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Abstract. β-arrestins are a family of adaptor proteins that regu-
late the signaling and trafficking of various G protein‑coupled 
receptors (GPCRs). They consist of β-arrestin1 and β-arrestin2 
and are considered to be scaffolding proteins. β-arrestins 
regulate cell proliferation, promote cell invasion and migra-
tion, transmit anti‑apoptotic survival signals and affect other 
characteristics of tumors, including tumor growth rate, angio-
genesis, drug resistance, invasion and metastatic potential. It 
has been demonstrated that β‑arrestins serve roles in various 
physiological and pathological processes and exhibit a similar 
function to GPCRs. β‑arrestins serve primary roles in cancer 
invasion and metastasis via various signaling pathways. 
The present review assessed the function and mechanism of 
β‑arrestins in cancer invasion and metastasis via multiple 
signaling pathways, including mitogen‑activated protein 
kinase/extracellular signal regulated kinase, Wnt/β‑catenin, 
nuclear factor‑κB and phosphoinositide‑3 kinase/Akt.
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1. Introduction

Arrestins are a small family of proteins that regulate signal 
transduction at G protein‑coupled receptors (1). β-arrestins are 

ubiquitous scaffolding proteins initially identified during the 
purification of the β‑adrenergic receptor kinase (2). β-arrestins 
are involved in various physiological and pathological 
processes, including G protein‑coupled receptor (GPCR) 
desensitization, sequestration and vesicle trafficking (3). Four 
members of the arrestin family have been identified so far, 
including arrestins 1, 2, 3 and 4 (4). Arrestin1 and arrestin4 are 
visual arrestins, while arrestin2 (β‑arrestin1) and arrestin 3 
(β‑arrestin2) are non‑visual (5). Arrestin1 is localized in rods 
and cones, whereas arrestin4 is localized exclusively to the 
latter. β-arrestin1 and β‑arrestin2 mediate GPCR desensitiza-
tion and internalization, and are widely distributed throughout 
various tissues and cells (6). β-arrestin1 and β-arrestin2 
accumulate in the cytoplasm of cells, however β-arrestin1 also 
accumulates in the nucleus (7). 

β‑arrestins serve a role as signal transducers by acting as 
multifunctional scaffolds, as downstream targets of various 
types of receptor or by participating in receptor‑independent 
mechanisms (8). In addition, β‑arrestin1 is recruited into the 
nucleus to mediate the transactivation of the epidermal growth 
factor receptor (EGFR) (9) and the vascular endothelial growth 
factor receptors‑2 and ‑3 (10,11). The present review assessed 
the role of β‑arrestins in the invasion and metastasis of cancer 
by interacting with certain signaling pathways, including the 
mitogen‑activated protein kinase (MAPK), extracellular signal 
regulated kinase (ERK), Akt, Wnt and nuclear factor (NF)‑κB 
pathways (12‑16).

2. Structure of β‑arrestins

There are two types of β-arrestins: β‑arrestin1 (53 kDa) and 
β‑arrestin2 (46 kDa), located on chromosomes 7 and 11, 
respectively (17,18). The amino acid sequences of β-arrestin1 
and β‑arrestin2 are 70% identical (5) and sequence similarity 
between β‑arrestins is highly conserved across vertebrate 
and invertebrate species, including humans, mice, rats and 
frog (19,20). At rest, β‑arrestins exist as long chained mole-
cules that contain two concave lobes (an N‑terminal domain 
and a C‑terminal domain), which are folded by two layers of 
antiparallel β‑sheets (Fig. 1). The convex N‑terminal domain 
contains a short α‑helix and is linked to the C‑terminal 
domain via a polarized core, which is formed through charged 
residues of salt bridge constitutes and functions to maintain 
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its correct position (21,22). β‑arrestin1 contains an addi-
tional cationic amphipathic helix that serves as a reversible 
membrane anchor (23). When inactive, the polarization core 
of β‑arrestins relocates to the junction between the N‑ and 
C‑terminal domains and the carboxyl tail of the C‑terminus 
approaches the binding region. Following activation and 
subsequent polarization, the β‑arrestin core is destroyed, the 
C‑terminus carboxyl tail is released and the binding regions 
of clathrin and adaptin protein‑2 (24,25), c‑Jun N‑terminal 
kinase (JNK)3 (26) and ERK1/2 (27) are exposed.

3. Function of β‑arrestins in cancer invasion and metastasis 

β‑arrestins in the Scr/MAPK signaling pathway. The MAPK 
pathway serves an important role in regulating the various 
physiopathological processes involved in tumorigenesis and 
the development of cancer (28). There are three main fami-
lies of MAPKs: ERKs, JNKs and stress‑activated protein 
kinases (p38/SAPKs) (Fig. 2) (29). The MAPK/ERK signaling 
pathway regulates the proliferation, migration and invasion 
of tumor cells, and is activated by various cell membrane 
receptors, including receptor tyrosine kinases, GPCRs and 
cytokine receptors (30,31). MAPK/ERK overexpression has 
been demonstrated to promote the epithelial‑mesenchymal 
transition (EMT) (32‑35) and the expression of matrix metal-
loproteases (MMPs) (36‑38). Inhibiting the MAPK/ERK 
signaling pathway may therefore suppress tumor cell inva-
sion and migration (39). β‑arrestins, as scaffold proteins, are 
associated with certain components of the MAPK cascade 
and downstream targets of various GPCRs, which promote the 
progression of cancer (40). 

Fong et al (41) demonstrated that the ability of lymphocytes 
taken from β‑arrestin2‑deficient and GPCR kinase 6‑deficient 
mice to respond to chemokine receptor (CXCR)‑mediated 
migration and invasion was markedly attenuated. Additional 
studies revealed that the CXCR7/CXCR4 complex 
recruits β‑arrestin2, leading to the preferential activation 
of β‑arrestin2‑dependent signaling pathways, including 
ERK1/2, p38 MAPK and SAPK. However, the knockdown 
of β‑arrestin2 expression using either small interfering 
RNA (siRNA) or a dominant negative mutant attenuated 
this increase in cell migration (42‑44). In addition, it was 
demonstrated that isoproterenal, an agonist of β2 adrenergic 
receptors, increases the formation of β‑arrestin2‑Src complex, 
resulting in the proliferation of prostate cancer cells (45). It 
has been determined that prostaglandin E2 (PGE2)‑induced 
β‑arrestin1 and Src activation is vital for the transactivation of 
EGFR, downstream activation of Akt, and the migration and 
metastasis of colorectal carcinoma cells (46). Lan et al (47) 
demonstrated that β‑arrestin1 knockdown reduces tumor 
growth and survival in xenograft models, inhibits the activity 
of Src and suppresses Src signaling, thus inhibiting glioblas-
toma (GBM) cell proliferation and invasion. Ge et al (48) 
determined that the protease‑activated receptor (PAR)‑2 is 
upregulated by trypsin‑like serine proteases and promotes 
cell migration by activating β‑arrestin‑dependent ERK1/2 
signaling in MDA‑MB‑231 cells. The siRNA‑mediated 
silencing of β-arrestin1 and β‑arrestin2 reduces ERK1/2 
activation and MDA MB‑231 cell metastasis. Additionally, 
Parisis et al (49) revealed that PAR‑2 forms protein complexes 

with β‑arrestin and ERK signaling molecules that are enriched 
in pseudopodia. Insulin‑like growth factor 1 receptor‑induced 
ERK1/2 activation, initiated by β‑arrestin1, associates with 
murine double minute 2 (50). Furthermore, nicotinic acetyl-
choline receptors (51), CXCR4 (52), CXCR7 (53) and KISS1 
receptors (54) have been demonstrated to promote cancer 
invasion via β‑arrestin‑dependent MAPK signaling. In lung 
tumors, β‑arrrestin1‑Src signaling is associated with the trans-
location of β‑arrestin1 into the nucleus. Nuclear β-arrestin1 is 
then recruited to promote the transcription of E2 factor and 
histone acetylation (55).

β‑arrestins in the Wnt signaling pathway. The Wnt family of 
secreted glycoproteins mediates the proliferation, invasion 
and migration of cells through β‑arrestin‑dependent (56) 
canonical and noncanonical signaling, which involves cell 
division cycle protein 42 (57), JNK (58) and the small G 
proteins RhoA and Rac (59). Wnt/β‑catenin signaling serves 
a fundamental role in various cellular processes. The stimu-
lation of β‑catenin activates certain downstream effector 
molecules (60‑63) to initiate the transcription of specific 
target genes, including MMP9, cyclin D1 and c‑Myc (64) in a 
variety of tumors (62,65‑67). In addition, the Wnt/β‑catenin 
pathway may regulate the EMT, which is an important step 
in the induction of cell invasion and metastasis (68‑70). 
The EMT involves various critical mesenchymal markers, 
including E‑cadherin, vimentin, N‑cadherin, zinc finger 
proteins (Snail/SNAI1 and Slug/SNAI2), twist‑related protein 
1 and zinc finger E‑box‑binding homeobox 1 and 2 (71,72). 
Previous studies have demonstrated that β-arrestins modu-
late the expression of these proteins via the Wnt signaling 
pathway (73‑75), thereby regulating the EMT. During the 
EMT, epithelial cells lose their polarity and a transition occurs 
from an epithelial phenotype associated with the basement 
membrane, to a mesenchymal phenotype that promotes cell 
migration and invasion, the inhibition of apoptosis and degra-
dation of the extracellular matrix (ECM). Previous studies 
have determined that the interaction between β-arrestins 
and disheveled segment polarity proteins (DVL) leads to the 
activation of Wnt signaling and lymphoid enhancing binding 
factor (LEF)‑mediated transcription (Fig. 3) (76,77). 

Rosanò et al (9) determined that endothelin‑1 (ET‑1) acti-
vates endothelin‑A receptor (ETAR) and promotes ovarian 
cancer cell invasion and metastasis due to its interaction with 
β‑arrestin scaffold proteins. β-arrestins may regulate ETARs 
by forming two trimeric complexes that stabilize β‑catenin 
and induce the release and inactivation of glycogen synthase 
kinase (GSK)‑3; one that interacts with Src and another that 
physically associates with axin. It has also been demonstrated 
that zibotentan (ZD4054), a specific ETAR antagonist, inhibits 
the engagement of β‑arrestins in ETAR interactions and the 
β‑catenin pathway (9). Rosanò et al (78) further demon-
strated that the interaction between β-arrestin1 and β‑catenin 
regulates the expression of certain β‑catenin target genes by 
promoting the dissociation of histone deacetylase 1 and the 
subsequent recruitment of p300 acetyltransferase, leading to 
increased H3 and H4 histone acetylation and thereby inducing 
the transcription of genes required for cell migration, invasion 
and the EMT (78). The affected target genes included ET‑1, 
Axin 2, MMP2 and Cyclin D1 (78). 
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Turm et al (79) revealed that protease‑activated receptor 1 
(PAR1) also induces the stabilization of β‑catenin by 
promoting the binding of β‑arrestin2 to DVL. Additionally, 
siRNA‑DVL treatment led to a decrease in PAR1‑induced cell 
invasion, the inhibition of LEF/T‑cell factor transcriptional 
activity and a reduction of β‑catenin accumulation (79). 
Bonnans et al (80) used intestinal tumors taken from ApcΔ14/+ 
and β-arrestin2‑/‑ mice to demonstrate that β-arrestin2 regu-
lates cell proliferation, adhesion, migration and invasion, 
as well as ECM remodeling via the Wnt signaling pathway. 
Additionally, kinesin family member 3A (KIF3A), a member 
of the kinesin‑2 family and a tumor suppressor, inhibits Wnt 
signaling by interacting with β‑arrestin. KIF3A silencing 
enables β‑arrestin to form a complex with DVL2 and axin, 
which stabilizes β‑catenin, increases cell migration and 
invasion and upregulates stemness markers, thus promoting 
the malignant potential of cells (15). Duan et al (81) demon-
strated that β‑arrestin1 increases the migration and invasion 
of prostate cancer cells by initiating the EMT and modulating 
GSK‑3β/β‑catenin signaling. Furthermore, it was determined 
that β‑arrestin1 overexpression promotes the EMT in benign 
prostate RWPE‑1 cells and that β‑arrestin1 silencing induces 
the mesenchymal‑epithelial transition in PC3 and DU145 
cells, thereby inhibiting and upregulating the expression of 
E‑cadherin and vimentin, respectively, in prostate cancer cells.

β‑arrestins in the NF‑κB signaling pathway. NF-κB is a 
dimeric transcription factor involved in immune regulation, 
cell migration, proliferation, survival, angiogenesis and apop-
tosis (82‑84). The NF‑κB family consists of five members, 

including NF‑κB1 (p50/105), NF‑κB2 (p52/100), RelA (p65), 
c‑Rel and RelB, which are encoded by NFKB1, NFKB2, 
RELA, REL and RELB, respectively. NF‑κB is activated in 
different types of cancer and serves a vital role in the develop-
ment and progression of tumors (85,86). The NF‑κB signaling 
pathway involves NF‑κB, the NF-κB inhibitor (IκB), the IκB 
kinase (IKK) complex and IKK upstream kinases (Fig. 4). 
Following stimulation, the resulting signal increases the 
IKK‑mediated phosphorylation of IκBα, resulting in its ubiq-
uitination and degradation (87). This leads to the release of 
NF-κB, enabling it to enter the nucleus and regulate multiple 
downstream target genes (88). Previous studies have demon-
strated that interfering with NF‑κB activation may regulate 
cell invasion, migration, proliferation and death (89,90). 

Cianfrocca et al (91) demonstrated that interactions 
between ET‑1, ETAR and β‑arrestin1 activate NF‑κB signaling. 
In addition, β‑arrestin1 and p65 form a nuclear complex 
that induces NF‑κB p65 transcriptional activity in epithelial 
ovarian cancer cells. However, these effects are inhibited by 
introducing an ETAR antagonist, such as BQ123, to cells 
or by silencing β‑arrestin1 using short hairpin RNA (91). 
Seo et al (26) revealed that the β‑arrestin2‑associated type III 
transforming growth factor‑β receptor negatively mediates 
the migration and invasion of MCF10A breast epithelial and 
MDA‑MB‑231 breast cancer cells via NF‑κB signaling. In 
addition, previous studies have demonstrated that β-arrestin2 
directly combines with IκBα, inhibiting its phosphoryla-
tion and degradation (82,92,93). It has been determined that 
β‑arrestins are involved in NF‑κB signaling and induce thes-
ecretion of cytokines, thus serving an important role in the 

Figure 1. Schematic summary of β‑arrestin domain structure that contains a polar core, a receptor binding site, a phosphoinositide binding site and an adaptin 
binding site.
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formation of an adaptive microenvironment that induces tumor 
progression (94,95). MMP9 expression is regulated by tumor 
necrosis factor‑α via the induction of β-arrestin2-dependent 

NF-κB activity (16). Bedini et al (96) demonstrated that lipo-
polysaccharide (LPS)‑induced cell migration and increased 
interleukin‑1β mRNA levels were consistently counteracted 
by nociceptin/orphanin FQ via β-arrestin2 and resulted in the 
decreased transcriptional activity of NF‑κB and AP‑1.

β‑arrestins in the phosphoinositide‑3 kinase (PI3K)/Akt 
signaling pathway. The PI3K signaling pathway serves a 
primary role in regulating cell proliferation, differentiation, 
migration and trafficking, as well as maintaining glucose 
homeostasis (97). PI3K expression increases levels of phospha-
tidyl‑(3,4,5)‑trisphosphate (PIP3), which recruits Akt to the cell 
membrane by binding to pleckstrin homology domains (98). 
Following activation of PI3K/Akt signaling, E‑cadherin 
levels decrease and the expression of snail, slug, vimentin and 
N‑cadherin increase (99‑101), thereby inducing the EMT and 
promoting cell invasion and metastasis (102,103) (Fig. 5).

Zhang et al (104) demonstrated that CXCR7 expres-
sion is associated with invasion and metastasis in human 
osteosarcoma (OS) and that CXCR7 knockdown inhibits 
the proliferation and invasion of OS cells by decreasing the 
β‑arrestin‑dependent expression of PI3K, Akt, β-arrestin, 
proliferating cell nuclear antigen and MMP9. Zou et al (105) 
determined that the PI3K signaling pathway is involved in 
the β‑arrestin1‑mediated increase of MMP9 activity and 
angiogenesis. In addition, Alvarez et al (106) demonstrated 
that β‑arrestin1 functions as an adaptor that recruits Src to 
the obestatin receptor (GPR39), leading to the formation of 
a GPR39/β‑arrestin1/Src complex, which activates the MMP 

Figure 3. β‑arrestin‑Src complex induces the direct activation of 
Wnt/β‑catenin and EGFR transactivation, indirectly leading to β‑catenin 
phosphorylation by promoting the formation of a nuclear β‑catenin/TCF 
complex and recruiting p300 acetyltransferase on these promoter genes, 
consequently promoting cell migration. EGFR, epidermal growth factor 
receptor; EGF, epidermal growth factor; GPCR, G protein‑coupled receptor; 
Ck1, casein kinase 1; APC, adenomatous polyposis coli; GSK3β, glycogen 
synthase kinase 3β; TCF, T‑cell factor.

Figure 2. β‑arrestin scaffold proteins, together with Scr, are associated with multiple constituents of the mitogen‑activated protein kinase cascade, downstream 
of various GPCRs, including JNK, p38 and ERK. Signaling may lead to the transactivation of EGFR to regulate cancer invasion and metastasis. GPCR, 
G protein‑coupled receptors; JNK, Jun amino‑terminal kinase; ERK, extracellular signal regulated kinase; EGFR, epidermal growth factor receptor; EGF, epi-
dermal growth factor; E2F, E2 factor; Mdm2, mouse double minute 2; MKK, mitogen activated protein kinase kinase.
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Figure 5. β‑arrestin‑induced PI3K activation increases membrane PI (3‑5)P3 accumulation and activates Akt by inducing its phosphorylation. Activation of 
PTEN leads to the transformation of PIP3 to PIP2 and the suppression of PI3K/Akt signaling. The β‑arrestin‑Scr complex causes the transactivation of EGFR 
and the formation of nuclear β‑arrestin1/E2F complex, and promotes the expression of downstream genes. PI3K, phosphoinositide‑3 kinase; PIP3, phosphati-
dylinositol (3‑5)‑triphosphate; PIP2, phosphatidylinositol 4,5‑bisphosphate; EGFR, epidermal growth factor receptor; E2F, E2 factor; EGF, epidermal growth 
factor; GPCR, G protein‑coupled receptor; PTEN, phosphatase and tensin homolog; GSK3β, glycogen synthase kinase 3β; p‑, phosphorylated; MMP, matrix 
metalloproteinase.

Figure 4. G protein‑coupled receptor‑mediated β‑arrestin activation promotes p65 and IκB-α phosphorylation and translocation and increases NF‑κB p65 sig-
naling and transcription. Cdc42 regulates the interaction of β‑arrestins with GTPases and promotes NF‑κB signaling. IκBα, NF-κB inhibitor; NF‑κB, nuclear 
factor‑κB; Cdc42, cell division cycle 42; GTP, guanosine‑5'‑triphosphate; p‑, phosphorylated.
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family and promotes EGFR transactivation. This activa-
tion is responsible for initiating various signaling pathways, 
including ErbB, PI3K, Akt, mechanistic target of rapamycin 
and p70S6K1. Nawaz et al (107) demonstrated that the 
upregulation of microRNA‑326 and β-arrestin1 results in the 
PI3K‑dependent reduction of cellular proliferation, colony 
formation and migration capacity in glioma cells. Additionally, 
β-arrestins regulate tumor suppressor phosphatase and tensin 
homolog (PTEN) in PI3K signaling. It was demonstrated that 
β‑arrestins increase the activity of PTEN and consequently 
suppress activation of the Akt pathway, thus inhibiting cellular 
proliferation (108). Therefore, β‑arrestins serve various posi-
tive and negative regulatory effects in the PTEN, PI3K and 
Akt signaling pathways.

4. Conclusion

Cellular migration and invasion are two processes regarded as 
the main causes of cancer‑associated mortality (109). Tumor 
metastasis is a complex cascade that involves the following 
stages: Exit from the primary tumor, cell migration, adherence 
and invasion via the basement membrane or ECM, entry into 
the physical circulatory system, further invasion into distant 
secondary organs or tissues, and the resumption of cellular 
proliferation (110). 

The role of the β-arrestins as primary modulators of 
tumor invasion and metastasis is documented in the present 
review. β‑arrestin1 is primarily localized in the cytoplasm and 
nucleus of cells, whereas β‑arrestin2 is distributed in the cyto-
plasm alone (111). Consequently, β-arrestin1 and β-arrestin2 
exhibit different functions in the regulation and progres-
sion of malignant tumors via various signaling pathways. 
β-arrestin1 and β‑arrestin2 are involved in GPCR‑mediated 
signaling pathways but β‑arrestin1 may also participate 
in GPCR‑mediated nuclear signaling. Kang et al (112) 
demonstrated that δ‑opioid receptor activation induces the 
translocation of β‑arrestin1 into the nucleus and stimulates 
the transcription of β‑arrestin‑dependent p27 and c‑fos, 
thereby facilitating histone acetyltransferase p300 recruit-
ment, resulting in enhanced local histone H4 acetylation and 
gene transcription. Furthermore, β-arrestin1 and β-arrestin2 
exert opposite effects in cancer progression by interacting 
with different signaling pathways. β‑arrestins serve opposite 
roles in the development of lung cancer. EP4/β‑arrestin1/
c‑Src‑mediated PGE2 activation induces the migration of 
lung cancer cells (113), whilst homology β‑arrestin2 exerts 
the opposite effect (92). The anti‑ and pro‑cancer effects 
exerted by β‑arrestins in different types of cancer may depend 
on the tumor microenvironment (TME). The TME consists of 
various cells, including immune cells, fibroblasts, endothelial 
cells, perivascular cells, neurons, adipocytes and components 
of the ECM. Previous studies have demonstrated that the 
TME serves a vital role in tumorigenesis, tumor invasion and 
metastasis (114‑116). 

β‑arrestins are scaffolding proteins and are involved in 
cancer‑associated invasion and metastasis, due to their interaction 
with a range of receptor subtypes. A variety of β‑arrestin‑biased 
ligands, which readily associate with β‑arrestin, have been 
identified, including nicotinic acetylcholine receptors, EP2‑ and 
EP4‑receptors, endothelin type A ETARs and transforming 

growth factor β (117). Biased ligands are able to specifically 
alter the conformation of a receptor, whereas a specific receptor 
conformation cannot activate all of its downstream signals 
in parallel and can only promoting a particular downstream 
signal (118). ZD4054 is an antagonist of β‑arrestin‑biased 
signaling in ETARs. ZD4054 selectively blocks β-arrestin 
signals, eliminates the effects of β‑arrestins, decreases 
Src‑EGFR‑mediated transfer activation, inhibits the transcrip-
tion of β‑arrestin genes and prevents β-arrestin-mediated 
ovarian cancer cell invasion and metastasis (9). Therefore, the 
up‑ or downregulation of β‑arrestins is vital to either promote 
or inhibit of tumor invasion and metastasis. Further studies 
that assess the function of β‑arrestins in tumor invasion and 
metastasis via different signaling pathways may elucidate the 
anti‑tumor mechanisms utilized by β‑arrestins and provide a 
potential therapeutic target for the treatment of cancer.
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