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Abstract. $-arrestins are a family of adaptor proteins that regu-
late the signaling and trafficking of various G protein-coupled
receptors (GPCRs). They consist of B-arrestinl and [3-arrestin2
and are considered to be scaffolding proteins. B-arrestins
regulate cell proliferation, promote cell invasion and migra-
tion, transmit anti-apoptotic survival signals and affect other
characteristics of tumors, including tumor growth rate, angio-
genesis, drug resistance, invasion and metastatic potential. It
has been demonstrated that [3-arrestins serve roles in various
physiological and pathological processes and exhibit a similar
function to GPCRs. B-arrestins serve primary roles in cancer
invasion and metastasis via various signaling pathways.
The present review assessed the function and mechanism of
[(-arrestins in cancer invasion and metastasis via multiple
signaling pathways, including mitogen-activated protein
kinase/extracellular signal regulated kinase, Wnt/B-catenin,
nuclear factor-kB and phosphoinositide-3 kinase/Akt.
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1. Introduction

Arrestins are a small family of proteins that regulate signal
transduction at G protein-coupled receptors (1). -arrestins are
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ubiquitous scaffolding proteins initially identified during the
purification of the f-adrenergic receptor kinase (2). f-arrestins
are involved in various physiological and pathological
processes, including G protein-coupled receptor (GPCR)
desensitization, sequestration and vesicle trafficking (3). Four
members of the arrestin family have been identified so far,
including arrestins 1,2, 3 and 4 (4). Arrestinl and arrestin4 are
visual arrestins, while arrestin2 (f3-arrestinl) and arrestin 3
(B-arrestin2) are non-visual (5). Arrestinl is localized in rods
and cones, whereas arrestin4 is localized exclusively to the
latter. B-arrestinl and (-arrestin2 mediate GPCR desensitiza-
tion and internalization, and are widely distributed throughout
various tissues and cells (6). B-arrestinl and (-arrestin2
accumulate in the cytoplasm of cells, however -arrestinl also
accumulates in the nucleus (7).

[-arrestins serve a role as signal transducers by acting as
multifunctional scaffolds, as downstream targets of various
types of receptor or by participating in receptor-independent
mechanisms (8). In addition, f-arrestinl is recruited into the
nucleus to mediate the transactivation of the epidermal growth
factor receptor (EGFR) (9) and the vascular endothelial growth
factor receptors-2 and -3 (10,11). The present review assessed
the role of f-arrestins in the invasion and metastasis of cancer
by interacting with certain signaling pathways, including the
mitogen-activated protein kinase (MAPK), extracellular signal
regulated kinase (ERK), Akt, Wnt and nuclear factor (NF)-xB
pathways (12-16).

2. Structure of p-arrestins

There are two types of (3-arrestins: f-arrestinl (53 kDa) and
B-arrestin2 (46 kDa), located on chromosomes 7 and 11,
respectively (17,18). The amino acid sequences of B-arrestinl
and (-arrestin2 are 70% identical (5) and sequence similarity
between f-arrestins is highly conserved across vertebrate
and invertebrate species, including humans, mice, rats and
frog (19,20). At rest, B-arrestins exist as long chained mole-
cules that contain two concave lobes (an N-terminal domain
and a C-terminal domain), which are folded by two layers of
antiparallel B-sheets (Fig. 1). The convex N-terminal domain
contains a short a-helix and is linked to the C-terminal
domain via a polarized core, which is formed through charged
residues of salt bridge constitutes and functions to maintain
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its correct position (21,22). B-arrestinl contains an addi-
tional cationic amphipathic helix that serves as a reversible
membrane anchor (23). When inactive, the polarization core
of B-arrestins relocates to the junction between the N- and
C-terminal domains and the carboxyl tail of the C-terminus
approaches the binding region. Following activation and
subsequent polarization, the B-arrestin core is destroyed, the
C-terminus carboxyl tail is released and the binding regions
of clathrin and adaptin protein-2 (24,25), c-Jun N-terminal
kinase (JNK)3 (26) and ERK1/2 (27) are exposed.

3.Function of f-arrestins in cancer invasion and metastasis

p-arrestins in the Scr/MAPK signaling pathway. The MAPK
pathway serves an important role in regulating the various
physiopathological processes involved in tumorigenesis and
the development of cancer (28). There are three main fami-
lies of MAPKs: ERKs, JNKs and stress-activated protein
kinases (p38/SAPKs) (Fig. 2) (29). The MAPK/ERK signaling
pathway regulates the proliferation, migration and invasion
of tumor cells, and is activated by various cell membrane
receptors, including receptor tyrosine kinases, GPCRs and
cytokine receptors (30,31). MAPK/ERK overexpression has
been demonstrated to promote the epithelial-mesenchymal
transition (EMT) (32-35) and the expression of matrix metal-
loproteases (MMPs) (36-38). Inhibiting the MAPK/ERK
signaling pathway may therefore suppress tumor cell inva-
sion and migration (39). 3-arrestins, as scaffold proteins, are
associated with certain components of the MAPK cascade
and downstream targets of various GPCRs, which promote the
progression of cancer (40).

Fong et al (41) demonstrated that the ability of lymphocytes
taken from (-arrestin2-deficient and GPCR kinase 6-deficient
mice to respond to chemokine receptor (CXCR)-mediated
migration and invasion was markedly attenuated. Additional
studies revealed that the CXCR7/CXCR4 complex
recruits B-arrestin2, leading to the preferential activation
of p-arrestin2-dependent signaling pathways, including
ERK1/2, p38 MAPK and SAPK. However, the knockdown
of P-arrestin2 expression using either small interfering
RNA (siRNA) or a dominant negative mutant attenuated
this increase in cell migration (42-44). In addition, it was
demonstrated that isoproterenal, an agonist of 2 adrenergic
receptors, increases the formation of 3-arrestin2-Src complex,
resulting in the proliferation of prostate cancer cells (45). It
has been determined that prostaglandin E2 (PGE2)-induced
[(-arrestinl and Src activation is vital for the transactivation of
EGFR, downstream activation of Akt, and the migration and
metastasis of colorectal carcinoma cells (46). Lan et al (47)
demonstrated that f-arrestinl knockdown reduces tumor
growth and survival in xenograft models, inhibits the activity
of Src and suppresses Src signaling, thus inhibiting glioblas-
toma (GBM) cell proliferation and invasion. Ge et al (48)
determined that the protease-activated receptor (PAR)-2 is
upregulated by trypsin-like serine proteases and promotes
cell migration by activating (3-arrestin-dependent ERK1/2
signaling in MDA-MB-231 cells. The siRNA-mediated
silencing of f-arrestinl and p-arrestin2 reduces ERK1/2
activation and MDA MB-231 cell metastasis. Additionally,
Parisis et al (49) revealed that PAR-2 forms protein complexes
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with B-arrestin and ERK signaling molecules that are enriched
in pseudopodia. Insulin-like growth factor 1 receptor-induced
ERKI1/2 activation, initiated by p-arrestinl, associates with
murine double minute 2 (50). Furthermore, nicotinic acetyl-
choline receptors (51), CXCR4 (52), CXCR7 (53) and KISS1
receptors (54) have been demonstrated to promote cancer
invasion via (-arrestin-dependent MAPK signaling. In lung
tumors, B-arrrestinl-Src signaling is associated with the trans-
location of p-arrestinl into the nucleus. Nuclear B-arrestinl is
then recruited to promote the transcription of E2 factor and
histone acetylation (55).

f-arrestins in the Wnt signaling pathway. The Wnt family of
secreted glycoproteins mediates the proliferation, invasion
and migration of cells through (-arrestin-dependent (56)
canonical and noncanonical signaling, which involves cell
division cycle protein 42 (57), INK (58) and the small G
proteins RhoA and Rac (59). Wnt/p-catenin signaling serves
a fundamental role in various cellular processes. The stimu-
lation of B-catenin activates certain downstream effector
molecules (60-63) to initiate the transcription of specific
target genes, including MMP?9, cyclin D1 and c-Myc (64) in a
variety of tumors (62,65-67). In addition, the Wnt/p-catenin
pathway may regulate the EMT, which is an important step
in the induction of cell invasion and metastasis (68-70).
The EMT involves various critical mesenchymal markers,
including E-cadherin, vimentin, N-cadherin, zinc finger
proteins (Snail/SNAI1 and Slug/SNAI2), twist-related protein
1 and zinc finger E-box-binding homeobox 1 and 2 (71,72).
Previous studies have demonstrated that f-arrestins modu-
late the expression of these proteins via the Wnt signaling
pathway (73-75), thereby regulating the EMT. During the
EMT, epithelial cells lose their polarity and a transition occurs
from an epithelial phenotype associated with the basement
membrane, to a mesenchymal phenotype that promotes cell
migration and invasion, the inhibition of apoptosis and degra-
dation of the extracellular matrix (ECM). Previous studies
have determined that the interaction between [-arrestins
and disheveled segment polarity proteins (DVL) leads to the
activation of Wnt signaling and lymphoid enhancing binding
factor (LEF)-mediated transcription (Fig. 3) (76,77).

Rosano et al (9) determined that endothelin-1 (ET-1) acti-
vates endothelin-A receptor (ETAR) and promotes ovarian
cancer cell invasion and metastasis due to its interaction with
[B-arrestin scaffold proteins. B-arrestins may regulate ETARs
by forming two trimeric complexes that stabilize [3-catenin
and induce the release and inactivation of glycogen synthase
kinase (GSK)-3; one that interacts with Src and another that
physically associates with axin. It has also been demonstrated
that zibotentan (ZD4054), a specific ETAR antagonist, inhibits
the engagement of (-arrestins in ETAR interactions and the
B-catenin pathway (9). Rosano et al (78) further demon-
strated that the interaction between f-arrestinl and -catenin
regulates the expression of certain [3-catenin target genes by
promoting the dissociation of histone deacetylase 1 and the
subsequent recruitment of p300 acetyltransferase, leading to
increased H3 and H4 histone acetylation and thereby inducing
the transcription of genes required for cell migration, invasion
and the EMT (78). The affected target genes included ET-1,
Axin 2, MMP2 and Cyclin D1 (78).
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Figure 1. Schematic summary of -arrestin domain structure that contains a polar core, a receptor binding site, a phosphoinositide binding site and an adaptin

binding site.

Turm et al (79) revealed that protease-activated receptor 1
(PAR1) also induces the stabilization of B-catenin by
promoting the binding of f-arrestin2 to DVL. Additionally,
siRNA-DVL treatment led to a decrease in PAR1-induced cell
invasion, the inhibition of LEF/T-cell factor transcriptional
activity and a reduction of f-catenin accumulation (79).
Bonnans et al (80) used intestinal tumors taken from Apc?™#*
and B-arrestin® mice to demonstrate that -arrestin2 regu-
lates cell proliferation, adhesion, migration and invasion,
as well as ECM remodeling via the Wnt signaling pathway.
Additionally, kinesin family member 3A (KIF3A), a member
of the kinesin-2 family and a tumor suppressor, inhibits Wnt
signaling by interacting with p-arrestin. KIF3A silencing
enables B-arrestin to form a complex with DVL2 and axin,
which stabilizes p-catenin, increases cell migration and
invasion and upregulates stemness markers, thus promoting
the malignant potential of cells (15). Duan et al (81) demon-
strated that B-arrestinl increases the migration and invasion
of prostate cancer cells by initiating the EMT and modulating
GSK-3p/p-catenin signaling. Furthermore, it was determined
that [3-arrestinl overexpression promotes the EMT in benign
prostate RWPE-1 cells and that (3-arrestinl silencing induces
the mesenchymal-epithelial transition in PC3 and DU145
cells, thereby inhibiting and upregulating the expression of
E-cadherin and vimentin, respectively, in prostate cancer cells.

B-arrestins in the NF-xB signaling pathway. NF-xB is a
dimeric transcription factor involved in immune regulation,
cell migration, proliferation, survival, angiogenesis and apop-
tosis (82-84). The NF-xB family consists of five members,

including NF-xB1 (p50/105), NF-kB2 (p52/100), RelA (p65),
c-Rel and RelB, which are encoded by NFKB1, NFKB2,
RELA, REL and RELB, respectively. NF-«xB is activated in
different types of cancer and serves a vital role in the develop-
ment and progression of tumors (85,86). The NF-«B signaling
pathway involves NF-«kB, the NF-«B inhibitor (IkB), the IxB
kinase (IKK) complex and IKK upstream kinases (Fig. 4).
Following stimulation, the resulting signal increases the
IKK-mediated phosphorylation of IkBa, resulting in its ubiq-
uitination and degradation (87). This leads to the release of
NF-«kB, enabling it to enter the nucleus and regulate multiple
downstream target genes (88). Previous studies have demon-
strated that interfering with NF-kB activation may regulate
cell invasion, migration, proliferation and death (89,90).
Cianfrocca et al (91) demonstrated that interactions
between ET-1, ETAR and B-arrestinl activate NF-xB signaling.
In addition, B-arrestinl and p65 form a nuclear complex
that induces NF-xB p65 transcriptional activity in epithelial
ovarian cancer cells. However, these effects are inhibited by
introducing an ETAR antagonist, such as BQ123, to cells
or by silencing B-arrestinl using short hairpin RNA (91).
Seo et al (26) revealed that the B-arrestin2-associated type I11
transforming growth factor-f§ receptor negatively mediates
the migration and invasion of MCF10A breast epithelial and
MDA-MB-231 breast cancer cells via NF-xB signaling. In
addition, previous studies have demonstrated that -arrestin2
directly combines with IkBa, inhibiting its phosphoryla-
tion and degradation (82,92,93). It has been determined that
[B-arrestins are involved in NF-xB signaling and induce thes-
ecretion of cytokines, thus serving an important role in the
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Figure 2. B-arrestin scaffold proteins, together with Scr, are associated with multiple constituents of the mitogen-activated protein kinase cascade, downstream
of various GPCRs, including JNK, p38 and ERK. Signaling may lead to the transactivation of EGFR to regulate cancer invasion and metastasis. GPCR,
G protein-coupled receptors; INK, Jun amino-terminal kinase; ERK, extracellular signal regulated kinase; EGFR, epidermal growth factor receptor; EGF, epi-
dermal growth factor; E2F, E2 factor; Mdm2, mouse double minute 2; MKK, mitogen activated protein kinase kinase.
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Figure 3. B-arrestin-Src complex induces the direct activation of
‘Wnt/B-catenin and EGFR transactivation, indirectly leading to 3-catenin
phosphorylation by promoting the formation of a nuclear 3-catenin/TCF
complex and recruiting p300 acetyltransferase on these promoter genes,
consequently promoting cell migration. EGFR, epidermal growth factor
receptor; EGF, epidermal growth factor; GPCR, G protein-coupled receptor;
Ckl, casein kinase 1; APC, adenomatous polyposis coli; GSK3p, glycogen
synthase kinase 3f3; TCF, T-cell factor.

formation of an adaptive microenvironment that induces tumor
progression (94,95). MMP9Y expression is regulated by tumor
necrosis factor-a via the induction of f-arrestin2-dependent

NF-«B activity (16). Bedini et al (96) demonstrated that lipo-
polysaccharide (LPS)-induced cell migration and increased
interleukin-1f mRNA levels were consistently counteracted
by nociceptin/orphanin FQ via (3-arrestin2 and resulted in the
decreased transcriptional activity of NF-xB and AP-1.

[B-arrestins in the phosphoinositide-3 kinase (PI3K)/Akt
signaling pathway. The PI3K signaling pathway serves a
primary role in regulating cell proliferation, differentiation,
migration and trafficking, as well as maintaining glucose
homeostasis (97). PI3K expression increases levels of phospha-
tidyl-(3.,4,5)-trisphosphate (PIP3), which recruits Akt to the cell
membrane by binding to pleckstrin homology domains (98).
Following activation of PI3K/Akt signaling, E-cadherin
levels decrease and the expression of snail, slug, vimentin and
N-cadherin increase (99-101), thereby inducing the EMT and
promoting cell invasion and metastasis (102,103) (Fig. 5).
Zhang et al (104) demonstrated that CXCR7 expres-
sion is associated with invasion and metastasis in human
osteosarcoma (OS) and that CXCR7 knockdown inhibits
the proliferation and invasion of OS cells by decreasing the
B-arrestin-dependent expression of PI3K, Akt, B-arrestin,
proliferating cell nuclear antigen and MMP9. Zou et al (105)
determined that the PI3K signaling pathway is involved in
the P-arrestinl-mediated increase of MMP9 activity and
angiogenesis. In addition, Alvarez et al (106) demonstrated
that B-arrestinl functions as an adaptor that recruits Src to
the obestatin receptor (GPR39), leading to the formation of
a GPR39/B-arrestinl/Src complex, which activates the MMP
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Figure 4. G protein-coupled receptor-mediated [3-arrestin activation promotes p65 and IkB-a phosphorylation and translocation and increases NF-kB p65 sig-
naling and transcription. Cdc42 regulates the interaction of f-arrestins with GTPases and promotes NF-«B signaling. IkBa, NF-kB inhibitor; NF-xB, nuclear
factor-kB; Cdc42, cell division cycle 42; GTP, guanosine-5'-triphosphate; p-, phosphorylated.
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Figure 5. B-arrestin-induced PI3K activation increases membrane PI (3-5)P3 accumulation and activates Akt by inducing its phosphorylation. Activation of
PTEN leads to the transformation of PIP3 to PIP2 and the suppression of PI3K/Akt signaling. The f-arrestin-Scr complex causes the transactivation of EGFR
and the formation of nuclear f-arrestinl/E2F complex, and promotes the expression of downstream genes. PI3K, phosphoinositide-3 kinase; PIP3, phosphati-
dylinositol (3-5)-triphosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; EGFR, epidermal growth factor receptor; E2F, E2 factor; EGF, epidermal growth
factor; GPCR, G protein-coupled receptor; PTEN, phosphatase and tensin homolog; GSK3p, glycogen synthase kinase 3f; p-, phosphorylated; MMP, matrix
metalloproteinase.
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family and promotes EGFR transactivation. This activa-
tion is responsible for initiating various signaling pathways,
including ErbB, PI3K, Akt, mechanistic target of rapamycin
and p70S6K1. Nawaz et al (107) demonstrated that the
upregulation of microRNA-326 and (-arrestinl results in the
PI3K-dependent reduction of cellular proliferation, colony
formation and migration capacity in glioma cells. Additionally,
[(-arrestins regulate tumor suppressor phosphatase and tensin
homolog (PTEN) in PI3K signaling. It was demonstrated that
[(-arrestins increase the activity of PTEN and consequently
suppress activation of the Akt pathway, thus inhibiting cellular
proliferation (108). Therefore, B-arrestins serve various posi-
tive and negative regulatory effects in the PTEN, PI3K and
Akt signaling pathways.

4. Conclusion

Cellular migration and invasion are two processes regarded as
the main causes of cancer-associated mortality (109). Tumor
metastasis is a complex cascade that involves the following
stages: Exit from the primary tumor, cell migration, adherence
and invasion via the basement membrane or ECM, entry into
the physical circulatory system, further invasion into distant
secondary organs or tissues, and the resumption of cellular
proliferation (110).

The role of the B-arrestins as primary modulators of
tumor invasion and metastasis is documented in the present
review. B-arrestinl is primarily localized in the cytoplasm and
nucleus of cells, whereas 3-arrestin2 is distributed in the cyto-
plasm alone (111). Consequently, B-arrestinl and B-arrestin2
exhibit different functions in the regulation and progres-
sion of malignant tumors via various signaling pathways.
B-arrestinl and p-arrestin2 are involved in GPCR-mediated
signaling pathways but 3-arrestinl may also participate
in GPCR-mediated nuclear signaling. Kang et al (112)
demonstrated that 8-opioid receptor activation induces the
translocation of f-arrestinl into the nucleus and stimulates
the transcription of B-arrestin-dependent p27 and c-fos,
thereby facilitating histone acetyltransferase p300 recruit-
ment, resulting in enhanced local histone H4 acetylation and
gene transcription. Furthermore, (3-arrestinl and [-arrestin2
exert opposite effects in cancer progression by interacting
with different signaling pathways. 3-arrestins serve opposite
roles in the development of lung cancer. EP4/f-arrestinl/
c-Src-mediated PGE2 activation induces the migration of
lung cancer cells (113), whilst homology B-arrestin2 exerts
the opposite effect (92). The anti- and pro-cancer effects
exerted by B-arrestins in different types of cancer may depend
on the tumor microenvironment (TME). The TME consists of
various cells, including immune cells, fibroblasts, endothelial
cells, perivascular cells, neurons, adipocytes and components
of the ECM. Previous studies have demonstrated that the
TME serves a vital role in tumorigenesis, tumor invasion and
metastasis (114-116).

B-arrestins are scaffolding proteins and are involved in
cancer-associated invasion and metastasis, due to their interaction
with a range of receptor subtypes. A variety of 3-arrestin-biased
ligands, which readily associate with B-arrestin, have been
identified, including nicotinic acetylcholine receptors, EP2- and
EP4-receptors, endothelin type A ETARs and transforming
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growth factor 3 (117). Biased ligands are able to specifically
alter the conformation of a receptor, whereas a specific receptor
conformation cannot activate all of its downstream signals
in parallel and can only promoting a particular downstream
signal (118). ZD4054 is an antagonist of B-arrestin-biased
signaling in ETARs. ZD4054 selectively blocks B-arrestin
signals, eliminates the effects of f-arrestins, decreases
Src-EGFR-mediated transfer activation, inhibits the transcrip-
tion of P-arrestin genes and prevents (-arrestin-mediated
ovarian cancer cell invasion and metastasis (9). Therefore, the
up- or downregulation of B-arrestins is vital to either promote
or inhibit of tumor invasion and metastasis. Further studies
that assess the function of B-arrestins in tumor invasion and
metastasis via different signaling pathways may elucidate the
anti-tumor mechanisms utilized by B-arrestins and provide a
potential therapeutic target for the treatment of cancer.
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