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A B S T R A C T   

Efforts have been made to understand the physiological and pathological role of DJ-1, a Parkinson’s disease (PD)- 
associated protein, to provide new insights into PD pathophysiology. Such studies have revealed several neu-
roprotective roles of DJ-1, from which its ability to modulate signaling pathways seems to be of utmost 
importance for cell death regulation by DJ-1. Indeed, research on these topics has led to a higher number of 
publications disclosing a variety of mechanisms through which DJ-1 is able to modulate signaling pathways in 
distinct disease-related contexts. Thus, this graphical review presents the most relevant findings concerning the 
mechanisms through which DJ-1 exerts its regulatory activity on signaling cascades relevant for DJ-1 neuro-
protective action, namely ERK1/2, PI3K/Akt, and ASK1 pathways, and Nrf2 and p53 transcription factors-related 
signaling. A greater focus was given to perform an overview of the research interests over the last years, espe-
cially in the most recent works, to highlight the current research lines in this topic, and point out future di-
rections in the field. In addition, the impact of DJ-1 mutations causative of PD and the importance of the redox 
status of DJ-1’s cysteine residues for the action of DJ-1 on signaling modulation was also addressed to uncover 
the potential pathological mechanisms associated with loss of DJ-1 native function.   

Over the years, research has been focusing on studying the physio-
logical and pathological role of DJ-1, a Parkinson’s disease (PD)-asso-
ciated protein, to provide new insights for the understanding of PD [1]. 
DJ-1 is a homodimeric protein containing three cysteine residues 
(Cys46, 53, and 106) sensitive to oxidation, providing a crucial role to 
DJ-1 as an oxidative stress sensor that can coordinate adequate protec-
tive responses [2]. Among its multiple functions, DJ-1 is implicated in 
the regulation of signal transduction mechanisms, responsible for 
mediating adaptative cellular actions against stress conditions [3] which 
is of utmost importance to its neuroprotective role (Fig. 1, Table 1 and 
Supplementary Fig. 1). Therefore, this review focused on the most 

relevant mechanisms described in the literature (Table 1 and Supple-
mentary Fig. 1) concerning: i) its role in the signaling pathway cascades 
Extracellular signal-regulated kinase 1/2 (Erk1/2) (Fig. 2), phosphati-
dylinositol 3-kinase (PI3K)/protein kinase B (PKB, also known as Akt) 
(Fig. 3) and Apoptosis signal-regulating kinase 1 (ASK1) (Fig. 4); and, ii) 
its role in the p53 (Fig. 5) and Nrf2 (Fig. 6) transcription factors-related 
signaling.. To sum up (Fig. 1), the selected studies show that DJ-1 in-
duces cell survival and proliferation by activating ERK1/2 and PI3K/Akt 
signaling cascades, as well as the Nrf2 pathway-mediated antioxidant 
response, and attenuates cell death by inhibition of ASK1 and 
p53-related apoptotic pathways (Fig. 1). The aberrant functioning of the 
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mentioned events is known to contribute to the development of multiple 
diseases, particularly PD. In fact, PD-associated mutations (M26I, 
L166P, and D149A) of DJ-1 have been shown to lead to the loss of the 
protective function of the protein, implying the dysregulation of crucial 
signaling mechanisms (see detailed information in Table 1). Besides, 
excessive oxidation of the cysteine residues of the protein has also been 
shown to hinder the native function of DJ-1 on most of the referred 
pathways. Altogether, these facts reveal the importance of the DJ-1 
cysteine residue’s redox status, mainly of the central Cys106, and the 
implication of the PD-related mutant forms in the DJ-1 neuroprotective 
effect mediated by the regulation of signaling pathways. Moreover, it is 
clear that DJ-1 is able to modulate the addressed signaling pathways 
through different mechanisms at various levels, also establishing coor-
dinated signaling networks. 

The role of DJ-1 as a signaling mediator has been widely studied over 
the years. While the major mechanisms of modulation of DJ-1 in the 
most common pro-survival and cell death signaling pathways seem to 
have been gradually established throughout the past two decades, an 
increased interest is denoted in recent years regarding DJ-1 modulation 
of the Nrf2-mediated antioxidant pathway (Supplementary Fig. 1). 
Interestingly, the most recent studies have focused on the therapeutic 
potential of DJ-1, mostly by enhancing Nrf2 signaling as a cytopro-
tective mechanism in the PD context. Therefore, future research may be 
expected to increase the potential of DJ-1-mediated therapeutic 

strategies for PD treatment based on its neuroprotective function led by 
signaling modulation. Nonetheless, it remains important to determine 
the basic mechanisms of action of DJ-1 by which the protein can regu-
late signaling pathways to understand the downstream effects that lead 
to protective or pathological outcomes. 
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Fig. 1. Overall DJ-1 mechanisms of action of signaling modulation and the respective downstream effects. DJ-1 is able to promote cytoprotective cellular 
responses towards cell survival while suppressing signaling mechanisms involved in apoptotic events. 
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Table 1 
Overview of the main described DJ-1 functions in signaling regulation and the influence of DJ-1 mutations and importance of cysteine residues.   

Function Mechanism DJ-1 activity influenced by 

PD-related mutations Cysteine residues Other mods. Year Ref.: 

Which Effect Which Effect 

ERK 1/2 
pathway 

ERK pathway activation c-raf binding and stimulation of its self-oxidation on 
Ser338 

– – Cys106 Cys106-dependent; but 
oxidation to SO2H or SO3H 
is not required 

– 2015 [4] 

Increase of MEK1/2 and ERK1/2 phosphorylation L166P Loss of function – – – 2009 [5] 
Decrease of PP2A levels L166P Loss of function – – – 

Enhancement of pro- 
survival ERK-dependent 
mitophagy 

– – – – – – 2012 [6] 

Upregulation of SOD1 
expression levels, 
enhancing antioxidant 
response 

Interaction with ERK1/2, enhancing its nuclear 
translocation and phosphorylation of ELK1 
transcription factor 

– – Cys106 Cys106 oxidation not 
required 

– 2011 [7] 

Upregulation of TH, 
VMAT2, and DDC; 
dopamine levels 
stabilization 

Enhancement of nuclear translocation and activity of 
transcription factor Nurr1 

L166P Loss of function – – – 2012, 
2016 

[8,9] 

ERK1/2-dependent 
regulation of 
cytoprotective miRNA-221 

Upregulation of miRNA-221 expression levels and 
activity, leading to the downregulation of pro- 
apoptotic proteins 

M26I Loss of function – – – 2018 [10]           

PI3K/Akt 
pathway 

Akt pathway activation Promotes Akt phosphorylation L166P Loss of function – – – 2010 [13] 
– – – – – 2005 [14–17] 

Downregulation of PTEN – – – – – 2005, 
2009, 
2014 

[14,18, 
19] 

Binding and downregulation of PTEN – – Cys106 Requires the presence of 
the reduced form of Cys106 

– 2009 [18] 

Binding and suppression of PTEN activity via 
transnitrosylation reaction 

– – Cys106 Cys106-dependent; 
S-nitrosylation of DJ-1 
occurring predominantly at 
Cys106 

– 2014 [19] 

Formation of DJ-1-SG2NA-Akt complex on the 
mitochondria and plasma membrane 

L166P 
and M26I 

L166P - loss of 
function; M26I - 
decreased 
function 

Cys106 Cys106-dependent – 2014 [20] 

Suppression of harmful 
autophagy 

Increase of PTEN and Akt phosphorylation – – – – – 2015 [21] 

Improvement of 
mitochondria activity 

Enhancement of Akt phosphorylation – – – – – 2016, 
2019 

[16,17] 

(continued on next page) 
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Table 1 (continued )  

Function Mechanism DJ-1 activity influenced by 

PD-related mutations Cysteine residues Other mods. Year Ref.: 

Which Effect Which Effect 

Degradation of Fis1 via DJ-1/Akt/RNF5 pathway – – Cys106 Cys106 dependent – 2012 [22]           

ASK1 pathway ASK1 pathway 
suppression 

Prevention of dissociation between ASK1-Trx1 L166P Loss of function Cys106 Dependent of Cys106 
oxidation 

– 2010 [23] 

Suppression of Daxx translocation – – – – – 2013 [24] 
M26I Loss of function – – – 2009 [25] 
L166P Loss of function – – – 2005 [26] 

Binding and sequestration of Daxx in the nucleus L166P Loss of function – – – 2005 [26] 
Suppression of Daxx translocation to the cytoplasm 
and downregulation of its activity via PI3K/Akt 
pathway 

– – – – – 2013 [24] 

Interaction with ASK1 M26I Loss of function Cys106, 
Cys53 and 
Cys46 

Cys106 required; Cys53 
and Cys46 non-essential 
but modulate Cys106 
activation 

– 2009 [25] 

Interaction with ASK1 and disruption of its homo- 
oligomerization activation 

L166P Loss of function – – – 2010 [28] 

Suppression of ASK1- 
driven p38 apoptotic 
pathway 

Binding and suppression of ASK1 – – Cys106 Cys106-dependent – 2014 [27] 
Binding and suppression of ASK1, and prevention of 
MKK3 phosphorylation 

– – – – – 2010 [28]           

p53 pathway p53 activity inhibition C-terminal DJ-1-mediated inhibition of p53 in a 
PI3K/Akt dependent mechanism 

D149A 
and 
L166P 

Loss of function – – – 2010 [29] 

SUMOylation of DJ- allows its translocation from the 
nucleus to the cytoplasm and interaction with p53 

– – – – SUMOylation of 
K130 DJ-1 residue 
required 

2008 [30] 

Binding to p53 – – – – – 2008 [31] 
– – Cys106 Cys106 oxidation 

dependent 
– 2013 [32] 

Enhancement of SIRT1 deacetylase activity upon the 
acetylated p53 

– – Cys106 Cys106 dependent – 2016 [34] 

Downregulation of p53- 
Bax-caspase apoptotic 
pathway 

Binding to p53 – – – – – 2008 [31] 
– – – – – – 2007 [33] 

Suppression of DUSP1, an 
ERK pathway inhibitor 

Binding to p53 – – Cys106 Cys106 oxidation 
dependent 

– 2013 [32] 

Suppression of p53- 
mediated activation of 
AEP (legumain) 

Binding to the p53 binding site of AEP – – – – – 2015 [37] 

(continued on next page) 
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Table 1 (continued )  

Function Mechanism DJ-1 activity influenced by 

PD-related mutations Cysteine residues Other mods. Year Ref.: 

Which Effect Which Effect           

Nrf2 pathway Nrf2 activation Promoting of Nrf2-Keap1 dissociation, allowing Nrf2 
nuclear translocation 

– – – –  2006, 
2015 

[38,39] 

PI3K/Akt-dependent activation mechanism – – – – – 2016, 
2017, 
2019, 
2020 

[40–43] 

DJ-1 based peptide ND-13 enhancing DJ-1-mediated 
mechanisms of Nrf2 activation 

– – – – – 2015 [45] 

DJ-1-binding compound B enhances Nrf2 activation 
through PI3K/Akt pathway by DJ-1-dependent 
inactivation of PTEN activity 

– – Cys106 Compound B binds to the 
Cys106 region of DJ-1, 
preventing superfluous 
oxidation 

– 2019 [41] 

Other substances (11-Dehydrosinulariolide, Bibenzyl 
compound 20C, Rosmarinic acid, Cu(II)ATSM, 
Morinda citrifolia’s Active Principle Scopoletin, 
Tauroursodeoxycholic acid and Salidroside) 

– – – – – 2016, 
2017, 
2019, 
2020 

[40, 
42–44,46, 
48,52] 

Upregulation of NQO1 Enhancing Nrf2 activity – – – – – 2006, 
2015, 
2016 2019 

[16,38, 
44–47] 

Upregulation of HO-1 – – – – – 2015, 
2016, 
2017, 
2019, 
2020 

[16,40, 
42–46,48] 

Upregulation of GST – – – – – 2018, 
2019 

[46,49] 

Upregulation of IDH 
(antioxidant) 

– – – – – 2017 [50] 

Upregulation of Trx1 
(ASK1 inhibitor) 

L166P 
and M26I 

Loss of function – – – 2012 [51] 

Dual regulation of 20S 
proteasome activity 

20S proteasome activation by enhancing Nrf2 
pathway; 20S proteosome inhibition by binding to 
20S proteome together with NQO1 enzyme 

– – Cys106 Cys106 dependent – 2015 [47]  
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Fig. 2. DJ-1’s mechanisms involved in the modulation of the ERK1/2 signaling pathway. A) Schematic representation of the biomolecules, their connections, and the 
outcomes. (1) DJ-1 is able to bind to c-raf, promoting its self-phosphorylation at Ser338 and activating subsequent pathway components MEK1/2 [4]. In oxidative 
conditions, phosphorylation of MEK1/2 and ERK1/2 is also increased by a dual-mechanism that includes: (2) the direct action of DJ-1 on these proteins; and (3) the 
DJ-1 suppression of protein phosphatase 2A (PP2A) expression, a known inhibitor of MEK1/2 and ERK1/2 family kinases [5]. (4) Upon oxidative stress, DJ-1 can 
promote pro-survival ERK-dependent mitophagy [6]. (5) DJ-1 interacts directly with ERK1/2, enhancing its nuclear translocation. As a result, phosphorylation of 
downstream transcription factor Elk1 occurs, and the expression of its target protein, superoxide dismutase-1 (SOD1), is increased [7]. (6) DJ-1 enhances nuclear 
receptor-related 1 (Nurr1) transcription factor activity through activation of the ERK1/2 pathway, triggering the expression of tyrosine hydroxylase (TH), vesicular 
monoamine transporter 2 (VMAT2), and dopamine decarboxylase (DDC), which are involved in the synthesis and transport of dopamine [8,9]. (7) DJ-1-mediated 
activation of ERK1/2 signaling promotes miRNA-22 neuroprotective function by enhancing its expression, in turn downregulating the expression of pro-apoptotic 
proteins, such as bcl-2-like protein 11 (Bim), bcl2 modifying factor (BMF), forkhead box O3 (Foxo3a) and bcl2 interacting protein 3-like (BNPL3L) [10]. (8) 
Finally, ERK1/2 pathway can also be responsible for upregulating DJ-1 upon stress stimuli, generating a loop regulatory mechanism [11] (Adapted from reference 
[12]). B) The influence of DJ-1 mutations and the importance of DJ-1 cysteine residues in the protein’s signaling regulation mechanisms. 
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Fig. 3. DJ-1’s mechanisms involved in the modulation of PI3K/Akt pathway. A) Schematic representation of the proteins, their connections, and the outcomes. (1) 
DJ-1 promotes phosphorylation of Akt, enhancing protective responses executed by the downstream effectors, having an effect, for instance, in mitochondrial well- 
functioning [13–17]. On the other hand, DJ-1 can suppress the PI3K/Akt pathway inhibitor’s activity, phosphatase and tensin homolog (PTEN) protein, (2) by 
binding to it [18] or (3) by establishing a nitrosylation reaction upon mild nitrosative conditions [19]. (4) The interaction between DJ-1 and Akt may be promoted by 
the S/G2 nuclear autoantigen (SG2NA), forming a complex by recruiting DJ-1 and Akt mainly to mitochondria and plasma membrane, promoting Akt signaling 
activity [20]. (5) Defensive responses induced by DJ-1-dependent activation of PI3K/Akt pathway include the prevention of harmful autophagy processes caused by 
C2-ceramide insults [21]. (6) Finally, PI3K/Akt pathway activation mediated by DJ-1 is also involved in the proteasomal degradation of mitochondrial fission 1 (Fis1) 
protein responsible for mitochondrial fragmentation, by targeting RING-finger protein-5 (RNF5) ligase activity [22]. B) The influence of DJ-1 mutations and the 
importance of DJ-1 cysteine residues in the protein’s signaling regulation mechanisms. 
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Fig. 4. DJ-1’s mechanisms involved in the modulation of the ASK1 pathway. A) Schematic representation of the proteins, their connections, and the outcomes. (1) 
DJ-1 prevents the dissociation of the ASK1 inhibitor, thioredoxin 1 (Trx1), from the inactive signalosome, inhibiting activation of the ASK1-induced c-Jun N-terminal 
kinase (JNK) and p38 apoptotic pathways [23]. (2) DJ-1 can suppress the translocation of the ASK1 activator death-associated protein 6 (Daxx) to the cytoplasm and 
prevent the formation of the active ASK1 signalosome [24,25]. (3) In fact, under oxidative stress conditions, DJ-1 is able to interact directly with Daxx, sequestering 
the protein in the nucleus and ensuring cell survival [26]. (4) A study conducted in Drosophila indicated that DJ-1 also suppressed Daxx like protein (DLP) interaction 
with ASK1, by downregulating the activity of enhancer forkhead box subgroup O (dFOXO) in a PI3K/Akt signaling-dependent manner [24]. (5) Upon oxidative 
stimulation, DJ-1 may also interact directly with ASK1 [25,27,28] and suppress p38 and JNK-induced cellular apoptosis, in part by disrupting the 
homo-oligomerization type of activation of ASK1 [28] (Adapted from reference [12]). B) The influence of DJ-1 mutations and the importance of DJ-1 cysteine 
residues in the protein’s signaling regulation mechanisms. 
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Fig. 5. A) DJ-1’s mechanisms involved in p53 pathway regulation. A) Schematic representation of the proteins, their connections, and the outcomes. (1) The DJ-1 C- 
terminal generated by caspase-6 proteolysis is able to repress p53 activity in a PI3K/Akt-dependent manner [29]. (2) Studies indicate that a proper sumoylation of 
DJ-1 is required for the nuclear localization of the protein and subsequent suppression of the p53 apoptotic pathway [30]. (3) In the nucleus, DJ-1 can bind to p53 
and inhibit its transcriptional activity [31,32]. Consequently, the expression of p53-related targets, such as (4) the Bcl-2 associated X (Bax) apoptotic protein [31,33] 
and (5) the Erk1/2 inhibitor Dual Specificity Protein Phosphatase 1 (DUSP1) [32] are suppressed, resulting in the inhibition of apoptosis. (6) Moreover, the 
interaction between DJ-1 and Sirtuin 1 (SIRT1), enhances the deacetylase activity of SIRT1 towards p53 inactivation [34]. (7) Conversely, p53 has been shown to 
have a downregulatory effect on DJ-1 expression and mRNA levels, besides targeting the protein for an inhibitory phosphorylation reaction [35,36]. (8) Tumor 
suppressor p53 is also responsible for the increase of neurotoxic asparagine endopeptidase (AEP) activity. DJ-1 is able to suppress this p53-mediated activation of AEP 
by binding to its p53 binding site [37]. B) The influence of DJ-1 mutations and the importance of DJ-1 cysteine residues in the protein’s signaling regula-
tion mechanisms. 
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