 
and fibroblasts which were then co-cultured. The GAG 
and collagen contents of the ECM in the fibroblasts, 
osteoblasts, and transition regions were then assessed, 

Figure 7. (a) With an extra layer of fibrin coated, more connective topological structures were generated, and the osteogenic 
differentiation capacity was elevated compared to the non-coated PLLA scaffold.239 (b) The structure of bipolar PLLA/nHA-PLLA 
enthesis scaffold,240 (c) The nHA-PLLA layer had the larger mineralization capacity compared with the PLLA layer.240 The elevated 
GAG formation (d), collagen formation (e), and enthesis tissue regeneration (f) in the dual-layer enthesis scaffold were proved via 
the histological stainings.240

PLLA: poly-L-lactic acid; nHA: nano hydroxyapatite; T: tenddon; I: interface; B: bone; SFM: simplex fibrous membrane of PLLA; BFM: bipolar fibrous 
membrane of PLLA/nHA-PLLA.
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and they were generally higher in the fibroblast 
region—the transition region between the two cellular 
regions mostly had intermediate values of the GAG and 

collagen contents at different time points. Thus, fibro-
blasts promoted effective ECM deposition on the 
enthesis scaffold and co-culturing fibroblasts with 

Figure 8. (a) A triphasic 3D-printed enthesis scaffold mimicking the natural tendon-fibrocartilage-bone structure of enthesis 
tissues.243 (b) The cell proliferation and ECM deposition were high in the PCL/TCP layer.243 (c) Histological stains showing improved 
regeneration of enthesis tissues due to the 3D-printed enthesis scaffold, and elevation of positive effects due to loading with 
GelMAs (containing either fibroblasts, BMSCs, or osteoblasts).243 (d) After NAOH etching, the PLGA scaffold had high porosity 
and rough nano-surface topography that both corresponded to the tissue structure of Zone IV (Bone). 244 (e) The adhesion of 
osteoblasts increased, whereas that of fibroblasts simultaneously decreased in the NAOH-etched PLGA scaffold.244 (f and g) The 
two different kinds of bioreactors that were used to apply cyclical stress stimulations on tendons.274,275

PCL: poly(ε-caprolactone); TCP: tri-calcium phosphate; GelMA: gelatin methacrylate; PGLA: polyglactin.
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osteoblasts contributed to the formation of the natural 
gradient of the enthesis ECM.249

Zuo et al. successfully harvested CDSCs from the cos-
tal cartilage tissue of newborn Sprague-Dawley rats and 
showed that these cells had ideal proliferation abilities and 
cell viability under low oxygen and nutrient in vitro condi-
tions. This corresponds to the environment of injured 
enthesis tissues. The CDSCs-hydrogel was then wrapped 
with a decellularized tendon scaffold, and this was trans-
planted into a defective rat patellar tendon enthesis, 
wherein the CDSCs survived, proliferated, and differenti-
ated into osteocytes, chondrocytes, and tenocytes. Typical 
tendon-fibrocartilage-bone histological structures recurred 
in the regenerated enthesis tissues, and the biomechanical 
properties (failure load and tissue stiffness) of the repaired 
tissue were significantly higher than that of the control.131 
This supports the hypothesis that CDSCs are highly appli-
cable in enthesis TE.

To elucidate possible functions of TSPCs in the regen-
eration of enthesis, Shen et al. produced a knitted silk/col-
lagen sponge scaffold seeded with additional TSPCs and 
then transplanted it into a defective rabbit rotator cuff ten-
don enthesis. More fibroblast growth, less lymphocytes 
infiltration into the regenerated enthesis tissue and scaf-
fold, and denser deposition of ECM and collagen were 
observed in the TSPCs-seeded scaffold than in the control. 
Moreover, nascent collagen fibers were more continuous 
and homogeneous, the interfaces between scaffold and 
enthesis tissues were more aligned, and higher overall 
mechanical properties in regenerated enthesis tissues were 
observed in the TSPCs-treated group than in the control. 
Relatedly, the expression level of fibrogenic genes (colla-
gen I, collagen III, DCN) in TSPCs-treated scaffold was 
significantly upregulated, corroborating the positive effect 
of TSPCs on the fibrogenesis in enthesis tissue regenera-
tion. As lymphocyte infiltration was inhibited in this scaf-
fold, TSPCs possibly have an anti-inflammatory effect 
during regeneration of enthesis.250

For ADSCs, McGoldrick et al. seeded a decellularized-
enthesis scaffold with ADSCs and then used it—or a blank 
enthesis scaffold without ADSCs seeded—to reconstruct 
rat Achilles tendon enthesis tissues. The regenerated 
Achilles tendon enthesis in the cell-seeded group had 
superior biomechanical properties—ultimate failure load, 
ultimate tensile stress, stiffness—more tendon and fibro-
cartilage tissues within the scaffold, and more collagen 
type III in the extracellular matrices than the unseeded 
group. Thus, ADSCs possibly promoted enthesis regenera-
tion in injured enthesis tissues via fibrogenesis and chon-
drogenesis processes.251 In a related study, Zhao et al. 
co-cultured ADSCs with injured tenocytes for 48 h, ADSCs 
clearly promoted proliferation rates and largely reduced 
levels of oxidative stress in the injured tenocytes via inhi-
bition of methylation LncRNA Morf4l1.252 Therefore, it is 
hypothesized that ADSCs mainly target the regeneration 

of Zone I in the injured enthesis tissue, and exert their pos-
itive effect through LncRNA Morf4l1 demethylation.

Due to their totipotency, MSCs are not only widely 
medically utilized but are also specifically applied in 
repairing injured enthesis tissues, where a complex and 
simultaneous regeneration of multiple tissues is required. 
Nourissat et al. cut off a rat Achilles tendon and destroyed 
its enthesis. The free end of the tendon was then attached 
to the left bony tunnel with the fixation of sutures. They 
then either injected chondrocytes or MSCs into the repair 
site and evaluated their effects separately. These cell thera-
pies were indeed efficient in reconstructing the injured 
enthesis—MSCs were even better than chondrocytes in 
improving high-level enthesis regeneration.253 This was 
corroborated by Lim et al. who transplanted tendon auto-
grafts in rabbit ACL enthesis, and the reconstructed ACL 
was artificially coated with MSCs in a fibrin glue carrier. 
MSCs treatment group had larger areas of chondral regen-
erated in enthesis tissues than the control group, and a gra-
dient transition from the cartilage to bone region was also 
observed. Thus, MSCs could intervene in the cartilage 
regenerating process of the injured enthesis tissue, which 
could greatly promote the maturation of enthesis tissues.254 
Using a 3D-printed triphasic enthesis scaffold, Cao et al. 
loaded three different gelatin methacrylates (GelMAs) 
encapsulating fibroblasts/BMSCs/osteoblasts onto the  
tendon, fibrocartilage, and bone mimicking layers. These 
applications of additional enthesis cells promoted fibro-
genesis, chondrogenesis, and osteogenesis in the different 
layers of the complex enthesis scaffold (Figure 8(c)).243 
Therefore, MSCs possibly played an important role in the 
regeneration of enthesis tissues, which mainly acted in the 
cartilage regions of Zone II and III.

As another key strategy in enthesis TE, cell strategy 
mainly focuses on the additional applications of enthesis-
related cells in enthesis tissues or scaffolds to further 
improve the regeneration of injured enthesis. Traditionally, 
enthesis-related cells were directly applied to the injured 
site of the enthesis tissue. However, the number of these 
cells, and their concomitant healing effects at the site, 
decreases with time. Thus, fixing enthesis-related cells on 
the enthesis scaffold to specifically act on the injured 
region may ensure longer-lasting effects. Hence, a current 
challenge in the successful application of cell strategy in 
enthesis TE is combining enthesis-related cells with the 
scaffold without diminishing their bioeffects.

Growth factor strategy

Biological factors accelerate enthesis regeneration; more 
specifically growth factors have been applied in enthesis 
TE.34 Currently, commonly-used growth factors include 
BMPs (bone morphogenetic proteins), FGFs (fibroblast 
growth factors), TGFs (transforming growth factors), 
GDFs (growth and differentiation factors), PDGFs 
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(platelet-derived growth factors), and VEGF (vascular 
endothelial growth factor). The possible functions of these 
factors in accelerating enthesis regeneration have been 
investigated.

Hashimoto et al. induced a tendon/ossicle complex by 
injecting BMP-2 into the rabbit flexor digitorum commu-
nis tendon enthesis and subsequently transplanted it onto 
the rabbit tibia surface. A month later, it had merged com-
pletely with the tibia and a direct insertion of a tendon-
bone structure was histologically observed, corroborating 
the positive effect of BMP-2 in enthesis repairing.255 For 
FGF-2, Yonemitsu et al. clearly demonstrated that FGF-2 
elevated the degree of tenogenic regeneration for chronic 
rotator cuff enthesis tears in rats.256 In order to explore  
the specific function of TGF-β3, Kovacevic et al. applied  
a calcium-Phosphate matrix—supplemented with TGF-
β3—at the surgically-reconnected tendon-bone interface 
of a rat supraspinatus tendon enthesis. TGF-β3 tremen-
dously enhanced the mechanical endurance as well as the 
generation of collagen in the repaired enthesis tissue.257 
Relatedly, Holladay et al. showed that the expression of 
tenogenic-related genes (DCN, SCX, collagen I) in TSPCs 
was largely upregulated by GDF-5 treatment—this indi-
cated a potential fibrogenic effect of GDF-5 molecules in 
enthesis TE.258 To elucidate the role of PDGFs in enthesis 
TE, Cheng et al. added PDGFs nanoparticles into a biomi-
metic collagen scaffold and showed that the ADSCs seeded 
onto this hybrid scaffold had a higher proliferation rate and 
a higher degree of tenogenic differentiation degree than 
the control. Thus, PDGFs had a stimulating effect on the 
regeneration of Zone I in enthesis tissue.259 Furthermore, 
Cheng et al. showed that the Mg interference screw pro-
moted enthesis fibrocartilaginous regeneration via VEGF 
endocellular accumulation, which corroborated the posi-
tive effect of VEGF in enthesis TE.260

The aforementioned factors all promoted enthesis 
regeneration, albeit via different mechanisms. For exam-
ple, FGFs mainly target the fibrous region to promote the 
degree of fibrogenesis in enthesis tissues, whereas BMPs 
target both the chondral and bony regions to promote 
chondrogenesis and osteogenesis respectively.255,256 
TGF-β1 primarily promoted chondrogenesis in enthesis, 
whereas TGF-β3 simultaneously promoted fibrogenesis 
and chondrogenesis.261–263 Therefore, for optimum 
enhancement of enthesis regeneration, two or more kinds 
of growth factors should be applied simultaneously,  
successively, or even iteratively in accordance with the 
different phases of enthesis healing.130,264,265 Notably, 
heparin effectively reduced the release rate of TGF-β2 
and GDF-5 from the enthesis scaffold and significantly 
increased their validity, which reinforced their fibro-
genesis and chondrogenesis activities during enthesis 
regeneration.266 Thus, heparin is a possible general poten-
tiator of the beneficial effects of these growth factors in 
enthesis TE.

Taken together, the growth factor strategy is key for 
enthesis TE. Growth factor supplementation promotes the 
process of enthesis regeneration in injured enthesis tissues. 
Similar to the cell strategy, the growth factors are applied 
directly at the injured site of the enthesis tissue, which also 
reduces the prospects of long-lasting effects. Relatedly, the 
local injection of growth factors could not only cause an 
acute blood surge but also have unpredictable effects on 
normal tissues due to increased blood circulation of growth 
factor molecules. Therefore, growth factors should also be 
used in combination with enthesis scaffolds, not only to 
improve their targeting abilities but also to modulate their 
release.

Biophysical modulation strategy

Both eccentric and concentric overload training promote 
enthesis healing in clinical practice.267 Therefore, biophys-
ical modulation might be a key intervention in the whole 
healing process of enthesis tissues.268–272 Wang et al. 
invented a mechanical bioreactor to test the influence of 
stress stimulation on enthesis tissues in vitro. A full-length 
rabbit Achilles tendon was dissected and attached to the 
bioreactor. Then, the bioreactor was filled with culture 
medium maintained at the specific amplitude and frequen-
cies so as to apply a tunable cyclical stress stimulation on 
this dissected tendon. Their stimulations showed that a 6% 
cyclic tensile strain was appropriate to maintain histologi-
cal homeostasis in the Achilles tendon.273 Additionally, 
they stimulated Achilles tendons with 6% strain, 0.25 Hz, 
8 h/day for ca. 6 days (Figure 8(f)). This dynamically stim-
ulated tendon had stronger mechanical properties and 
lower degradation rates than the static group. It also had 
decreased apoptotic cell ratios, more abundant and better-
orientated collagen fibers, upregulated collagen genera-
tion-related genes (COL1A1, COL3A1, TGF-β), and 
significantly downregulated ECM degeneration-related 
genes (MMP-1, MMP-3).274 These corroborated extra-
applied dynamic stress stimulations as beneficial to the 
healing of enthesis tissues. In a correlative study, Altman 
et al., created a similar dynamic bioreactor and inoculated 
it with a collagen scaffold seeded with BMSCs (Figure 
8(g)) and then maintained it at composite mechanical 
cyclic motion (10% translational strain, 25% rotational 
strain, 0.0167 Hz) for about 21 days. The scaffold had more 
nascent collagen fibers aligned along the axis of motion 
than the static-cultured scaffold—collagen fibers here 
were scarce and randomly oriented. Moreover, there was 
more cell division under this mechanical stimulation, and 
the ratio of the cells with either elongated or ligament-like 
morphology— which were also along the direction of 
mechanical loading—increased. Lastly, the expression of 
typical enthesis genes (Collagen Type I, Collagen Type III, 
tenascin-C) was tremendously upregulated under this 
stress stimulation.275
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Simple static tensile forces have also been applied on 
enthesis scaffolds to promote enthesis regeneration. 
Rinoldi et al. fabricated a loop-like wet-spun gelatin meth-
acryloyl (GelMA)-alginate scaffold encapsulated with 
BMSCs and then stretched it in the opposite direction with 
a bespoke stretching device so that the scaffold was sub-
jected to 15% static strain. This static stress stimulation 
promoted cell proliferation, alignment, and the expression 
levels of some enthesis-related genes (Collagen Type I, 
Collagen Type III, SCX, TNMD).276 Thus, both dynamic 
and static stress stimulations improved enthesis regenera-
tion, and stress stimulation is key for the biophysical mod-
ulation strategy.

The use of electromagnetic fields is another key aspect 
of the biophysical modulation strategy. Pulsed electromag-
netic fields (PEMF) not only improved the early healing of 
rat rotator cuff enthesis after reconstruction277 but also pro-
moted osteogenesis at the enthesis site to create a tight tis-
sue connection at the tendon-bone interface.278 However, 
there exists a paucity of studies on electromagnetic fields 
for enthesis TE and its mechanism of action remains to be 
clarified. That said, the biophysical modulation strategy is 
most advantageous since biophysical stimulations of the 
injured enthesis are usually uncomplicated and easily con-
trollable, non-invasive, and repeatable, making it the most 
economic strategy for prospective clinical applications.

Conclusions and future perspectives

In summary, the enthesis is a special complex tissue that is 
hard to regenerate. To achieve the successful regeneration 
of enthesis, the issues of tendon/ligament, cartilage and 
bone regenerations should all be considered at the same 
time, and these three kinds of tissues should be regener-
ated orderly in space corresponding to the composition of 
enthesis tissue. Due to developments in enthesis TE, four 
effective strategies (biological scaffold strategy, cell strat-
egy, growth factor strategy, biophysical modulation strat-
egy) have been unveiled so far to promote the regeneration 
of injured enthesis tissue significantly. And for achieving 
the best result of enthesis regeneration as we could, these 
strategies should be applied comprehensively.

Primarily, a special enthesis scaffold with the multi-
function of fibrogenesis-chondrogenesis-osteogenesis is 
needed to be implanted in situ (fixed with sutures or 
screws). This scaffold should be designed and fabricated 
into multilayers. Different layers have the different biomi-
metic structures, which take the different duties on the 
regenerations of tendon/ligament, cartilage and bone. With 
this enthesis scaffold applied, an initial reconnection of the 
broken enthesis tissue could be established, and a biocom-
patible platform for the orderly ingrowths of the different 
types of tissues (tendon/ligament, cartilage and bone) 
could be provided, which would induce the recurrence of 
native enthesis tissue at last. In order to further elevate the 

biofunction of enthesis scaffold, the enthesis-related cells 
and growth factors could both be applied additionally. 
Based on their specific characteristics, the different cells 
and growth factors should be laden into the different layers 
of enthesis scaffold. For example, ADSCs mainly act on 
the fibrogenesis and chondrogenesis processes of enthesis 
regeneration, and they should better be added into the 
fibrogenic and chondrogenic layers of enthesis scaffold. 
And for another example, BMPs mainly target at the chon-
dral and bony regions of enthesis to promote chondrogen-
esis and osteogenesis, and they should better be added into 
the chondrogenic and osteogenic layers of enthesis scaf-
fold (Figure 9). Furthermore, after the injured enthesis is 
repaired by the enthesis scaffold with cells and growth fac-
tors added, the static/dynamic forces and magnetic field 
could also be applied on the reconstructed enthesis tissue, 
which could promote the maturation process of the newly-
regenerated enthesis tissue effectively (Figure 9).

With all the strategies synthetically applied, the problem 
of enthesis regeneration has been improved tremendously 
in comparison with the traditional surgical treatments. 
However, there is still no method that results in the com-
plete reemergence of intact and native enthesis tissues, 
necessitating the more improvements in enthesis TE in  
the future. As the most important component of enthesis 
tissue engineering, the biological scaffold strategy mainly 
focuses on designing, fabricating, and verifying the enthe-
sis scaffold in the different biomaterials. Besides the gen-
eral criteria of biodegradability, biocompatibility, biosafety 
and reproducibility for the production of biological scaf-
fold applied in TE, an enthesis scaffold should meet the 
following criteria additionally:

(a) Enthesis scaffold should be designed with a tendon/
ligament-cartilage-bone multiphasic biomimetic structure, 
and the interfaces between the different layers should pref-
erably correspond to the specific interfaces between the 
native Zones of enthesis tissue so that the scaffold biomi-
metic degree can get established. The structural transition 
in the enthesis scaffold should be distinct and graded in the 
interfaces between fibrogenic and chondrogenic layers as 
well as chondrogenic and osteogenic layers, while at the 
same time, there should also exist a continuous structural 
gradient in the chondrogenic layer to emulate the natural 
structure from Zone II to Zone III.

(b) As a special biological scaffold applied at the com-
plex tissue of enthesis, the overall mechanical properties 
of enthesis scaffold should be optimized to endure the 
external tensile forces and compressive forces without 
deformation. The specific mechanical properties of the dif-
ferent layers should also strictly correspond to the native 
Zones of enthesis tissue, which means that enthesis scaf-
fold should be designed into a soft-hard transited scaffold. 
The soft terminal corresponds to Zone I, it should have the 
mechanical properties similar to the tendon/ligament tis-
sue to endure the external tensile forces. The hard terminal 
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corresponds to Zone IV, it should have the mechanical 
properties similar to the bone tissue to endure both tensile 
and compressive forces. The immediate part corresponds 
to Zone II and Zone III, it should have the mechanical 
properties similar to the cartilage tissue to endure both ten-
sile and compressive forces as well.

(c) Apart from the structural and biomechanical require-
ments listed above, there is also another requirement about 
the biofunction of enthesis scaffold. The spatial order of 
biofunctions in enthesis scaffold should be followed as 
fibrogenesis-chondrogenesis-osteogenesis strictly. All the 
choices of biomaterials, cells and growth factors for the 
synthesis of enthesis scaffold should be based on this 

requirement so that the primitive enthesis tissue could be 
regenerated under the induction of enthesis scaffold.

As we know, the proliferation and differentiation of 
cells can be influenced by the biomaterials on which they 
are attaching. Therefore, biomaterials that promote fibro-
cytes/chondrocytes/osteocytes should be used orderly to 
synthesize a multi-composed enthesis scaffold so that it 
could promote enthesis regeneration more effectively. In 
addition, some spatial properties in biological scaffolds 
(such as the porosity, pore size and the micro-topology) 
can also influence the cellular behaviors of the different 
cells and affect fibrogenesis/chondrogenesis/osteogenesis 
process. If these influencing factors are unveiled and 

Figure 9. The schematic figure of different strategies’ applications in enthesis TE. To better regenerate the injured enthesis tissue, 
a multilayered biomimetic scaffold with the biofunction of fibrogenesis-chondrogenesis-osteogenesis should be implanted in situ. 
Each layer of the scaffold has the similar structure to the specific Zone contacted, which contains the fibrogenic, chondrogenic or 
osteogenic capacity to induce the regeneration of tendon/ligament tissue, cartilage tissue or bone tissue, respectively. Based on 
the spatial order of the specific biofunctions of the different layers in enthesis scaffold, different cells and growth factors could be 
laden into the targeting layers to further elevate the fibrogenic, chondrogenic and osteogenic capacities before the scaffold being 
implanted. After the reconstruction of the injure enthesis tissue with the enthesis scaffold, static/dynamic forces and magnetic 
field could be applied additionally, which could provide the extra mechanical stimulations to promote the maturation process of 
the newly-regenerated enthesis tissue effectively. With all these strategies being applied, a primitive enthesis tissue composed of 
tendon/ligament-cartilage-bone tissues could possibly reappear, which would turn into the native enthesis tissue after the long 
period of remodeling in the future.
CDSCs: costal-cartilage-derived stem cells; TSPCs: tendon stem/progenitor cells; ADSCs: adipose-derived stem cells; MSCs: mesenchymal stem cells; 
BMPs: bone morphogenetic proteins; FGFs: fibroblast growth factors; TGFs: transforming growth factors; GDFs: growth and differentiation factors.
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applied in the design&fabrication of enthesis scaffold, the 
utility of enthesis scaffold in enthesis TE will come to a 
much higher level in the future.

For the cell strategy in enthesis TE, the MSCs are the 
most common cells seeded on enthesis scaffold. Due to 
their multiple differentiation directions, MSCs in differ-
ent layers of enthesis scaffold may be transformed into 
corresponding differentiated cell types in an ideal case. 
However, in actual practice, this regular fibrogenic/chon-
drogenic/osteogenic differentiation in the intended layer of 
scaffold is difficult to achieve. In our view, orderly seeding 
of fibroblasts, chondroblasts, and osteoblasts on different 
scaffold layers might be a better strategy for promoting 
enthesis regeneration. What’s more, a combination of 
stratified enthesis scaffold and stratified cell seeding can 
enhance the regeneration of enthesis to a large degree.

To date, several biological molecules that promote the 
regeneration of enthesis have been investigated, especially 
focusing on growth factors. However, other molecules 
(e.g. some hormones and gene molecules) have not been 
researched. Therefore, further studies are needed to test 
the performance of hormone therapy and gene therapy in 
enthesis TE. Among the growth factors studied so far, most 
are used singly in enthesis TE and mostly target a single 
region of enthesis tissue, although enthesis regeneration 
involves at least three kinds of tissues (tendon/ligament, 
fibrocartilage and bone) at the same time. Therefore, we 
believe that two or more growth factors should be simulta-
neously laden onto the different layers of the enthesis scaf-
fold to promote the regeneration of the intended tissues at 
the corresponding layers, hence improve the overall regen-
eration of the injured enthesis tissue.

Both the dynamic/static stress stimulation and electro-
magnetic field have been demonstrated as two types of 
valid biophysical modulation strategies for enthesis regen-
eration. However, they have not been sufficiently explored, 
and the methods utilized in the past experiments are have 
some practical limitations. Similarly, the role of stress 
stimulation in enthesis TE need to be further refined. The 
bioreactors used to apply mechanical forces are mostly 
custom-made without any unified manufacturing standard. 
In addition, the forces applied have not even been quanti-
fied, which makes findings from difference studies incom-
parable. Moreover, the specific mechanisms behind the 
positive phenomena of electromagnetic field stimulation 
in enthesis regeneration have not been fully determined. In 
future, the most appropriate magnetic field intensity and 
frequency for enthesis tissue should be tested and specified 
as early as possible.

In summary, the application of enthesis TE has 
improved enthesis tissue regeneration. The strategies dis-
cussed in this review are expected to promote regeneration 
of injured enthesis. Moreover, the abundance of the enthe-
sis tissue in vertebra makes it susceptible to damage during 
avulsion fracture and ankylosing spondylitis. Therefore, 

understanding the enthesis TE will benefit research on 
spine-related enthesis TE.
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