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Abstract

Behaviors and disorders related to self-regulation, such as substance use, antisocial behavior, 

and ADHD, are collectively referred to as externalizing and have shared genetic liability. We 

applied a multivariate approach that leverages genetic correlations among externalizing traits 

for genome-wide association analyses. By pooling data from ~1.5 million people, our approach 

is statistically more powerful than single-trait analyses and identifies more than 500 genetic 

loci. The loci were enriched for genes expressed in the brain and related to nervous system 

development. A polygenic score constructed from our results predicts a range of behavioral and 

medical outcomes that were not part of genome-wide analyses, including traits that until now 

lacked well-performing polygenic scores, such as opioid use disorder, suicide, HIV infections, 
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criminal convictions, and unemployment. Our findings are consistent with the idea that persistent 

difficulties in self-regulation can be conceptualized as a neurodevelopmental trait with complex 

and far-reaching social and health correlates.

Introduction

Behaviors related to self-regulation, such as substance use disorders or antisocial behaviors, 

have far-reaching consequences for affected individuals, their families, communities, and 

society at large1,2. Collectively, this group of correlated traits are classified as externalizing3. 

Twin studies have demonstrated that externalizing liability is highly heritable (~80%)4,5. 

To date, however, no large-scale molecular genetic studies have utilized the extensive 

degree of genetic overlap among externalizing traits to aid gene discovery, as most studies 

have focused on individual disorders6. For many high-cost, high-risk behaviors with an 

externalizing component – opioid use disorder and suicide attempts7 being salient examples 

– there are limited genotyped cases available for gene discovery8,9.

A complementary strategy to the single-disease approach is to study the shared genetic 

architecture across traits in multivariate analyses, which boosts statistical power by pooling 

data across genetically correlated traits10. Multivariate approaches can use summary 

statistics from genome-wide association studies (GWAS) to discover connections between 

phenotypes not typically studied together because they span different domains, fields of 

study, or life stages. Novel statistical methods can increase the effective sample size by 

adjusting for sample overlap. Elucidating the shared genetic basis of externalizing liability 

can advance our understanding of the developmental etiology of self-regulation and enables 

mapping the pathways by which genetic risk and socio-environmental factors contribute to 

the development of externalizing outcomes.

We applied genomic structural equation modeling (Genomic SEM) to summary statistics 

from GWAS on multiple forms of externalizing for which large samples were available10. 

We posited that applying this multivariate approach would lead to identification of genetic 

variants associated with a broad array of externalizing phenotypes, and with related 

behavioral, social, and medical outcomes that were not directly included in our GWAS. This 

approach was grounded in the literature showing shared genetic liability across numerous 

externalizing disorders and with non-psychiatric variation in externalizing behavior5,11.

Results

Genomic SEM of externalizing liability

Following our preregistered analysis plan (https://doi.org/10.17605/OSF.IO/XKV36), we 

collated summary statistics from GWAS on externalizing-related traits (Supplementary 

Information section 1). For an exhaustive description of the phenotype selection procedure 

and GWAS protocol, see Supplementary Information section 2. All phenotypes considered 

for inclusion are listed in Supplementary Table 1. We first applied quality control 

(Supplementary Table 2) and excluded summary statistics based on power considerations 

(i.e., ℎLD Score
2  < 0.05, or mean χ2 < 1.05)12. After applying these filters, 11 externalizing 
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phenotypes remained, with sample sizes >50,000 (N = 53,293–1,251,809) (Supplementary 

Table 3). All samples were of European ancestry. The following seven phenotypes made 

it to the final multivariate model specification (Table 1 & Supplementary Table 4): (1) 

attention-deficit/hyperactivity disorder (ADHD)13, (2) problematic alcohol use (ALCP; 

a meta-analysis of alcohol dependence and AUDIT-P)14,15, (3) lifetime cannabis use 

(CANN)16, (4) reverse-coded age at first sexual intercourse (FSEX)17, (5) number of sexual 

partners (NSEX)17, (6) general risk tolerance (RISK)17, and (7) lifetime smoking initiation 

(SMOK)18.

For a complete description of the model selection procedure, see Supplementary Information 

section 3. In summary, prior to Genomic SEM, we first applied hierarchical clustering to a 

matrix of LD Score genetic correlations, which identified three (k) clusters (Supplementary 

Table 5). An exploratory factor analysis benchmarked four factor models, specifying one to 

four (k + 1) latent factors, with the aim to best explain the genetic correlations amongst the 

11 phenotypes (Supplementary Table 6). The three-factor solution was determined to be the 

best-fitting exploratory model, which aligned with the hierarchical clustering.

We proceeded with confirmatory factor analysis to formally model genetic covariances with 

Genomic SEM, which is unbiased by sample overlap and sample-size imbalances10,19. As 

indicated by its model fit indices: χ2(44) = 8007.35; Akaike information criterion (AIC) 

= 8051.35; comparative fit index (CFI) = 0.662; standardized root-mean-square residual 

(SRMR) = 0.161, we found that a common factor model with 11 phenotypes did not satisfy 

our preregistered criteria (i.e., CFI and SRMR >0.9 and <0.08, respectively). Two more 

complicated specifications were tested, a correlated three-factor model (i.e., akin to the 

best-fitting exploratory model) and a bifactor model (Supplementary Table 7), but neither 

of these two models met the criteria or provided a parsimonious interpretation. Finally, 

we estimated a revised and less complex common factor model with the seven phenotypes 

(Table 1 and Figure 1A) that displayed moderate-to-large (i.e., ≥ 0.5) loadings on the 

single factor estimated in the first common factor model with 11 phenotypes. The revised 

common factor model with seven externalizing phenotypes provided the best fit across all 

specifications, and it closely approximated the observed genetic covariance matrix (i.e., 

χ2(12) = 390.234, AIC = 422.23, CFI = 0.957, SRMR = 0.079). This model was selected as 

our final factor model because it identified a genetic factor of externalizing that was suitable 

for genome-wide association analysis, offered an easily interpretable factor solution, and 

satisfied the model fit criteria. We hereafter refer to it as “the externalizing factor” (EXT).

The common factor captures a shared genetic liability to the final seven externalizing traits 

(Figure 1B), and genetic variants associated with EXT predict central externalizing disorders 

and a range of behavioral and medical outcomes that were not in the model (see below). 

We performed a leave-one-phenotype-out Genomic SEM analysis to ensure that no single 

phenotype, e.g., the phenotype with the largest N, was unduly influencing the genetic 

architecture estimated for EXT (Supplementary Information section 3.5.3). We found that 

the genetic correlations between EXT and each of seven leave-one-phenotype-out models 

were not distinguishable from unity (rg ~ 0.984–0.999, SE ~ 0.028–0.035), which suggests 

that none of the phenotypes is driving the genetic architecture of EXT.
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We extended Genomic SEM to estimate genetic correlations between EXT and 91 

preregistered phenotypes with GWAS summary statistics that were not among the seven 

discovery phenotypes (Extended Data Fig. 1 and Supplementary Table 8). The genetic 

correlations indicate convergent and discriminant validity of the common EXT factor 

(Figure 1C): As anticipated, EXT showed strong positive genetic correlations with drug 

exposure (rg = 0.91, SE = 0.09), antisocial behavior (rg = 0.65, SE = 0.17), and impulsivity 

measures, including motor impulsivity (rg = 0.70, SE = 0.17) and failures to plan (rg 

= 0.68, SE = 0.13). We estimated similar genetic correlations with personality domains 

(based on 23andMe20) as to those reported in twin studies, i.e., positive correlation with 

extraversion (rg = 0.32, SE = 0.03), and negative with conscientiousness (rg = −0.23, SE 
= 0.04) and agreeableness (rg = −0.09, SE = 0.04)11,21. However, prior work has found 

neuroticism but not openness to be correlated with externalizing21, while we found a 

positive correlation with openness (rg = 0.22, SE = 0.04) but not with neuroticism (rg = 

0.02, SE = 0.05). Notably, EXT was also correlated with suicide attempts (rg = 0.68, SE = 

0.08) and post-traumatic stress disorder (rg = 0.53, SE = 0.06). EXT showed more modest 

inverse correlations with educational attainment (rg = −0.32, SE = 0.02) and intelligence 

(rg = −0.23, SE = 0.02), indicating that EXT is not simply reflecting genetic influences on 

cognitive ability. Finally, there was a significant correlation with the Townsend index (rg = 

0.71, SE = 0.05), a measure of neighborhood deprivation that reflects high concentrations of 

unemployment, household overcrowding, and lower home- and car-ownership22. Genetic 

correlations can reflect correlated social processes or variables that are nonrandomly 

distributed with respect to genotypes, such as genetic nurture or neighborhood conditions, 

and we return to this topic in within-family analyses below.

Multivariate GWAS of externalizing liability

We next used Genomic SEM10 to conduct a GWAS on the shared genetic liability 

EXT (Figure 2 and Extended Data Fig. 2). This analysis estimated single-nucleotide 

polymorphism (SNP) associations directly with EXT, with an effective sample size of 

N = 1,492,085 individuals (Supplementary Information section 3.4). These analyses are 

different in their approach and substantially increase sample size, statistical power, and 

the range of findings compared to previous work (Supplementary Information section 

2.2.1). After applying conditional and joint multiple-SNP analysis (COJO) on a set of near

independent, genome-wide significant (two-sided P < 5×10−8) lead SNPs23, we identified 

579 conditionally and jointly associated “EXT SNPs” (Supplementary Tables 9–9B), 

meaning they were significantly associated with EXT even after statistically adjusting for 

each other and other lead SNPs. Of the 579 EXT SNPs and their correlates within linkage 

disequilibrium (LD) regions (r2 > 0.1), 121 (21%) were new loci, not previously associated 

with any of the seven externalizing behaviors/disorders that went into the Genomic SEM 

model, and 41 (7%) can be classified as entirely novel, as they have not been reported 

previously for any trait in the GWAS literature (i.e., neither of these 41 SNPs nor any SNPs 

in LD (r2 > 0.1) were reported for any traits at two-sided P < 1×10−5 in the NHGRI-EBI 

GWAS Catalog6, version e96 2019-05-03) (Supplementary Table 10).

Genomic SEM was used to perform SNP-level tests of heterogeneity (QSNP; Supplementary 

Information section 3.5.1; Supplementary Data 1–2) to investigate whether each SNP had 
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consistent, pleiotropic effects on the seven input phenotypes that effectively only operate 

via EXT. If the EXT loci really index a shared genetic externalizing liability, we would 

expect to identify heterogeneity mostly in regions of the genome not associated with EXT. 

In the absence of heterogeneity, it is expected that a given SNP’s GWAS effects on the 

input phenotypes will scale proportionally to the factor loadings24 (see Supplementary 

Information section 3.5.2). The genome-wide QSNP analysis was adequately powered (mean 

χ 1
2  = 1.864; Extended Data Fig. 2), and at one-sided QSNP P < 5×10−8, we identified 

160 QSNP loci (Supplementary Information section 3.5.1). Importantly, only eight of these 

160 loci overlapped with EXT loci (~1% = 8/579) (Figure 2; Supplementary Table 9). 

Reassuringly, we identified 3.6 times more EXT loci than QSNP loci (579/160). Using a 

less stringent significance threshold by focusing specifically on the 579 EXT loci, only 7% 

(41/579) were significant for QSNP (one-sided QSNP P < 0.05/579). The observation that a 

small minority of the EXT loci were heterogeneous at either significance threshold, and that 

the vast majority of the 160 QSNP loci were found outside of EXT loci, provide evidence 

that the EXT loci primarily index a unitary dimension of genetic liability rather than 

representing an amalgamation of variants with divergent associations across the discovery 

phenotypes. Notably, the strongest QSNP and most salient example of a heterogeneous, 

trait-specific association is SNP rs1229984 (one-sided QSNP P = 1.67×10−51; Supplementary 

Data 1A). This particular SNP, located in the gene ADH1B, is a missense variant with 

a well-established role in alcohol metabolism25, and it was not associated with EXT 
(two-sided P = 0.022) but only with problematic alcohol use (two-sided P = 6.43×10−57). 

Additionally, for each of the 579 EXT SNPs, we investigated the concordance in direction 

of SNP effects (i.e., the sign) on the seven phenotypes (Supplementary Information section 

3.5.4). For 317 of the 579 EXT SNPs (54.7%), the concordance was perfect (i.e., the same 

direction of effect on all seven phenotypes), and for 203 (35.1%), 47 (8.1%), and 12 (2.1%) 

we observed either six, five, or four concordant effects, respectively. Thus, the analysis of 

sign concordance lends further support to our interpretation that the EXT loci primarily 

index a shared genetic liability to externalizing.

Quasi-replication analyses—Because the discovery stage effectively exhausted large 

study cohorts available for replication, we performed a series of preregistered quasi

replication analyses (Supplementary Tables 11–12). As quasi-replication analyses of the 579 

SNPs (Supplementary Information section 4), a three-step method tested their association 

with two independent, GWAS meta-analyses on externalizing phenotypes: (1) alcohol 

use disorder (rg with EXT = 0.52; N = 202,004), and (2) antisocial behavior (rg with 

EXT = 0.69; N = 32,574). We had preregistered to hold out antisocial behavior from 

the externalizing GWAS to enable quasi-replication with a central externalizing trait that 

was not included in the model. First, we tested whether the 579 SNPs (or an LD proxy 

for missing SNPs, r2 > 0.8) showed sign concordance, i.e., the same direction of effect 

between EXT and alcohol use disorder or antisocial behavior: 75.4% of SNPs showed 

sign concordance with alcohol use disorder (two-sided test P = 6.84×10−36) and 66.9% 

with antisocial behavior (two-sided test P = 1.39×10−15) (Extended Data Fig. 3). For the 

second and third tests, we generated empirical null distributions for the two phenotypes 

by randomly selecting 250 near-independent (r2 < 0.1) SNPs per each of the 579 SNPs, 

matched on allele frequency. In the second test, a greater proportion of the 579 SNPs were 
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nominally associated (P < 0.05) with the two phenotypes compared to their empirical null 

distributions: 124 (21.4% vs. 6.6%) with alcohol use disorder (two-sided P = 1.87×10−31) 

and 58 (10.5% vs. 4.7%) with antisocial behavior (P = 1.64×10−8). In the third test, the 

579 SNPs were jointly more strongly enriched for association with alcohol use disorder 

(one-sided Mann-Whitney test P = 5.89×10−26) and antisocial behavior (P = 1.10×10−5) 

compared to their empirical null distributions. Overall, the three exercises consistently 

suggested that the GWAS of EXT is not spurious overall, and that it is enriched for genetic 

signal with two phenotypes of central importance to the literature on externalizing. Below, 

we perform further quasi-replication of the 579 EXT SNPs in an auxiliary polygenic score 

analyses (also in within-family models).

Bioinformatic analyses highlight relevant neurobiology

We performed bioinformatic analyses to explore biological processes underlying EXT 
(Supplementary Information section 6, Supplementary Tables 9–10, and 13–26; Extended 

Data Figs. 4–8). MAGMA gene-property analyses and gene network analysis with PCNet 

suggested an abundance of enrichment in genes expressed in brain tissues, particularly 

during prenatal developmental stages (Extended Data Figs. 6 and 8), with the strongest 

enrichment seen in the cerebellum, followed by frontal cortex, limbic system tissues, and 

pituitary gland tissues (Extended Data Fig. 5). Furthermore, MAGMA gene-set analysis 

and PCNet network analysis identified gene sets related to neurogenesis, nervous system 

development, and synaptic plasticity, among other gene-sets related to neuronal function and 

structure.

Because of the strong polygenic signal identified in the GWAS of EXT, four different 

gene-based analyses identified an abundance of implicated genes (>3,000): (1) functional 

annotation of the 579 SNPs to their nearest gene with FUMA26, which suggested 587 genes; 

(2) MAGMA gene-based association analysis27, which identified 928 Bonferroni-significant 

genes (one-sided P < 2.74×10−6); (3) H-MAGMA28, a method that assigns non-coding SNPs 

to cognate genes based on chromatin interactions in adult brain tissue and which identified 

2,033 Bonferroni-significant genes (one-sided P < 9.84×10−7); and (4) S-PrediXcan29, 

which uses transcriptome-based analyses of predicted gene expression in 13 brain tissues 

and which identified 348 Bonferroni-significant gene-tissue pairs (two-sided P < 2.73×10−7).

We found 34 genes that were consistently identified by all four methods, while 741 

overlapped across two or more methods (Supplementary Table 22; Extended Data 

Fig. 7). Several of the 34 implicated genes are novel discoveries for the psychiatric/

behavioral literature and have previously been identified only in relation to non-psychiatric 

biomedical diseases. Such discoveries include ALMS1 (previously associated with kidney 

function and urinary metabolites30), and ERAP2 (blood protein levels and autoimmune 

disease31,32). Other genes among the 34 have previously been identified in GWAS of 

behavioral or psychiatric traits: Cell Adhesion Molecule 2 (CADM2, previously identified 

in GWAS related to self-regulation, including drug use and risk tolerance17,33), Zic Family 

Member 4 (ZIC4, associated with brain volume34), Gamma-Aminobutyric Acid Type A 

Receptor Subunit Alpha 2 (GABRA2; the site of action for alcohol and benzodiazepines, 

extensively studied in relation to alcohol dependence35,36, and candidate gene for psychiatric 
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disorders37,38), NEGR1 (neuronal growth regulator 1, associated with intelligence and 

educational attainment39,40), and Paired Basic Amino Acid Cleaving Enzyme (FURIN, 

associated with schizophrenia, risk tolerance, and vulnerability to psychiatric disorders19,41).

Polygenic score analyses

We created genome-wide polygenic scores for EXT with ~1 million SNPs, adjusted for LD 

with PRS-CS42 (Supplementary Information section 5), among subjects from two hold-out 

samples selected for their detailed phenotypes related to externalizing and substance use 

(Supplementary Information section 5): (1) the National Longitudinal Study of Adolescent 

to Adult Health (Add Health; N = 5,107), a U.S.-based study of adolescents recruited 

from secondary schools in the mid-1990s; (2) the Collaborative Study on the Genetics of 

Alcoholism (COGA; N = 7,594), a U.S.-based study on genetic contributions to alcohol use 

disorders.

To investigate the validity of EXT, in each of these two samples, we generated a phenotypic 

externalizing factor by fitting a factor model to phenotypic data corresponding to the seven 

discovery phenotypes (Extended Data Fig. 9 and Supplementary Table 27). Controlling 

for age, sex, and ten genetic principal components, the genome-wide polygenic score was 

associated with the phenotypic factor in both data sets (βAdd Health = 0.33, 95% CI: 0.30–

0.36, ΔR2 = 10.5%; βCOGA = 0.30, 95% CI: 0.27–0.34, ΔR2 = 8.9%; Figure 3A and 

Supplementary Table 28). The variance explained by the EXT polygenic score (ΔR2 ~ 8.9–

10.5%) is commensurate with many conventional variables used in social science research, 

including parental socioeconomic status, family income or structure, and neighborhood 

disadvantage/disorder43–45. Next, as further quasi-replication, we created a polygenic score 

using only the 579 EXT SNPs (this score was only used for this quasi-replication exercise), 

and also this polygenic score was found associated with the phenotypic externalizing factor, 

explaining ~3–4% of the variance (βAdd Health = 0.20, 95% CI: 0.17–0.23, ΔR2 = 4.1%; 

βCOGA = 0.17, 95% CI: 0.13–0.20, ΔR2 = 3.0%).

In Add Health, COGA, and the Philadelphia Neurodevelopmental Cohort (PNC), we next 

explored to what extent genome-wide polygenic scores for EXT were associated with 

childhood externalizing disorders and a variety of phenotypes that reflect difficulty with self

regulation or its consequences (Figure 3B and Supplementary Tables 29–31, see the tables 

for standard errors per hold-out sample). Polygenic scores for EXT explained significant 

variance (ΔR2) in criteria counts of ADHD (mean ΔR2 = 1.65%), conduct disorder (CD; 

mean ΔR2 = 3.1%), and oppositional defiant disorder (ODD; ΔR2 = 1.96%), as well as 

in the categories substance use initiation (mean ΔR2 = 1.3–6.5%), substance use disorders 

(mean ΔR2 = 0.8–1.7%), disinhibited behaviors (mean ΔR2 = 1.5–2.5%), criminal justice 

system involvement (mean ΔR2 = 1.0–3.0%), reproductive health (mean ΔR2 = 0.3–3.7%), 

and socioeconomic attainment (mean ΔR2 = 0.1–2.3%). Many of the phenotypes – such 

as opioid use disorder criteria count, conduct disorder and antisocial personality disorder 

criteria count, lifetime history of arrest or incarceration, and lifetime history of being fired 

from work – were not included in our Genomic SEM analyses. The associations between the 

EXT polygenic score and this broad range of phenotypes represents an affirmative test of the 
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hypothesis that genetic variants associated with externalizing liability generalize to a variety 

of behavioral and social outcomes related to self-regulation.

PheWAS with externalizing polygenic score—To evaluate medical outcomes 

associated with EXT, we conducted a phenome-wide association study (PheWAS) in 66,915 

genotyped individuals of European-ancestry in the BioVU biorepository, a U.S.-based 

biobank of electronic health records from the Vanderbilt University Medical Center46. A 

logistic regression was fit to 1,335 case/control disease phenotypes. 255 disease phenotypes 

were associated with the EXT polygenic score at false discovery rate <0.05, with odds 

ratios ranging from 0.8 to 1.4 per standard deviation increase in the score (Figure 4 and 

Supplementary Table 32). The most abundant associations were with mental and behavioral 

disorders, such as substance use, mood disorders, suicidal ideation, and attempted suicide. 

Individuals with higher EXT polygenic scores also showed worse health in nearly every 

bodily system. They were more likely to suffer, for example, from ischemic heart disease, 

viral hepatitis C and HIV infection, type 2 diabetes and obesity, cirrhosis of liver, sepsis, 

and lung cancer. Behaviors related to self-regulation, e.g., smoking, drinking, drug use, 

condomless sex, and overeating, contribute to many of these medical outcomes.

Within-family analyses demonstrate robustness to confounding

Genetic associations detected in GWAS can be due to direct genetic effects, but 

can also be confounded by population stratification, indirect genetic effects from e.g., 

parental environment, and assortative mating47,48. While reducing statistical power, sibling 

comparisons overcome these methodological challenges, because meiosis randomizes 

genotypes to siblings47,49. We therefore conducted within-family analyses of polygenic 

score associations in the sibling sub-samples of Add Health (N = 994 siblings from 492 

families) and COGA (N = 1,353 siblings from 621 families), and a sibling sample from 

the UKB (N = 39,640), which were held-out from the discovery stage (Supplementary 

Information section 2.3.2).

In Add Health and COGA, the phenotypic externalizing factor corresponding to the seven 

discovery phenotypes (see above) was regressed on the genome-wide EXT polygenic 

scores in a within-family model (Supplementary Table 33). Parameter estimates from the 

within-family model (βWF Add Health = 0.12, 95% CI: 0.04–0.20; βWF COGA = 0.14, 95% 

CI: 0.08–0.20) were smaller compared to OLS models without family-specific intercepts 

(βAdd Health = 0.20, 95% CI, 0.16 to 0.24; βCOGA = 0.16, 95% CI, 0.12 to 0.20), but 

remained statistically significant (Add Health two-sided P = 4.89×10−3; COGA two-sided 

test P = 1.87×10−6). As a formal test of attenuation, we evaluated the standardized 

difference between βWF and β (i.e., a Z-statistic assumed to be normally distributed, see 

Supplementary Information section 5.2.6) and found that it was −1.988 (two-sided P = 

0.047) and −0.704 (two-sided P = 0.481) for the PRS-CS polygenic score in Add Health and 

COGA, respectively. Thus, we conclude that there was some, but not extreme, attenuation 

when predicting the phenotypic externalizing factor within families. Also, the association 

of the quasi-replication polygenic score constructed with the 579 EXT SNPs remained 

significant and basically did not attenuate in within-family models (for this score, the 
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standardized difference between βWF and β was −0.338 (two-sided P = 0.735) and 0.07 

(two-sided P = 0.944) in Add Health and COGA, respectively).

In the UKB sibling hold-out sample, we conducted analyses of the genome-wide EXT 
polygenic scores with 37 phenotypes from the domains of (a) risky behavior, (b) overall 

and reproductive health, (c) cognitive ability, (d) personality, and (e) socioeconomic status 

(Supplementary Information section 5.2.5; Supplementary Table 34). We evaluated the 

per-category mean of the standardized difference between βWF and β, and found that 

within-family estimates were, on average, the same for the risky behavior category (mean 

attenuation = 0.08; 95% CI: −1.67 to 1.83), and only attenuated modestly for personality 

(mean attenuation = −0.35; 95% CI: −1.06 to 0.36). However, the within-family estimates 

attenuated more for cognitive ability (mean attenuation −6.55; 95% CI: −9.93 to −3.17), 

socioeconomic status (mean attenuation −2.43; 95% CI: −4.39 to −0.48), and overall and 

reproductive health (mean attenuation −2.20; 95% CI: −4.18 to −0.21). Nonetheless, the 

EXT polygenic score remained nominally significant (two-sided P < 0.05) with 24 outcomes 

across the five categories, showing that the externalizing GWAS captures genetic effects 

that are not solely a consequence of uncontrolled population stratification, indirect genetic 

effects, or other forms of environmental confounding.

Discussion

Externalizing disorders and behaviors are a widely prevalent cause of human suffering, 

but understanding of the molecular genetic underpinnings of externalizing has lagged 

behind progress made in other areas of medical and psychiatric genetics. For example, 

dozens of genetic loci have been discovered for schizophrenia (>100 loci)50, bipolar 

disorder (30 loci)51, and major depressive disorders (44 loci)52, whereas for antisocial 

behavior53, alcohol use disorders54, and opioid use disorders8, only a very small number 

of loci have been discovered. We used multivariate genomic analyses to accelerate genetic 

discovery, identifying 579 genome-wide significant loci associated with a liability toward 

externalizing outcomes, 121 of which are entirely novel discoveries for any of the seven 

phenotypes analyzed. Follow-up bioinformatic analyses suggest the implicated genes have 

early neurodevelopmental effects, which are then associated with behavioral patterns that 

have repercussions across the lifespan.

Our results demonstrate that moving beyond traditional disease classification categories 

can enhance gene discovery, improve polygenic scores, and provide information about the 

underlying pathways by which genetic variants impact clinical outcomes. GWAS efforts 

find almost ubiquitous genetic correlations across psychiatric disorders55,56; new analytic 

methods now allow us to capitalize on these genetic correlations. Pragmatically, non-disease 

phenotypes such as the ones we use here (e.g., self-reported age at first sex) are often easier 

to measure in the general population than diagnostic status, making it easier to achieve large 

sample sizes. Expanding beyond individual diagnoses increases our ability to detect genes 

underlying human behavioral and medical outcomes of consequence. Our polygenic score 

for externalizing has one of the largest effect sizes of any polygenic score in psychiatric 

and behavioral genetics, accounting for ~10% of the variance in a phenotypic externalizing 
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factor. These effect sizes rival the associations observed with “traditional” covariates used in 

social science research.

Polygenic scores created using our GWAS results were associated not just with psychiatric 

and substance use disorders, but also with correlated social outcomes, such as lower 

employment and greater criminal justice system involvement, as well as with biomedical 

conditions affecting nearly every system in the body. These results highlight again that 

there is no distinct line between the genetic study of biomedical conditions and the genetic 

study of social and behavioral traits57. Linking biology with socially-valued behavioral 

outcomes can be politically sensitive58. Modern genetics research is routinely appropriated 

by white supremacist movements to argue that racialized disparities in health, employment, 

and criminal justice system involvement are due to the genetic inferiority of people of 

color rather than environmental and historical disadvantages59. At the same time, failing 

to understand how individual genetic differences contribute to vulnerability to externalizing 

can increase stigma and blame for these behaviors60. Given the horrific legacy of eugenics, 

the ongoing reality of racism in the medical and criminal justice systems, and the importance 

of combatting stigma in psychiatric disorders, the scientific results we report here (which 

are, for technical reasons, limited to European-ancestry individuals) must be interpreted 

with great care. Our results are not evidence that some people are genetically determined 

to experience certain life outcomes or are “innately” antisocial. Genetic differences are 

probabilistically associated with psychiatric, medical, and social outcomes, in part via 

environmental mechanisms that might differ across historical, political, and economic 

contexts61. Please see our Frequently Asked Questions (FAQ) and supporting materials at 

www.externalizing.org.

In conclusion, our analyses demonstrate the far-reaching toll of human suffering borne 

by people with high genetic liabilities to externalizing. Future work will be needed to 

tease apart the pathways by which biological and social risks unfold within and across 

generations, and our findings can contribute to that effort.

Online methods

The article is accompanied by Supplementary Information. The study followed a 

preregistered analysis plan (https://doi.org/10.17605/OSF.IO/XKV36), which specified that 

we would generate new, or collect existing, single-phenotype genome-wide association 

study (GWAS) summary statistics on externalizing phenotypes (Supplementary Information 

section 1). Summary statistics were to be analyzed with Genomic SEM to (a) estimate 

a genetic factor structure underlying externalizing liability, (b) identify single-nucleotide 

polymorphisms (SNPs) and genes involved in a shared genetic liability to externalizing 

rather than individual traits, and (c) increase the accuracy of polygenic scores for specific 

externalizing phenotypes that are difficult or intractable to study in large samples. To ensure 

satisfying statistical power, we preregistered a minimum sample-size of N > 15,000, and 

that additional exclusions would be based on negligible SNP-based heritability or GWAS 

signal. All considered traits are discussed in the preregistration and listed in Supplementary 

Table 1, while the following sections focus on 11 phenotypes that were not excluded 

due to negligible SNP-based heritability or GWAS signal. The study did not manipulate 
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an experimental condition or collect any new individual-level data, and thus, was neither 

randomized nor blinded.

Collecting single-phenotype GWAS on externalizing phenotypes

A detailed definition of “externalizing phenotypes” was preregistered to delimit the 

collection of single-phenotype summary statistics (Supplementary Information section 

2.1). Summary statistics from existing studies were provided by, or downloaded from 

the public repositories of, 23andMe, the Psychiatric Genomics Consortium (PGC), the 

Million Veterans Program (MVP), the International Cannabis Consortium (ICC), the GWAS 

& Sequencing Consortium of Alcohol and Nicotine Use (GSCAN), the Social Science 

Genetics Association Consortium (SSGAC), the Genetics of Personality Consortium (GPC), 

and the Broad Antisocial Behavior Consortium (Broad ABC) (Supplementary Information 

section 2.2). All considered GWAS are listed in Supplementary Table 1, and Supplementary 

Table 4 reports the 67 underlying cohorts of the summary statistics in the final Genomic 

SEM specification (see below).

GWAS in UK Biobank (UKB)

For the Genomic SEM analyses, we conducted a total of 10 GWAS in UKB (listed in 

Supplementary Table 1). These GWAS were conducted for two reasons: (1) to generate 

summary statistics for phenotypes that had not yet been studied in the full genetic data 

release, or (2) to generate hold-out summary statistics that excluded participants for follow

up analyses. The hold-out summary statistics were used to replace, in our Genomic SEM 

analyses, summary statistics from existing studies that had included UKB. With respect 

to (1), summary statistics for “age at first sexual intercourse” and “Alcohol Use Disorder 

Identification Test problem items” (AUDIT-P) were later included in the final Genomic 

SEM specification (the latter as a meta-analysis with a GWAS on alcohol dependence 

by the PGC). With respect to (2), the final specification included replacement summary 

statistics on “lifetime cannabis use”, “general risk tolerance”, and “lifetime smoking 

initiation”, and “number of sexual partners”. The seventh phenotype in the final specification

—ADHD by the PGC—did not include analyses from UKB. For a detailed description, see 

Supplementary Information section 2.2–2.3.

The GWAS in UKB were conducted with linear mixed models (BOLT-LMM version 2.3.2) 

and were adjusted for sex, birth year, sex-specific birth-year dummies, genotyping array and 

batch, and 40 genetic principal components (PCs) estimated with FlashPCA2 (version 2.0). 

Two partly overlapping hold-out subsamples of UKB participants were excluded from all 

single-phenotype GWAS summary statistics that included UKB data, and the participants 

were instead retained as a hold-out sample for polygenic score analyses (Supplementary 

Information section 2.3.2). Genetic relatives (pairwise KING coefficient ≥ 0.0442, version 

2.1.5) of the held-out individuals were excluded from the study altogether to ensure 

independence between the discovery and follow-up analyses. In summary, whenever an 

existing GWAS (or GWAS meta-analysis) was based on UKB, we re-conducted it using the 

same phenotype definition to generate summary statistics that excluded the hold-out sample 

and their genetic relatives.
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GWAS inclusion criteria, quality control, and meta-analysis

All GWAS were conducted among individuals that (a) were of European ancestry, (b) 

were not missing any relevant covariates, (c) were successfully genotyped and passed 

standardized sample-level quality control (according to study-specific protocols13–16,18), 

and (d) were unrelated (unless a particular GWAS was conducted with linear mixed 

models). Genotypes were imputed with reference data from either the 1000 Genomes 

Consortium62, the Haplotype Reference Consortium63, the UK10K Consortium64, or a 

combination thereof. We performed quality control with EasyQC (version 9.1)65. For 

that purpose, we used a whole-genome sequenced reference panel, assembled from 1000 

Genomes Consortium62 and UK10K Consortium64 data by using BCFtools (version 

1.8; Supplementary Information section 2.4.1). Our quality-control procedure applied 

recommended65 SNP-filtering to (i) remove rare SNPs (minor allele frequency < 0.005), 

(ii) SNPs with an IMPUTE imputation quality (INFO) score less than 0.9, (iii) SNPs 

that could not be mapped to or had discrepant alleles with the reference panel, and (iv) 

otherwise low-quality variants (Supplementary Table 2). For a complete description of the 

quality-control, see Supplementary Information section 2.4.

We performed sample-size weighted meta-analysis with METAL (versions 2011-03-25 

and 2020-05-05)66, while ensuring absence of sample overlap (Supplementary Information 

section 2.5.1). We excluded any summary statistics with negligible SNP-based heritability 

(h2 < 0.05) or GWAS signal (χ2 < 1.05), estimated with LD Score regression (version 

1.0.0)12,55. At this stage, we had collected or generated well-powered summary statistics 

for 11 phenotype-specific GWAS (or meta-analysis) that satisfied our inclusion criteria 

(Supplementary Table 3): (1) attention-deficit/hyperactivity disorder (ADHD, N = 53,293), 

(2) reverse-coded age at first sexual intercourse (FSEX, N = 357,187), (3) problematic 

alcohol use (ALCP, N = 164,684), (4) automobile speeding propensity (DRIV, N = 

367,151), (5) alcoholic drinks per week (DRIN, N = 375,768), (6) reverse-coded educational 

attainment (EDUC, N = 725,186), (7) lifetime cannabis use (CANN, N = 186,875), (9) 

lifetime smoking initiation (SMOK, N = 1,251,809), (9) general risk tolerance (RISK, N = 

426,379), (10) irritability (IRRT, N = 388,248), and (11) number of sexual partners (NSEX, 

N = 336,121) (Supplementary Table 4). The GWAS effect-sizes of age at first sexual 

intercourse and educational attainment were reversed to anticipate positive correlations with 

externalizing liability.

Exploratory factor analysis

As an initial analysis to guide the multivariate analyses, we performed hierarchical 

clustering of a matrix with pair-wise LD Score (version 1.0.0) genetic correlations (rg) 

(Supplementary Information section 3). The 11 phenotypes displayed appreciable genetic 

overlap with at least one other phenotype (max |rg| = 0.245–0.773) (Supplementary Table 

5). Three (k) clusters were identified: (1) attention deficit/hyperactivity disorder (ADHD), 

educational attainment (EDUC), age at first sexual intercourse (FSEX), irritability (IRRT), 

and smoking initiation (SMOK); (2) problematic alcohol use (ALCP), drinks per week 

(DRIN); and (3) lifetime cannabis use (CANN), automobile speeding propensity (DRIV), 

number of sexual partners (NSEX), general risk tolerance (RISK).
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Exploratory factor analysis tested four factor solutions, specifying 1 to k + 1 factors with the 

factanal function of R (“stats” package version 3.5.1) (Supplementary Information section 

3.2), where k is the number of clusters identified in the genetic correlation matrix, while 

retaining factors that explained ≥15% variance (preregistered threshold). The fourth factor 

explained only 12.5% variance, and thus, the three-factor solution was considered the best

fitting exploratory model (Supplementary Table 6). The factor loadings were consistent with 

the hierarchical clustering. However, as detailed in Supplementary Information section 3.2, 

the second and third factor accounted for complex residual variation and divergent residual 

cross-trait correlations among the subset of phenotypes that had the weakest loadings on 

the single common factor. Thus, we learned from exploratory analysis that some of the 11 

indicators may not be optimal for identifying a common genetic liability to externalizing, 

and that a less complex model with fewer indicators may perform better in subsequent 

confirmatory analyses.

Confirmatory factor analyses with Genomic SEM

We formally modelled genetic covariances (rather than rg) in confirmatory factor 

analyses using genomic structural equation modeling (Genomic SEM, versions 0.0.2a-c)10 

(Supplementary Information section 3.3). Genomic SEM is unbiased by sample overlap and 

imbalanced sample size, and by applying to summary statistics allows for genetic analyses 

of latent factors with more observations than is typically possible with individual-level 

data10. We estimated and benchmarked four models: (1) a common factor model with the 11 

phenotypes, (2) a correlated three-factors model with the 11 phenotypes (with and without 

cross-loadings), (3) a bifactor model with the 11 phenotypes, and finally, (4) a revised 

common factor model that only included seven of the phenotypes that satisfied moderate-to

large (i.e., ≥ 0.50) loadings on the single latent factor in model (1) (Supplementary Table 

7). We found that model (4) was the only model that closely approximated the observed 

genetic covariance matrix (χ2(12) = 390.234, AIC = 422.234, CFI = 0.957, SRMR = 0.079), 

fulfilled our preregistered model fit criteria, and coalesced with theoretical expectations of 

a common genetic liability to externalizing. This model was selected as final specification, 

and is hereafter referred to as “the externalizing factor” (EXT). To explore the convergent 

and discriminant validity of the externalizing factor, we estimated its genetic correlation 

with 91 traits from various domains (Supplementary Table 8).

Multivariate GWAS analyses with Genomic SEM

Using Genomic SEM, we performed multivariate genome-wide association analysis 

by estimating SNP associations with EXT, which is our main discovery analysis 

(Supplementary Information section 3.4). The estimated effective sample size of the 

“externalizing GWAS” is Neff = 1,492,085, and the mean χ2 and genomic inflation factor 

(λGC) are 3.114 and 2.337, respectively. LD Score regression suggested polygenicity rather 

than bias from population stratification10,12, as the (default settings) LD Score intercept 

and attenuation ratio were estimated to be 1.115 (SE = 0.019) and 0.054 (SE = 0.009), 

respectively.

Conventional “clumping” was applied with PLINK (v1.90b6.13)67 to identify near

independent genome-wide significant lead SNPs, with the primary (two-sided) P-value 
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threshold of 5×10−8, the secondary P-value threshold (for computational efficiency) of 

1×10−4, and an r2 threshold of 0.1 together with a wide SNP window (1,000,000 kb). 

Before counting the number of hits to report, we first subjected the 855 lead SNPs to 

“multi-SNP-based conditional & joint association analysis using GWAS summary data” 

(GCTA-COJO, version 1.93.1beta)23,68 (Supplementary Information section 3.4.2). This 

procedure identified 579 lead SNPs that were conditionally and jointly associated with 

EXT (Supplementary Table 9). We performed lookups of these “579 EXT SNPs”, and 

any correlated SNPs (r2 > 0.1), in the NHGRI-EBI GWAS Catalog6 (e96 2019-05-03) 

to investigate whether the loci have previously reported with other traits (at two-sided P 
< 1×10−5) (Supplementary Table 10). To evaluate whether each SNP acted through the 

externalizing factor, we estimated QSNP heterogeneity statistics genome-wide with Genomic 

SEM (Supplementary Information section 3.5.1). The null hypothesis of the QSNP test is 

that SNP effects on the constituent phenotypes operate (i.e., are statistically mediated) 

via the EXT factor, so a significant QSNP test indicates that the SNP effects are better 

explained by pathways independent of EXT. The QSNP analysis identified substantial 

heterogeneity (160 near-independent genome-wide significant QSNP loci), but reassuringly, 

did not identify heterogeneity among 99% (571/579) of the EXT SNPs (Supplementary 

Table 10). An analysis of sign concordance further supported homogeneity among the EXT 
SNPs (Supplementary Information section 3.5.4).

Proxy-phenotype and quasi-replication analysis

We conducted proxy-phenotype69 and quasi-replication70 analyses by investigating the 579 

EXT SNPs for association in two independent, second-stage GWAS on (1) alcohol use 

disorder (N = 202,004, rg = 0.52) and (2) antisocial behavior (N = 32,574, rg = 0.69) 

(Supplementary Information section 4) (Supplementary Tables 11–12). For SNPs missing 

from the second-stage GWAS, we analyzed proxy SNPs (r2 > 0.8). Significant proxy

phenotype associations were evaluated for Bonferroni-corrected significance (two-sided test 

P < 0.05/579). For the quasi-replication, we generated empirical null distributions for the 

second-stage GWAS by randomly selecting 250 near-independent (r2 < 0.1) SNPs matched 

on MAF (± 1 percentage point) for each of the 579 SNPs. The quasi-replication included 

three steps: (1) a binomial test of sign concordance to test whether the direction of effect 

of the SNPs were in greater concordance between the externalizing GWAS and each of 

the second-stage GWAS compared to what would be expected by chance (H0 = 0.5); (2) 

a binomial test of whether a greater proportion of the SNPs were nominally significant 

(two-sided P < 0.05) in the second-stage GWAS compared to the empirical null distribution; 

(3) a test of joint enrichment, using a non-parametric (one-sided) Mann-Whitney test of the 

null hypothesis that the P values of the SNPs are derived from the empirical null distribution. 

We strongly rejected the null hypotheses in all quasi-replication tests, suggesting that the 

externalizing GWAS is not spurious overall and that it was more enriched for association 

with the second-stage phenotypes than their respective polygenic background GWAS signal.

Polygenic score analyses

We generated polygenic scores by summing genotypes weighed by the effect sizes estimated 

in the externalizing GWAS, among individuals of European ancestry in five hold-out 

cohorts: (1) Add Health71,72, (2) COGA73–75, (3) PNC76,77, (4) the UKB siblings hold
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out cohort78, and (5) BioVU46 (Supplementary Information section 5). In each dataset, 

we generated three scores, of which two were adjusted for linkage disequilibrium (LD): 

(1) PRS-CS (version October 20, 2019; default Bayesian gamma-gamma prior of 1 and 

0.5, and 1,000 Monte Carlo iterations with 500 burn-in iterations)79, (2) LDpred (version 

0.9.09; infinitesimal Bayesian prior)80, and (3) unadjusted scores81, while using SNPs that 

overlapped the HapMap 3 Consortium consensus set82 (for comparability across methods 

and with previous work, and because PRS-CS imposes that restriction). We evaluated the 

incremental R2/pseudo-R2 (ΔR2) attained by adding the polygenic score to a regression 

model with baseline covariates, as in previous efforts17. The baseline model included 

covariates for sex, age, and genetic principal components (PCs), and genotyping array 

and batch. The choice of statistical model (e.g., least squares vs. logit) and adjustment of 

standard errors depended on (1) the phenotype distribution and (2) the cohort data structure 

(independent vs. clustered observations), see Supplementary Information section 5.2.4. We 

estimated 95% confidence intervals for ΔR2 using percentile method bootstrapping (1000 

iterations).

In Add Health and COGA, we performed out-of-sample validation of EXT by modeling a 

latent phenotypic externalizing factor corresponding to the seven Genomic SEM phenotypes 

(Supplementary Information section 5.2.3) (Supplementary Tables 27–28). In Add Health, 

COGA, PNC, and the UKB siblings hold-out cohort, we performed exploratory analyses 

with a range of preregistered phenotypes from various domains (Supplementary Tables 29–

31, 34). In BioVU, we performed a phenome-wide association study (PheWAS) of medical 

outcomes by fitting a logistic regression to 1,335 case/control disease “phecodes”83 (N = 

66,915) (Supplementary Table 32), adjusted for sex, median age in the EHR data, and the 

first 10 genetic PCs.

We performed within-family analyses among full siblings in Add Health, COGA, and the 

UKB siblings hold-out cohort (Supplementary Information section 5.2.5). We analyzed 

492 families in Add Health (Nsiblings = 994), 621 families in COGA (Nsiblings = 1,353), 

and 19,252 families in the UKB (Nsiblings = 39,640). In Add Health and COGA, we 

applied least squares regression on a single outcome: the factor scores of the phenotypic 

externalizing factor (a continuous variable), while adjusting for family-specific dummy 

variables (Supplementary Table 33), and calculated the standardized difference (i.e., a 

Z-statistic) between the within-family coefficient βW F  to the coefficient from a model 

without family dummies β  (Supplementary Information section 5.2.6). In the UKB 

siblings hold-out cohort, we performed an analogous analysis of exploratory phenotypes 

(Supplementary Table 34). We analyzed heteroskedasticity-consistent and cluster-robust 

standard errors, clustered at the family level.

Bioannotation

We conducted bioannotation and bioinformatic analyses (Supplementary Information 

section 6). The method FUMA (version 1.3.5e)26 was applied to explore the functional 

consequences of the 579 SNPs (Supplementary Table 9), which included ANNOVAR 

categories (i.e., the functional consequence of SNPs on genes), Combined Annotation 

Dependent Depletion (CADD) scores, RegulomeDB scores, expression quantitative trait loci 
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(eQTLs), and chromatin states. The default external reference data for FUMA is described 

elsewhere26.

Gene-based analyses was performed with “multi-marker analysis of genomic annotation” 

(MAGMA, version 1.08)27 (Supplementary Information sections 6.1.2). Genome-wide SNPs 

were first mapped to 18,235 protein-coding genes from Ensembl (build 85)84, and SNPs 

within each gene were jointly tested for association with EXT. We evaluated Bonferroni

corrected significance, adjusted for the number of genes (one-sided P < 2.74×10−6) 

(Supplementary Table 13). Next, MAGMA gene-set analysis was performed using 15,481 

curated gene sets and Gene Ontology (GO)85 terms obtained from the Molecular Signatures 

Database (MsigDB version 7.0)86. We evaluated Bonferroni-corrected significance, adjusted 

for the number of gene sets (one-sided P < 3.23×10−6) (Supplementary Table 14). A gene 

property analysis tested the relationships between 54 tissue-specific gene expression profiles 

and gene associations, while adjusting for the average expression of genes per tissue type 

as a covariate (Supplementary Table 15), and between brain gene expression profiles and 

gene associations across 11 brain tissues from BrainSpan87 (Supplementary Table 16). Gene 

expression values were log2 transformed average Reads Per Kilobase Million (RPKM) per 

tissue type (after replacing RPKM > 50 with 50) based on GTEx RNA-seq data (version 

8.0)88. We evaluated Bonferroni-corrected significance, adjusted for the number of tested 

profiles (one-sided P < 9.26×10−4).

We used an extension of MAGMA: “Hi-C coupled MAGMA” or “H-MAGMA” (based 

on MAGMA version 1.08)28, to assign non-coding (intergenic and intronic) SNPs to 

cognate genes based on their chromatin interactions. Exonic and promoter SNPs were 

assigned to genes based on physical position. We used four Hi-C datasets provided with the 

software89–91. We evaluated Bonferroni-corrected significance, adjusted for the number of 

tests within each of the four Hi-C datasets (one-sided P < 9.83–9.86×10−7) (Supplementary 

Tables 17–20).

The method S-PrediXcan (version 0.6.2)92 tested the association of EXT with gene 

expression in brain tissues. We used pre-computed tissue weights from the Genotype

Tissue Expression (GTEx, version 8.0) database as the reference dataset88. As inputs, we 

used the EXT summary statistics, LD matrices of the SNPs (available at the PredictDB 

Data Repository, http://predictdb.org, no version number), and transcriptome-tissue data 

related to 13 brain tissues: anterior cingulate cortex, amygdala, caudate basal ganglia, 

cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, 

nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord and substantia nigra. 

We evaluated transcriptome-wide significance at the two-sided P < 2.77×10−7, which is 

Bonferroni-corrected adjusted for 13 tissues times 13,876 tested genes (180,388 gene-tissue 

pairs) (Supplementary Table 21). In Supplementary Table 22 we summarize the gene 

findings. Finally, we followed-up on the subset of gene findings that were consistently 

implicated in all gene-based methods, by generating an “externalizing gene network” as 

a parsimonious composite network (PCNet) and an “externalizing systems map” with 

Cytoscape (version 3.8.2)93,94, and applied Tissue Specific Expression Analysis (TSEA, 

version 1.0) and Specific Expression Analysis (SEA, version 1.1) to explore tissue and brain 

region specificity (Supplementary Tables 23–26).
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Data availability—All data sources are described in the Supplementary Information and 

are listed in the Reporting Summary. No new data was collected. Only data from existing 

studies or study cohorts were analyzed, some of which are restricted access to protect the 

privacy of the study participants (see Reporting Summary for accession codes or URLs). 

The minimum data set necessary to interpret, verify, and extend the research, i.e., the GWAS 

summary statistics for the externalizing (EXT) GWAS (our main discovery analysis), can 

be obtained by following the procedures detailed at https://externalizing.org/request-data/. 

In brief, summary statistics are derived from analyses based in part on 23andMe data, for 

which we are restricted to only publicly report results for up to 10,000 SNPs. The full set of 

externalizing GWAS summary statistics can be made available to qualified investigators who 

enter into an agreement with 23andMe that protects participant confidentiality. Once the 

request has been approved by 23andMe, a representative of the Externalizing Consortium 

can share the full GWAS summary statistics. No source data is published alongside the 

paper.

Code availability—No custom algorithms or software was developed in this study. The 

Reporting Summary lists all software, code, and webtools that were used for the genetic and 

bioinformatic analyses we report.
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Extended Data

Extended Data Fig. 1. Genetic correlations with the genetic externalizing factor (EXT).
Dot plot of genetic correlations (rg) estimated with Genomic SEM between the genetic 

externalizing factor (EXT) with 91 other complex traits (Supplementary Information section 

3). Error bars are 95% confidence intervals, calculated as 1.96×SE, centered on the rg 

estimate (omitted for Agreeableness). The estimates are also reported in Supplementary 

Table 8, together with the exact number of independent samples used to derive each 

estimate. This figure displays genetic correlations with personality measures based on 

GWAS summary statistics from the Genomics of Personality Consortium, while Figure 1 

instead reports genetic correlations with personality measures based on more recent and 

substantially larger GWAS provided by 23andMe.
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Extended Data Fig. 2. Quantile-quantile (Q-Q) plots of the externalizing GWAS and QSNP 
results.
The panels display Q-Q plots for (a) the externalizing GWAS (Neff = 1,492,085), and (b) 

SNP-level tests of heterogeneity (QSNP) with respect to the SNP-effects estimated in the 

externalizing GWAS (for more details see Supplementary Information section 3). The y-axis 

is the observed association P value on the −log10 scale (based on a two-sided Z-test in 

panel a, and based on a one-sided χ2 test scaled to 1 degree of freedom in panel b). The 

gray shaded areas represent 95% confidence intervals centered on the expected −log10(P) of 

the null distribution. The genomic inflation factors displayed here, λGC, is defined as the 

median χ2 association test statistic divided by the expected median of the χ2 distribution 

with 1 degree of freedom, and were calculated with 6,132,068 and 6,107,583 SNPs for (a) 

and (b), respectively. Although there is a noticeable early “lift-off”, the estimated LD Score 

regression intercepts of (a) 1.115 (SE = 0.019) and (b) 0.9556 (SE = 0.013) suggest that 

most of the inflation of the test statistics is attributable to polygenicity rather than bias from 

population stratification
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Extended Data Fig. 3. Quantile-quantile (Q-Q) plots of the proxy-phenotypes analyses.
Panels (a–b) show −log10(P values from a two-sided Z-test) for linear regression of the 553 

and 579 EXT SNPs (or such SNPs that could be proxied in case of missingness, r2 > 0.8) 

that were looked up in independent, second-stage GWAS samples on (1) antisocial behavior 

(N = 32,574) and (2) alcohol use disorder (N = 202,400), respectively (Supplementary 

Information section 4). Dashed line denotes experiment-wide significance at P < 0.05/553 

and 0.05/579 for (1) and (2), respectively. Enrichment P value is the result of a one-sided test 

of joint enrichment with the non-parametric Mann-Whitney test against an empirical null 

distribution of 138,250 and 144,750 near-independent (r2 < 0.1) SNPs, matched on MAF, 

that were randomly selected from the GWAS on (1) and (2), respectively. Sign concordance 

is the proportion of looked-up SNPs with concordant direction of effect sizes across the 

externalizing GWAS and the second-stage GWAS, and the sign concordance P value is 

from a one-sided binomial tests of the sign concordance for the 579 SNPs (against the null 

hypothesis of 50% concordance that is expected by chance).

Extended Data Fig. 4. MAGMA gene-based association analysis.
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Manhattan plot of the −log10(P from a one-sided Z-test) of 18,093 genes that were tested 

for association in the MAGMA (v.1.08) gene-based association analysis (Supplementary 

Information section 6). The 10 most significant genes are labeled with gene names. Red 

dashed line represents Bonferroni-significance, adjusted for the number of tested genes 

(one-sided P = 2.74×10−6). 928 genes were found to be significant, of which 244 have 

one or more genome-wide significant SNPs from the externalizing GWAS within their gene 

breakpoints. The results are also report in Supplementary Table 13.

Extended Data Fig. 5. MAGMA gene-property analysis.
Bar plot of the −log10(P from one-sided Z-tests) of the point estimate from a generalized 

least squares regression. The analysis identified that the externalizing GWAS is significantly 

enriched in brain and pituitary gland tissues (Supplementary Information section 6). Dashed 

line denotes Bonferroni-corrected significance, adjusted for testing 54 tissues (one-sided P < 

9.26×10−4). 14 tissues were significantly associated with the externalizing GWAS, including 

13 brain related tissues and the pituitary tissue. The results are also report in Supplementary 

Table 15.
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Extended Data Fig. 6. MAGMA gene-property analysis of enrichment in brain tissues across 11 
developmental stages (BrainSpan).
Bar plot of the −log10(P from one-sided Z-tests) of the point estimate from a generalized 

least squares regression. The analysis identified that the externalizing GWAS is significantly 

enriched during prenatal developmental stages (Supplementary Information section 6). 

Dashed line denotes Bonferroni-corrected significance, adjusted for testing 54 tissues (one

sided P < 9.26×10−4). The results are also report in Supplementary Table 16.
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Extended Data Fig. 7. Gene overlap across multiple gene-association methods.
Venn diagram illustrating the overlap between (1) the nearest genes to the 579 jointly 

associated lead SNPs (denoted as the COJO EXT SNPs, see Supplementary Table 9), (2) 

the genes significant in the MAGMA gene-based analysis (Supplementary Table 13), (3) the 

genes significant in the H-MAGMA adult brain tissue analysis (Supplementary Table 17), 

and (4) the genes significant in the S-PrediXcan analysis (Supplementary Table 21). Across 

these four approaches, 34 genes were consistently implicated; these genes include CADM2, 

PACSIN3, ZIC4, MAPT, and GABRA2. Colored regions of this diagram correspond to 

the coloring shown in Supplementary Table 22, which lists all identified genes. No new 

statistical test was performed to generate this figure, and the statistical test used in each 

gene-based approach is reported in the notes of Supplementary Tables 9, 13, 17, and 21.
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Extended Data Fig. 8. Externalizing systems map estimated with the Order Statistics Local 
Optimization Method (OSLOM) algorithm.
Representation of the externalizing network neighborhood estimated with PCNet as modular 

gene systems. In the top panel, circles represent distinct systems, with size indicating the 

number of genes belonging to each system (min 11 for “cilium organization”, and max 379 

for the “externalizing systems map”). System color indicates the fraction of genes in each 

system that have been mapped to the externalizing phenotype by at least one of the four gene 

mapping methods (positional, MAGMA, H-MAGMA, and S-PrediXcan). Systems have 

been annotated with significantly enriched gene ontology terms. Systems without significant 

enrichment of biological pathways are labeled with a unique system ID (C454, C461, C453, 

C462), and may represent novel pathways. (i-vi) Visualization of genes within selected 

systems that have been mapped to the externalizing phenotype by one or more gene mapping 

methods, and their molecular interactions. In the bottom panel, the gene size is mapped to 

the number of methods in which the gene was found associated with externalizing (with 
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the largest genes indicating the gene was identified by all 4 methods), and gene color(s) 

indicates which method(s) have mapped the gene.

Extended Data Fig. 9. Confirmatory factor analysis of phenotypic externalizing factor in Add 
Health and COGA.
Path diagram of confirmatory factor analysis (CFA) models in (top panel) Add Health (N 
= 15,107) and (bottom panel) COGA (N = 16,857) (Supplementary Information section 5). 

The reported model fit statistics and fit indices are degrees of freedom (df), comparative 

fit index (CFI), root mean square error (RMSEA), standardized root mean squared residual 

(SRMR). Standardized factor loadings presented as numbers on the paths.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Genetic correlations and structural equation modeling with Genomic SEM.
(A) The lower and upper triangles display pair-wise LD Score genetic correlations (rg) 

and their standard errors, respectively, among the final seven discovery phenotypes (Table 

1), and the diagonal displays observed-scale SNP heritabilities (h2) (see Table 1 for 

standard errors). (B) Path diagram of the final revised common factor model estimated with 

Genomic SEM. The factor loadings were standardized, and standard errors are presented in 

parentheses. (C) Genetic correlations (rg) between the genetic externalizing factor (EXT, N 
= 1,492,085) and a subset of phenotypes selected to establish convergent and discriminant 

validity (Supplementary Table 8 reports all 91 estimated genetic correlations together with 

the exact number of independent samples used to derive each estimate), where blue and 

red bars represent positive and negative genetic correlations, respectively, using the same 

color scale as in panel A. Error bars represent 95% confidence intervals centered on the rg 

estimate, computed as 1.96 times the standard error. ADHD is attention deficit hyperactivity 

disorder (N = 53,293), ALCP is problematic alcohol use (N = 164,864), CANN is lifetime 

cannabis use (N = 186,875), EXT is externalizing, FSEX is reverse-coded age at first sex 
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(N = 357,187), NSEX is number of sexual partners (N = 336,121), RISK is general risk 

tolerance (N = 426,379), and SMOK is lifetime smoking initiation (N = 1,251,809).
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Figure 2 |. Multivariate genome-wide association analysis of EXT with Genomic SEM.
Scatterplot of −log10(P value for two-sided Z-test) for weighted least squares regression 

to estimate GWAS associations (top panel) and −log10(P value for one-sided χ2 test with 

7–1 degrees of freedom) for QSNP tests of heterogeneity (bottom panel) for EXT. Purple 

dots represent the 579 EXT SNPs that are conditionally and jointly associated (COJO) 

at genome-wide significance (two-sided P < 5×10−8) (Supplementary Table 9). White 

diamonds represent eight of the 579 SNPs that also show significant QSNP heterogeneity. 

Four green and one yellow squares represent five out of the 579 SNPs that also were 

Bonferroni-significant proxy-phenotype associations with alcohol use disorder (AUD) and 

antisocial behavior (ASB), respectively (Supplementary Table 11–12). Gene names refer 

to the closest gene based on genomic location, displayed for a selection of the findings 

(Supplementary Table 9 reports the nearest gene for all 579 EXT SNPs).
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Figure 3 |. Genome-wide EXT polygenic score associations with behavioral, psychiatric, and 
social outcomes in the independent Add Health (N = 5,107) and COGA (N = 7,594) datasets.
(A) Scatter plots illustrating the incremental proportion of variance (incremental R2, or 

ΔR2) explained by the genome-wide PRS-CS polygenic score. Light and dark hue indicates 

the Add Health and COGA cohort, respectively. Blue and red bars indicate positive 

and negative associations, respectively. The error bars represent 95% confidence intervals 

centered on ΔR2, computed as 1.96 times the standard error (estimated using percentile 

method bootstrapping over 1000 bootstrap samples). (B) Line charts illustrating the relative 

risks across quintiles of the polygenic score for eight (binary or dichotomized) illustrative 

outcomes: (1) meeting 4 or more criteria for alcohol use disorder (AUD), (2) lifetime use 

of an illicit substance other than cannabis, (3) lifetime opioid use, (4) ever being arrested, 

(5) meeting 3 or more criteria for conduct disorder (CD) or antisocial personality disorder 

(ASPD), (6) ever being convicted of a felony, (7) completing college, and (8) first sexual 
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intercourse at the age of 18 or older. The error bars represent 95% confidence intervals 

centered on the per-quintile prevalence, computed as 1.96 times the analytical standard error.
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Figure 4 |. Phenome-wide association study in the BioVU biorepository.
−log10 P values for two-sided Z-test of the log of the odds ratio for the genome-wide 

PRS-CS polygenic score for EXT with 1,335 medical outcomes, estimated with logistic 

regression in up to 66,915 patients, adjusted for sex, median age in the EHR data, 

and the first 10 genetic PCs. The dashed line is the Bonferroni-corrected significance 

threshold; adjusted for the number of tested medical conditions. 84 medical conditions were 

Bonferroni-significant, while 255 conditions were significant at a false discovery rate less 

than 0.05. The labels for some conditions were omitted. The complete results, including 

case-control counts, effect sizes, and standard errors, are reported in Supplementary Table 

20.
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Table 1.

Summary of seven externalizing-related disorders and behaviors with GWAS summary statistics

Phenotype (abbreviation) N h2 (SE) λGC Mean χ2 Intercept Ratio Reference

Attention-deficit/hyperactivity disorder (ADHD) 53,293 0.235 (0.015) 1.253 1.297 1.034 0.113 13 

Problematic alcohol use (ALCP) 164,121 0.055 (0.004) 1.149 1.174 1.013 0.073 14,15

Lifetime cannabis use (CANN) 186,875 0.066 (0.004) 1.230 1.267 1.026 0.098 16 

Age at first sexual intercourse (FSEX)* 357,187 0.115 (0.004) 1.623 1.869 1.036 0.041 17 

Number of sexual partners (NSEX) 336,121 0.097 (0.004) 1.492 1.682 1.027 0.041 17 

General risk tolerance (RISK) 426,379 0.053 (0.002) 1.372 1.461 1.019 0.041 17 

Lifetime smoking initiation (SMOK) 1,251,809 0.078 (0.002) 2.328 3.152 1.126 0.058 18 

Notes: The statistics reported in this table were all estimated with LD Score regression12. Heritability (h2) is on the observed scale12. λGC is 

the median χ2 statistic divided by the expected median of the χ2 distribution with 1 degree of freedom95. Mean χ2 is the average χ2 statistic. 

Intercept is the estimated LD Score regression intercept. Ratio measures stratification bias, defined as (Intercept – 1) / (Mean χ2 – 1)12.

*
Reverse-coded (see Online Methods).
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