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Abstract

The human gut microbiota is well established as an important factor in health and disease.

Fecal sample microbiota are often analyzed as a proxy for gut microbiota, and characterized

with respect to their composition profiles. Modern approaches employ whole genome shot-

gun next-generation sequencing as the basis for these analyses. Sequencing depth as well

as choice of next-generation sequencing data analysis method constitute two main interact-

ing methodological factors for such an approach. In this study, we used 200 million

sequence read pairs from one fecal sample for comparing different taxonomy classification

methods, using default and custom-made reference databases, at different sequencing

depths. A mock community data set with known composition was used for validating the

classification methods. Results suggest that sequencing beyond 60 million read pairs does

not seem to improve classification. The phylogeny prediction pattern, when using the default

databases and the consensus database, appeared to be similar for all three methods. More-

over, these methods predicted rather different species. We conclude that the choice of

sequencing depth and classification method has important implications for taxonomy com-

position prediction. A multi-method-consensus approach for robust gut microbiota NGS

analysis is recommended.

Introduction

The human gastrointestinal tract (GI) is complex and harbors trillions of microorganisms,

mostly consisting of bacteria but also viruses and protozoa. The microbiota plays an important

part in gut barrier homeostasis under healthy conditions and a disruption of the gut micro-

biota composition is known to influence the intestinal physiology negatively [1]. Dysbiosis of

the intestinal microbiota has been associated with several diseases, including inflammatory

bowel disease [2] and Alzheimer [3]. The composition of these gut microbiota varies along the

digestive tract and consists of more than 1000 bacterial species [4]. However, 99% of the gut

microbiota is represented by 30–40 bacterial species only [5]. Considering the influence of
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microbes on their host, an initiative with the goal of identifying and characterizing gut micro-

biota, The Human Microbiome Project (HMP), was launched in 2008 [6]. A similar project

was initiated in Europe, the MetaHIT (2008–2012), with the aim to establish the association

between genes of the human gut microbiota and our health and disease, focusing mainly on

Inflammatory Bowel Disease (IBD) and obesity [7]. The International Human Microbiome

Consortium (IHMC) was a simultaneous project aiming at understanding the role of human

gut microbiota in maintaining health and causation of disease, for improvement of treatment

and prognosis of diseases [8]. Despite these extended efforts in human-microbiome research,

microbial communities are still the dark matter of human health and disease. Since the gut

microbiome consists mainly of anaerobic members, the conventional approach of growth

media-based culturing is not a feasible option [9]. Finally, complexity and very uneven distri-

bution of species composition, make their investigation challenging.

Culture-independent methods based on targeted sequencing of 5S and 16S ribosomal genes

to identify microbes date back three decades [10]. Introduction of next generation sequencing

(NGS) to 16S rRNA gene analysis revolutionized microbiome analysis, with a marked

improvement in cost and sampling depth [11]. Metagenomics, in the form of direct random

shotgun sequencing of environmental DNA, constitutes the current extended application of

NGS in microbiome analysis, targeting the complete genomic sequences of all microbiota [12].

Mock bacterial communities have been used in microbiome studies to understand biases

introduced during data generation and subsequent data analysis [13]. Previous studies have

reported differences in results related to DNA extraction methods, PCR amplification, as well

as sequencing platforms. Thus, using a known bacterial community to initially validate analy-

sis pipeline and interpretation of results is a necessary first step [14, 15].

Most metagenomic data analysis pipelines employ a taxonomy classification step in order

to understand and estimate microbial abundance and diversity in an environmental sample.

In this step, metagenome sequences are screened using relevant reference databases, and the

relative abundance of each phylogenetic level is estimated. Most metagenomic classification

tools provide multilevel taxonomy indices, some claiming resolution even at strain level [16–

18]. Even though the majority of sequences remain unclassified (~65%) [19, 20], the classified

sequences cast light on the population structure of respective samples. Scaling the computa-

tional repertoire to catch up with the exponential pace in NGS data generation is another over-

looking challenge. A major concern is about reaching an optimal sequencing depth in order to

extract accurate population-related information, to accurately determine microbiota composi-

tion from a sample. Few studies have investigated the consequences of an interaction of meth-

odological choice and applied sequencing depth for conducting metagenomic analyses [18,

21]. Instead, studies comparing methodological approaches have taken different routes of

investigation so far. Comparisons regarding use of sequencing platforms and taxonomical clas-

sification methods have been reported previously [22, 23]. Jovel et al., compared 16S rRNA

gene-based and shotgun-based libraries using OTU tables (for 16S) and lowest common ances-

tor (LCA) (for shotgun) based taxonomy approaches. Different taxonomy classifiers and refer-

ence databases are discussed in their work, but not explicitly compared [22]. Hillmann et al.,

compared the use of 16S rRNA gene sequencing, shallow shotgun sequencing, and deep whole

metagenome sequencing for gut microbiome characterization. They used multiple LCA-based

taxonomy classifiers and a common reference database (NCBI RefSeq) [23]. There is a need

for a detailed understanding of the influence of different sequencing depths using different

classification approaches [24].

The aim of our study is to understand the impact of sequencing depth and reference data-

bases interacting with different choices of classification method on results of phylogenetic

classification. We used deep whole metagenome sequencing of human fecal samples to
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characterize the microbiota composition, to comprehensively compare different taxonomy

classification approaches at different sequencing depths, to understand the consequences of

choice of sequencing depth and its interaction with choice of method. Our choice of maximum

sequencing depth, a full-lane on HiSeq2500 paired-end sequences, generating around 200 mil-

lion sequence read pairs, relates to the maximum affordable sequencing depth cited in recent

studies [19, 20]. The results of this investigation will guide researchers while deciding sufficient

depth for a sample to be sequenced, which is cost effective and enables post-sequencing analy-

sis as desired. We used shotgun metagenome sequences from one especially deep sequenced

fecal sample, which was subsampled to different sequencing depths. A set of 50 subsamples of

the total body of all reads was generated at specific depths and used for taxonomy classification

employing three different approaches. Subsequent comparisons of taxonomy of classified

sequences at different depths and methods, using default reference databases and a consensus

reference database, were implemented using three different classification approaches.

Materials and methods

Mock community data and validation of methods

Shotgun genomic sequences from a mixture of 11 bacterial species, spanning 7 genera were

sequenced by Jovel et al., using Nextera XT (Illumina) kits [22]. Paired end raw sequencing

reads from their study, accessible from Sequence Read Archive portal of NCBI under accession

number SRX1075649, were used as mock community data. In our study, this mock commu-

nity data was subjected to taxonomy classification by three methods, for an initial methods val-

idation, as described below.

Data generation

A single fecal sample was used as basis for this work. Ethical permit was given by the Regional

Ethical Board at Uppsala University (Regionala Etikprövningsnämden Uppsala), 2012/309.

Protocols for metagenomic DNA extraction from this sample and sequencing were strictly fol-

lowed, if not reported otherwise, as reported elsewhere [25]. DNA samples for sequencing

were prepared by repeated bead beating and using QIAamp DNA Stool Mini Kit from Qiagen

(Art.no: 51504) [26] following the standard protocol, and extracted DNA concentration and

quality were measured using Nanodrop. A full lane paired-end DNA sequencing was run

using an Ilumina HiSeq 2500 system (Illumina, San Diego, CA, USA). Raw sequences, around

200 million read pairs of 126 bases, are accessible at the Sequence Read Archive (SRA) under

accession number PRJNA509325.

General workflow

Shotgun metagenomic sequence subsampling was conducted to generate simulations of exper-

iments at different sequencing depths. Methods validation was performed using a set of

known species genomic sequences. Taxonomic composition was analyzed using three alterna-

tive approaches, using default and a consensus reference database. A general overview of the

workflow for analyzing subsampled deep sequences is described in Fig 1.

Simulation of different sequencing depths by subsampling

Metagenomic shotgun DNA sequences were quality checked using FastQC [27], and subsam-

pled to simulate experiments at various sequencing depths before running different taxonomy

classifiers. A set of 50 subsamples was generated at specific depths of 5, 10, 20, 40, 80, and 100

million read pairs of the sequenced full lane sample, using the deep sequenced reads (paired-
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end, around 200 million reads). Subsampling scripts are available at https://git.oru.se/srrn/

manuscript_1.

Sequence classification methods: Similarity based

We used Metaphlan-II, Kraken, and Clark-S taxonomy classifiers in this study [16, 28, 29].

Subsampled shotgun metagenome sequences were used to generate taxonomy classification

using these alternative approaches. Standard operating procedures have been followed for

each tool, and default settings were used for classifying sequences. Only species with non-zero

abundance were reported. As all of these classifiers use a similarity-based approach for read-

reference matching, their specific variation in assigning taxonomy is discussed later.

Data analysis

The subsampled sequences were taxonomically classified using the selected classification

approaches separately, at each sequencing depth and using different reference databases, to

generate respective species and genus taxonomic identities. 95% confidence intervals of rela-

tive abundances of species abundance for all sequencing depths were based on the respective

quantiles of their distribution. Species diversity was determined as Shannon diversity, richness

(species abundance), and evenness as detailed below. Hereto, the Shannon-Weiner’s index was

calculated using the formula [30, 31]:

H ¼ �
Xn

i¼1

pilnpi

Where:

H = Shannon-Weiner’s diversity index

n = the number of species

Pi = proportion of individuals in species

Fig 1. General workflow. Next generation shotgun deep sequences were subsampled to simulate varying sequencing depths. Methods used in this

study were validated using mock community data, and subsampled sequences were taxonomically classified using different databases.

https://doi.org/10.1371/journal.pone.0222171.g001
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Species Evenness = H / log (species richness).

We chose principle component analysis–PCA [30] in R (version 3.5.1, Package pca-

Methods) as a typical example of high-level analysis to investigate consequences of sequencing

depth and methods choice on this level. In order to visualize variation in data, scores plots

(PC2 v/s PC1) were assessed. Subsampling, formatting, and taxonomy prediction tasks were

automated using in-house scripts written in Bash, R, and/or Python; which are available at

https://git.oru.se/srrn/manuscript_1.

Constructing a consensus database for methods comparison

A consensus database for the classification methods was created based on species which are

detectable by all three methods. Genomic sequences of these species were collected and were

basis for custom databases. For Kraken and Clark-S, this collection of sequences was used

directly. For Metaphlan-II, only clade-genes connected to the species in the consensus collec-

tion were used to build a new index with Bowtie2, and the internal database in Metaphlan-II

was updated accordingly (https://bitbucket.org/biobakery/metaphlan2/src/default/

#markdown-header-customizing-the-database, [16]).

Results

Taxonomy prediction using default reference databases

This study was conducted to examine the influence of the combination of sequencing depth,

reference databases, and methods choice on taxonomic classification when analyzing human

fecal sample microbiota using shotgun deep sequencing. In order to validate the selected meth-

ods, as a first step, a mock community dataset composed of known bacterial species was ana-

lyzed using all three taxonomy classification methods using default and a consensus reference

database. The mock community population consisted of 11 different species spanning 7 differ-

ent genera [22]. Taxonomy classifications of this data using the three methods differ consider-

ably as shown in Fig 2. Kraken reported 6 out of 11 species and Clark-S identified 10 out of 11

mock community species, while Metaphlan-II reported all mock community species. Metaph-

lan-II identified one additional species, while Kraken and Clark predicted many more addi-

tional, i.e. false positive, species. Mock analysis showed precisions of 0.916, 0.027, and 0.025

for Metaphlan-II, Kraken, and Clark-S respectively. The recall rates were 1.0, 0.545, and 0.909

for Metaphlan-II, Kraken, and Clark-S respectively.

Shotgun metagenomic sequences from one especially deep sequenced fecal sample (around

200 million read pairs) were randomly subsampled 50 times for each of the relative sequencing

depths of 5, 10, 20, 40, 80, and 100 million read pairs. The sequences of these subsampling

datasets were taxonomically classified using different approaches as implemented in the classi-

fication softwares Metaphlan-II, Kraken, and Clark-S, at default settings. In these default set-

tings, microbial reference sequences available at NCBI’s RefSeq repository were used by

Kraken and Clark-S, while Metaphlan-II uses IMG [32] database, which employs NCBI’s

RefSeq as its main source of genomic data, but also additional resources [16, 28, 29]. Genus-

specific and species-specific taxonomy information was collated separately from each classifi-

cation tool. A summary of input and output at each step for each approach is described in

Table 1. A detailed description of tools, scripts, and protocols used can be found in the meth-

ods section.

Comparison of taxonomy classifications by the classification tools, based on all 200M read

pairs (full-length lane), shows differences in species, genus, and phylum abundance (Figs 3

and 4). Kraken and Clark-S identified 2056 species, which were not identified by Metaphlan-

II. Kraken and Clark-S identified 19.33% of Metaphlan-II identified species. Similarly, Kraken

Phylogenetic microbiota profiling depends on sequencing depth and NGS analysis method

PLOS ONE | https://doi.org/10.1371/journal.pone.0222171 September 17, 2019 5 / 17

https://git.oru.se/srrn/manuscript_1
https://bitbucket.org/biobakery/metaphlan2/src/default/#markdown-header-customizing-the-database
https://bitbucket.org/biobakery/metaphlan2/src/default/#markdown-header-customizing-the-database
https://doi.org/10.1371/journal.pone.0222171


and Clark-S recognized 38.18% genera identified by Metaphlan-II. A total of 2175 unique spe-

cies were identified by all 3 software together; with Metaphlan-II identified species being the

lowest, at 5.47%. A collection of 796 unique genera was identified by all three software com-

bined; with Metaphlan-II identified genera being the lowest, at 6.79%. Kraken and Clark-S

identified similar phyla, and they did not predict 2 phyla reported by Metaphlan-II. Top spe-

cies, genera, and phyla assigned by all the approaches showed close similarity in their relative

abundances (Fig 4A–4C).

The variation in species richness and evenness at different sequencing depths for 50 ran-

dom subsampling can be found in Fig 5A and 5B. Species abundance across different sequenc-

ing depths did not vary a lot for Metaphlan-II and Clark-S, whereas the number of species

detected by Kraken correlate to the sequencing depth. Species evenness showed less variation

across depths for Clark-S and Kraken, whereas Metaphlan-II showed considerable variation

(Fig 5B). Sequencing depth did not seem to affect Metaphlan-II classification generally, even

though Metaphlan-II-derived species showed more variation as the species identified were

more evenly spread.

Fig 2. Predicted taxonomical composition of mock community. Abundances of reported species as from the three

classification methods. Metaphlan-II classifications were all correct, except one falsely classified. Most of the

classifications by Kraken and Clark-S were false positives. The value given in brackets represents an additional species

identified.

https://doi.org/10.1371/journal.pone.0222171.g002

Table 1. Summary of reads used and classification results for different approaches (full depth).

Method Metaphlan-II Clark-S Kraken

No. of raw read pairs 200 M 200 M 200 M

No. of classified read pairs 20 M 26 M 40 M

No. of phylum 6 33 33

No. of genus 55 670 733

No. of species 119 1613 1621

M = million

https://doi.org/10.1371/journal.pone.0222171.t001
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Principal component analysis (PCA) is often used in microbiota analysis as it allows to

compress the information about the most varying species or genera into few principal compo-

nents for further analysis. Applied to our classification results, PCA score plots of species

abundances at different depths for three classifiers showed similar patterns for Kraken and

Clark-S, meanwhile Metaphlan-II showed large species variation for different depths. PCA

scores plots for Metaphlan-II show species variation at higher sequencing depths centering

around the full-lane, while the scores are clustered differently for lower sequencing depths.

Kraken and Clark-S showed a wider spread in species grouping (Fig 5C–5E) in contrast to

Metaphlan-II.

In summary, Metaphlan-II-derived classifications constituted 5.47% of total number of spe-

cies predicted by all classification methods. Around 19% of species predicted by Metaphlan-II

overlapped with species identified by the other classification methods. Similarly, 6.79% of total

genera predicted were accounted for by Metaphlan-II, and 38.18% of these genera were

Fig 3. Taxonomical composition predicted for a fecal sample at full depth using 3 approaches. A. Abundance of reported species, (B) reported genera, and (C)

reported phyla.

https://doi.org/10.1371/journal.pone.0222171.g003

Fig 4. Top-10 taxa predicted at full depth using 3 approaches. A Species. B Genus. C Phyla.

https://doi.org/10.1371/journal.pone.0222171.g004
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predicted by the other methods. Both Kraken and Clark-S reported similar phyla, whereas,

Metaphlan-II reported different phyla in lower abundance. Prominent phyla reported by all

three approaches remained same, with varying abundance; where Kraken and Clark-S showed

a closer pattern when it comes to genus and species.

Taxonomy prediction using the consensus database

Taxonomy classification using a consensus database was conducted to investigate the effect of

different databases in taxonomy classification. In order to validate the methods, we analyzed

again the mock community of known species [22] using all three methods. The taxonomy clas-

sification of this data using the consensus database showed significant differences among the

methods. All the methods identified 10 out of 11 mock community species, while Kraken and

Clark-S identified many false positive species as shown in Fig 6A. Taxonomy classification of

full-lane sequences was performed by all three methods using the consensus database, and

Fig 5. Species diversity prediction as dependent on sequencing depth. A. Species richness for different taxonomy classification approaches. Species richness is

shown as mean values and 95% confidence intervals as dependent on different sequencing depths. B. Species evenness for different taxonomy classification

approaches as dependent on different sequencing depths. Principle Component Analysis results for abundances of species identified by C Metaphlan-II, D Kraken,

and E Clark-S. First two principal components are shown in scores plots.

https://doi.org/10.1371/journal.pone.0222171.g005
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their abundance and overlap can be obtained from Fig 6B. For the 19 species commonly pre-

dicted by all three methods, these turned out to be the most abundant for Kraken and Clark-S.

For Metaphlan-II, these common predicted species only amount to 27.7%. Instead, the 7 spe-

cies predicted by Metaphlan-II only, represent 72.3% (Fig 6C). Hence, for Metaphlan-II, the 7

species which were not predicted by other methods were the most abundant ones. Among

these, Ruminococcus bromii (55.2%) and Bacteroides uniformis (9.4%) were the most abundant

species which were detected by Metaphlan-II alone (Fig 6B and 6C). Subsampled shotgun

metagenomic sequences at different sequencing depths were subjected to taxonomy classifica-

tion using the consensus reference database by all three methods. Species abundance across

different sequencing depths did not vary much for Metaphlan-II, whereas, there was a gradual

increase in number of predicted species for Kraken and Clark-S, as observed before for using

Fig 6. Taxonomical analysis using the consensus database. A Representation of predicted species abundance using Metaphlan-II, Clark-S, and Kraken, based on

mock community data. B Predicted species abundance representation using full depth of fecal sample (200 million read pairs). C Composition of the 19 predicted

species common to all methods, and specific for Metaphlan-II. The bar named Metaphlan_ONLY represents the species predicted by Metaphlan-II alone, whereas

the other three bars represent the common species predicted by each method and their respective proportion. Species with abundance proportion below 1% are not

shown in the figure. The sum of abundance proportion for each method is shown at the top of each bar. D Species richness for different taxonomy classification

approaches at different sequencing depths. Species richness is shown as mean values and 95% confidence intervals (shown as error bars). E Species evenness for

different taxonomy classification approaches as dependent on different sequencing depths (error bars depict 95% confidence intervals).

https://doi.org/10.1371/journal.pone.0222171.g006
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the default reference databases (Fig 5A and Fig 6D). Also, patterns of evenness in predicted

species composition as dependent on sequencing depth look similar (Fig 5B and Fig 6E). Pre-

dicted species abundance by each method shows similar pattern compared to using default ref-

erence databases. The number of species predicted for subsampled shotgun sequences using

the consensus reference database was reduced to about 20% when compared to the results

using the default reference database (Fig 6B and 6D). A summary of input and output at each

step for each approach using consensus database is described in Table 2.

All classifiers performed differently in terms of their computational power, processing

speed, and classification results. A performance comparison of three methods is given in

Table 3.

Discussion

This study investigates the significance of varying sequencing depth in microbiome NGS anal-

ysis by comparing taxonomy classification across three standard phylogenetic classification

methods at different depths and using different reference databases. We selected taxonomy

classifiers, which are openly accessible, stand-alone operative, and capable of delivering spe-

cies-level phylogenetic classification resolution. A publicly available mock community

sequence dataset was used for initial validation of the classification methods. Shotgun metage-

nomic sequences from a fecal sample were subsampled and used to characterize the micro-

biome at varying sequencing depths using different reference databases. This study

demonstrates large and relevant differences in taxonomy classification based on method

choices, reference databases, and sequencing depth.

Analysis of a sample with known origin (mock community) revealed large differences in

taxonomy classification between the three methods chosen. At species-level resolution,

Metaphlan-II identified all species in the mock community along with an extra species. The

extra species also belongs to one of the mock community’s genera. Clark-S identified almost

all mock species, together with many more other species (Fig 2). Kraken identified around half

of mock community species along with many more other species (Fig 2). The different meth-

ods’ performances regarding species identification using mock community data seem similar

to the observed differences for classifying microbiome sequences as further discussed below.

Approximately half of species identified by Kraken and Clark-S in addition to those found

by Metaphlan-II were found to be shared between the former. Part of the explanation to these

findings likely lies in the difference in taxonomy assignment strategy used by Metaphlan-II

versus Kraken and Clark-S. Metaphlan-II uses a preselected clade-specific marker gene data-

base, compiled from IMG database, for taxonomy assignment containing approximately 1300

predictable species [16]. Kraken and Clark-S base their classification directly on NCBI Refer-

ence Sequence Database with around 8000 species. Only half of all additional species identified

by Kraken and Clark-S were in principle predictable by Metaphlan-II. In addition, as both

Clark-S and Kraken use a k-mer based database for taxonomy assignment, the risk of

Table 2. Summary of read pairs used and prediction results using consensus database.

Method Metaphlan-II Clark-S Kraken

No. of raw read pairs 200 M 200 M 200 M

No. of classified read pairs 5 M 6 M 8 M

No. of phylum 4 19 18

No. of genus 19 188 198

No. of species 26 498 514

https://doi.org/10.1371/journal.pone.0222171.t002
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identifying species that are in proximity to the mock community taxonomy seems enlarged

and needs further investigation.

In the main part of this study, sequencing of a fecal sample shotgun NGS analyses served as

a realistic example to demonstrate the impact of methods choice and sequencing depth. Sec-

ond, our choice of sequencing depth, a full-lane on HiSeq2500 of paired-end sequencing, exag-

gerates the normal affordable sequencing depth in recent studies. At that maximum

sequencing depth, most accessed parameters in our study reached approximate plateau, one

exception being species evenness. More realistic sequencing depths are assessed from subsam-

pling of the original full lane dataset. Comparison of taxonomical assignments showed consid-

erable variation in genera and species reported when using all data, i.e. all sequence read pairs,

across all three methods. While Kraken and Clark-S shared identical phyla, of these only the

most prominent two were identified by Metaphlan-II. All three methods identified largely dif-

ferent proportions of reported phyla (for exact proportions, refer to Fig 4C). Kraken and

Clark-S displayed significant shares of both genus and species-specific classification, while

Metaphlan-II presented only a few representatives in both lists (Figs 3, 4, 5A and 5B). The

excessive number of species reported by Clark-S and Kraken compared to Metaphlan-II mir-

rors the analysis of the mock community (Fig 2). Kraken and Clark-S detected identical phyla,

but varied around 10% at genus level, and around 30% at species level. Metaphlan-II showed

less than 10% similarity at each taxon level in comparison to Kraken and Clark-S. With

increasing sequencing depth, Kraken and Clark-S converge at species levels but diverge from

Metaphlan-II. Both Kraken and Clark-S report many more genus and species than Metaphlan-

II. A possible explanation to this might lie in the k-mer database approach of both methods.

Query sequences are fractionized to k-mers of 31 bp length for both methods, which is the

maximum default length. The frequency of k-mers in a genomic sequence or region can be

used as a signature of the underlying sequences. Comparison of these frequency signatures are

widely used in alignment-free sequence analysis methods [30].

Higher level statistical analysis results in microbiome analysis are also influenced by meth-

ods choice and sequencing depth. For example, bacterial diversity analysis is widely used to

better understand the population as a whole and its specific characteristics using measures like

species evenness and richness. Among the three methods compared, Metaphlan-II showed the

lowest richness and highest evenness for reported species (Fig 5A and 5B). Our study demon-

strates varying degrees of species diversity predicted for different sequencing depths. Principal

component analysis is another frequently used approach to compress information about

prominent varying elements in a dataset. Principal components of species abundances

reported by Metaphlan-II differed largely in their diversity pattern in comparison to Kraken

and Clark-S species. Fig 5C–5E show the spread of prominent varying elements, representing

main components of species compositional patterns at different sequencing depths for all

three methods. Fig 5C shows a clear pattern of variance among prominent components.

Across different sequencing depths, prominent species components at higher sequencing

depth appear to be converge, whereas these components appear to be diverging at lower

sequencing depths.

Table 3. Performance comparison of different methods.

Variables Metaphlan -II Clark-S Kraken

Time (T) 2xT 1xT 1xT

No of species (S) 0.1xS 1.2xS 1xS

RAM/processors (P) 2xP 1xP 1xP

https://doi.org/10.1371/journal.pone.0222171.t003
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The default implementation of the three selected methods uses different reference data-

bases. Metaphlan-II uses IMG database which employs NCBI’s RefSeq sequences as its main

source of genomic data with additional information from several other databases potentially

missing from NCBI’s RefSeq [32]. Kraken and Clark-S, on the other hand, relay entirely on

NCBI’s RefSeq sequences. In order to compare species detectable by all three methods, we cre-

ated a reference database of consensus species. Thus, 559 unique species spanning all three

methods were selected for consensus database construction. Using this approach, all three

methods predicted the same species using the mock community data, while Clark-S and Kra-

ken predicted many false positives (Fig 6A). In the fecal sample data, (see Table 2), the taxon-

omy classification using full-lane sequences predicted 19 common species with varying

abundance. Moreover, Metaphlan-II predicted 7 species not reported by Kraken and Clark-S,

which were even considered most abundant (Fig 6C). This difference in results can now solely

be attributed to different classification approaches in our methods. Taxonomy prediction

results for the subsampled shotgun sequences as a factor of sequencing depth were reduced to

20% in abundance using the consensus reference database (Fig 6D and 6E). Thus, the taxon-

omy predictions for mock community data and subsampled shotgun sequences, using a con-

sensus database by all three methods showed a similar prediction pattern compared to using

default reference databases.

In the following, we speculate about why the different approaches for phylogenetic classifi-

cation used in the three methods under investigation might lead to the observed large variation

of species classification. In principle, sequence classification and taxonomy assignment meth-

ods depend heavily on identifying similarity between a query sequence and a collection of

annotated sequences in databases of bacterial species complete genomes. “Clustering-first”

and “assignment-first” are two possible classification strategies used by common classifiers

[20] and also for our chosen methods. In a clustering-first approach, initially, sequences are

grouped based on their similarity and taxonomically classified using reference databases at a

later step. Metaphlan-II, QIIME [33], and Mothur [34] are pipelines that use this approach,

which results in identifying a comparatively small number of phylogenetic taxa. Specifically,

Metaphlan-II estimates the relative abundance of microbes by mapping query sequences

against a reduced set of clade-specific marker genes, which are preselected coding sequences,

identifying clades at species level or higher [16]. In Metaphlan-II, the full consensus sequences

of the clustered reads are aligned to reference database using Bowtie-2 aligner [35], which

requires much time and computational power. In contrast, Kraken and Clark-S construct a k-
mer based reference database prior to taxonomy assignment. K-mers are then mapped against

reference sequence databases. The power consuming part in both Kraken and Clark-S is

mainly attributed to one-time creation or loading of the reference databases and compilation

of k-mer database. While Kraken uses the lowest common ancestor (LCA) based approach,

Clark-S uses a spaced k-mer based approach. Both Kraken and Clark-S require high random-

access memory (RAM), for the k-mer database. The k-mer length is likely a main meta-param-

eter that could influence the specificity of reported genera and species, and future studies are

needed to investigate this [36]. More specifically, longer k-mer lengths could deliver more spe-

cific taxonomy classifications.

Concluding, the variation in the number of species reported by different methods could be

attributed both to the differences in taxonomy assignment strategy and reference databases

used by the methods. Whereas total number of predicted species change mostly for using dif-

ferent reference databases, patterns of predictions compared among the three methods remain

similar. This is with regard to both overall species richness and evenness as well as regarding

results for the mock community.
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Several motivations led us in our choice of methods: First, the three approaches were cho-

sen due to their ability to detect taxonomical units at species-level resolution. In addition, our

choice represents different classification approaches (gene-set based, LCA based, and spaced

k-mer based). Many other tools, for example, Mothur [34], QIIME [33], MG-RAST [37], and

Kaiju [38] mostly deliver genus-level resolution and partly species-level. Jovel et al., compared

sequencing depth of shotgun reads using LCA methods and NCBI RefSeq [22], while Hill-

mann et al., compared 16S rRNA reads and shallow shotgun reads using LCA methods and

NCBI RefSeq [23]. Our study elaborates the impact of sequencing depth by rigorously compar-

ing taxonomical classification approaches at varying sequencing depth using different refer-

ence databases.

All tools used in this study are publicly available and follow open source policy, i.e., they are

reported and documented sufficiently for anyone to reproduce a similar analysis. We chose to

compare three common methods with fixed, default parameters using default and a consensus

reference sequence database. A much shallower or deeper sequencing depth, or a change in

choice of method settings might have presented a different result. Using other reference

sequence databases like Microbial Genome Database for Comparative Analysis (MBGD) [39]

or Bacterial Isolate Genome Sequence Database (BIGSdb) [40] or a combination of all these

would have possibly led to different phylogenetic profiles. A taxonomic profile based on a

more comprehensive gene catalogue [41] might have presented a more accurate prediction. It

might be worth trying to do similar analyses through a larger collection of additional taxon-

omy assignment tools, for example Kaiju [38] or MetAmos [42], and compare their results and

performance with this study.

Availability of alternate public mock community datasets will facilitate method optimiza-

tion attempts, apart from teaching and training. However, none as large and complex as

microbiome of fecal sample are in public domain [14, 22, 43]. A more realistically distributed

mock community data set would be desirable to validate classification methods. This would

enable a better understanding about the prediction potential, particularly with regards to false

positives and false negatives among competing methods.

In the light of our findings and with growing computational infrastructure, we propose to

consider employing competing taxonomy classification prediction methods, compare and

combine their findings to reach a robust consensus result.

It is known that, in addition to sequencing depth and choice of analysis methods, main con-

tributions to variability in results can be attributed to both sampling techniques and DNA

extraction methods, as well as details of library preparation. Impact of these additional factors

has been studied elsewhere [44, 45]. For our experimental data, a bead-beating Qiagen kit

approach was employed, as discussed being optimal in these works.

Regarding further developments of high-level analysis methods, building microbiota pro-

tein interaction networks and predicting microbiota metabolic pathways will take us further

ahead in understanding the core of bacterial influence in maintaining gut health [46–48]. Also,

these will depend on sequencing depth, reference databases, and methodological choices.

However, the topological and or functional characteristics of such networks or the enrichment

signals of such pathways and or gene sets might prove more stable with respect to the choice of

classification tools, and so at reasonable intermediate sequencing depth.

In our study, we investigated the impact of methods choice, reference databases, and

sequencing depth and their interaction with respect to taxonomic composition of fecal micro-

biome. Species abundance reported, using 60 to 80 million sequencing read pairs, show close

proximity to the species abundance reported using full-lane sequences. We conclude propos-

ing a multiple-methods approach for robust microbiota analysis results.
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