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Stroke is a leading cause of death and disability worldwide and an increasing number of

ischemic stroke patients are undergoing pharmacological and mechanical reperfusion.

Both human and experimental models of reperfused ischemic stroke have implicated

the complement cascade in secondary tissue injury. Most data point to the lectin and

alternative pathways as key to activation, and C3a and C5a binding of their receptors

as critical effectors of injury. During periods of thrombolysis use to treat stroke, acute

experimental complement cascade blockade has been found to rescue tissue and

improves functional outcome. Blockade of the complement cascade during the period of

tissue reorganization, repair, and recovery is by contrast not helpful and in fact is likely to

be deleterious with emerging data suggesting downstream upregulation of the cascade

might even facilitate recovery. Successful clinical translation will require the right clinical

setting and pharmacologic strategies that are capable of targeting the key effectors early

while not inhibiting delayed repair. Early reports in a variety of disease states suggest that

such pharmacologic strategies appear to have a favorable risk profile and offer substantial

hope for patients.

Keywords: complement, vascular disorders, complement activation, cerebral blood flow, complement cascade,

stroke therapy

PUBLIC HEALTH IMPACT OF STROKE

Worldwide, stroke is the second leading cause of death, and the third leading cause of
disability-adjusted life-years (DALYs), with a staggering lifetime risk after age 25 of 26.5% (1, 2).
Even more concerning is the fact that the global incidence for both major stroke subtypes is
increasing (37% for ischemic and 47% for hemorrhagic over the last 20 years). Moreover, despite
broad advances in general medical care, stroke-related deaths and DALYs have also increased by 26
and 19%, respectively. It is also important to note that stroke is not merely a disease of the old and
wealthy, as those living in low- and middle-income countries and those younger than 75 years of
age make up the majority of victims.

CURRENT TREATMENT OF ACUTE ISCHEMIC STROKE

Since 1995, there have been a number of major advances in the prevention and treatment of
stroke, most notably, the widespread advent of contemporary anti-platelet therapy, statin therapy,
and the introduction of highly effective anti-hypertensive regimes (3). Particularly impactful has
been the development of intravenous pharmacologic thrombolysis and intra-arterial mechanical
thrombectomy following acute ischemic stroke (4). That said between 25 and 50% of patients who
are eligible for intravenous therapy within 9 h of stroke onset still suffer at least moderate disability
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(5–7). For those presenting with anterior circulation large vessel
occlusions, substantial reperfusion is now achievable for 85% of
patients, in some instances as late as 24 h after onset. Yet, 30–50%
of patients eligible for this therapy are disabled as well, despite
fairly small areas of core infarction (8, 9). Together, these data
suggest that therapeutic targeting of post-reflow microvascular
failure may have significant clinical utility for a substantial
proportion of ischemic stroke patients.

IMPORTANCE OF INFLAMMATORY
MICROVASCULAR FAILURE ON
STROKE OUTCOME

While post-stroke inflammatory microvascular failure is
governed by multiple biological cascades (10), our group long
ago implicated the complement cascade as one of the central
players that is potentially druggable (11). The first data suggesting
that the complement cascade was involved in secondary tissue
injury following re-perfused stroke dates to the late 1990s when
we showed that soluble complement receptor 1 (sCR1), and its
Sialyl-Lewis X glycosylated form (sCR1-sLex), which targeted
complement inhibition to sites of activated endothelium, reduced
ischemic tissue injury, improved outcome and penumbral blood
flow (11). Nevertheless, 20 years of research has yet to result
in the development of a clinically relevant anti-complement or
even anti-inflammatory therapy for re-perfused stroke. Below
we review the existing data implicating the complement cascade
in cerebral ischemia reperfusion injury. We will not attempt to
reiterate all that has been presented in two recent and exhaustive
reviews (12, 13), but rather will attempt to present the data in
a manner that facilitates clinical translation. In doing so, we
will attempt to address the apparent inconsistencies in the data
obtained from different model systems, as well as, the differences
in the effect of acute and subacute treatment on cell death, cell
survival and tissue regeneration.

IN VITRO DATA EXAMINING THE ROLE OF
COMPLEMENT IN CEREBRAL TISSUE
HOMEOSTASIS AND ISCHEMIC INJURY

Primary astrocyte, neuronal, and glial cell cultures express many
of the complement cascade components (14). Together with
resident microglia, these cells generally utilize the complement
cascade to respond to infection. In addition, the complement
cascade appears to be involved in both central nervous system
development and tissue repair, in part by directing synaptic
pruning and plasticity (15). Specifically, C1q and C3 tag weaker
synapses for microglial removal and C3a and C5a and their
receptors appear to be involved in cerebellar development (16,
17). C3a has also been shown to be involved in neuronal
differentiation and maturation of neural progenitor cells (NPCs).
It additionally guides migration of NPCs using an ERK 1/2
signaling pathway (18) and protects astrocytes from ischemia-
induced cell death (19). C5a has also been shown to make
microglia more resistant during ischemia by limiting the
toxic effects of glutamate (20). Both C3a and C5a appear

to be protective in culture against NMDA- and Kainate-
induced neurotoxicity, respectively (21, 22). C1q drives neuronal
survival in primary cultures and sublytic MAC has a similarly
positive effect on oligodendrocyte progenitor cell cultures (23,
24). Complement receptor 2 (CR2) via C3d binding may
regulate hippocampal neurogenesis in the adult rodent dentate
nucleus (25).

Simulated ischemia via oxygen glucose deprivation (OGD)
induces the production of neuronal C1q and C3 which
are associated with pro-apoptotic caspase-3 activation (26).
Inhibiting C3 expression via siRNA enhances cultured neuronal
viability (27). Blocking C5a reduces ischemia-induced apoptosis
in culture (28). These results were less dramatic in human
neuronal cultures due to the high expression of complement
modifying inhibitors CD59, CD46, and CD55 (29).

Together the in vitro data suggests that in the absence
of ischemic stress, components of the complement cascade
are for the most part important to cell survival and appear
to be potentially helpful in recovery of function after injury.
By contrast, following ischemic stress, complement cascade
activation appears tomediate apoptotic cell death, at least acutely.

IN VIVO EXPERIMENTAL DATA EXAMINING
THE ROLE OF COMPLEMENT IN
CEREBRAL TISSUE INJURY AND REPAIR
FOLLOWING ISCHEMIC INJURY

Initiation of Complement Activation Following

Cerebral Ischemia Reperfusion
It appears that ischemia-reperfusion results in the upregulation
of the complement cascade in a number of ways. Recently,
some data suggests that plasmin and thrombin released at
the site of thromboembolism may play a role in complement
activation independent of the classical, alternative, and lectin
pathways (30–32). That said, more recent data in non-human
primates suggests that this process is unlikely to be the source of
most of the complement generated following cerebral ischemia-
reperfusion injury in the context of most reperfused human
ischemic strokes (33). Therapeutic treatment with recombinant
tissue plasminogen activator also is known to activate the
complement cascade via a plasmin-mediated MBL-independent
extrinsic/alternative pathway, but the degree to which this is
relevant in clinical stroke is similarly unknown (34).

What is clear, however, is that, even in the absence of
physiologic or therapeutic clot lysis, the ischemic endothelium
expresses neo-epitopes, such as non-muscle myosin, annexin
IV, and a subset of phospholipids that are recognized by
circulating self-reactive IgM antibodies (35). Following ischemic
injury, mannose-binding lectins (MBL) deposit on the activated
endothelium. The antibody complexes activate the lectin
pathway by reacting with MBL and the ficolins. Carbohydrate-
bound MBL then cleaves C2 and C4, forming the C4b2a
(C3-convertase), which cleaves C3, and initiates the distal
complement cascade (36). Preventing MBL function through
genetic deletion or pharmacological manipulation is thought
to be protective (37). Furthermore, even in the absence of
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thrombin or plasmin-mediated activation of the alternative
pathway, amplification of this process appears to be driven by
the alternative pathway. Efforts to block either this alternative
pathway activation (38) or neo-epitope dependent complement
activation (39) have proven extraordinarily effective in improving
outcome in rodent models of cerebral ischemia-reperfusion
injury (cIRI), as evidenced by reductions in infarct size,
reduced apoptotic cell death, reduced neurological deficit scores
throughout the recovery period, reduced gliosis, improved
neurogenesis and angiogenesis even when employed 24 h post-
reperfusion, with the models including aged mice, female mice,
and mice exposed to varying severities of ischemic injury (40).

Evidence that the classical pathway is not the primary initiator
of complement cascade activation in focal cIRI, at least in adult
animals, comes from the observation that C1q deficient mice
(C1q−/−) are not protected from cIRI and the C1q that is initially
expressed appears to be produced predominantly by microglia
rather than neurons (37, 41, 42). By contrast, C1q/MBL−/−,
MBL−/−, and factor H−/− mice are all protected from focal cIRI,
albeit to differing degrees depending on variations in the model
system utilized (43, 44). Moreover, animals treated with a lectin
pathway inhibitor, Polyman 2, or, as previously mentioned, an
anti-MBL antibody are similarly protected as are those treated
with CR2-fH, a targeted alternative pathway inhibitor (44, 45).

Despite the overwhelming amount of data implicating
upstream initiation of the complement cascade by the alternative
and lectin pathways, there are further data in an alternative
model of cerebral ischemia that require mention. Neonatal mice
subjected to a global ischemia reperfusion injury are protected
by genetic deletion of C1q (46). In this model system, the
severity of the ischemia is markedly less and the apoptotic burden
is likely more significant than it is in focal stroke in adults
(47). Given that this is dissimilar from what is seen in focal
cIRI in adult animals including humans, and the fact that C1q
deficiency may pre-dispose to epilepsy as a result of uncontrolled
synaptogenesis, with post-stroke epilepsy worsening outcomes

(48), attempts at therapeutic manipulation in clinical cIRI should
likely avoid strategies which include acute C1q blockade. In
fact, this hypothetical downside to early C1q blockade, may in
part explain the failure of sCR1 treatment to improve cIRI in
non-human primates (49).

Downstream Mediators of Complement-Dependent

Acute Tissue Injury Following Cerebral IRI
Cleavage of C3 and generation of the anaphylatoxin (C3a), as
well as the opsonins (iC3b, C3dg and C3d) and formation of
C5 convertase (from C3 and C3b), which in turn generates
C5a and C5b which aggregate with C6, C7, C8 and several C9s
to form the MAC, could all potentially be involved in tissue
injury following re-perfused stroke. However, most of the data
suggest that, early following reperfusion, tissue injury is mediated
principally by C3a and to a lesser extent C5a while MAC is
not pathologically important, but rather, simply, a marker of
complement cascade activation (42, 50, 51). The first evidence of
this was the finding that C3−/− mice were markedly protected,
while C5−/− mice were not protected (38, 42). Similarly, C3aRA
treatment early following stroke not only protected mice but
enhanced delayed, post-stroke neurogenesis (50, 52). C6−/− mice
were also not protected (44), and while C5a receptor antagonist
(C5aRA) (53) and C5 anti-body (54) treated mice were protected,
the protection was more modest. These data together with
the remarkably effective C3 site-directed therapy via CR2-Crry
treatment (39), lead one to conclude that most complement
mediated tissue injury following focal cIRI occurs as a result of
C3 cleavage with the generation of C3a and binding of the C3aR.
C5a binding of C5aR likely plays a lesser but collaborative role.

Complement Cascade in Cerebral Repair

and Recovery
While C3 depletion or blockade is protective in re-perfused
stroke, especially when blockade is acute (52), germ-line
depletion or chronic blockade results in loss of functional

TABLE 1 | The Role of the complement cascade in central nervous system cell clearance, viability, and cerebral tissue repair as well as in experimental cerebral ischemia

reperfusion injury and human stroke.

Component of the

complement cascade

Significant role in cell

clearance

Significant role in

experimental inflammatory

microvascular no-reflow

Significant role in

cerebral tissue repair

Significant role in

cerebral cellular

viability in vitro

Implicated in the

pathogenesis of

adult human stroke

C1q (classical pathway) Yes (15–16) No (44–46) Yes (27–9) Yes (26) No

Mannose binding lectin

(lectin pathway)

– Yes (39, 45, 47, 49) – – Yes (70, 72, 74–6, 78)

Factors D/B/H

(alternative pathway)

– Yes (40, 41, 43, 48) – –

C3 Yes (16) Yes (40, 41, 45) Yes (23) Yes (30, 36, 74) Yes (66, 69, 84)

C3a/C3aR No Yes (54, 56–7) Yes (57, 64) Yes (17, 21, 24) Yes (67)

C3b Yes – – – No

CR1 Yes Yes (41) – – No

CR2 – – Yes (28) – No

C5 – Yes (63) – – Yes (81)

C5a/C5aR No Yes (62) – Yes (22, 25, 31) Yes (71)

C5b−9 Yes No (48) Maybe Yes (27) Yes (86)
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protection at later time points as stroke recovery is impaired
by decreased neurogenesis. This impairment of neurogenesis
by complement blockade was most pronounced in models of
experimental rodent stroke lacking reperfusion where even acute
blockade is known to be ineffective (55). In an equally non-
reperfused model, intranasal treatment of mice undergoing
permanent photothrombotic stroke with C3a in the late subacute
period resulted in enhanced functional recovery (56). These data,
together with the in vitro data presented above, strongly argue
for limiting the clinical use of anti-complement therapeutics to
the acute period during which reperfusion injury is most active
(e.g., <72 h post-reperfusion). Table 1 summarizes the current
knowledge of different components of the complement cascade
and their roles in the central nervous system, tissue repair,
ischemia reperfusion injury, and human stroke.

CLINICAL DATA FROM HUMANS
SUFFERING STROKE SUGGESTING THAT
MODIFICATION OF COMPLEMENT
CASCADE ACTIVATION MIGHT
IMPROVE OUTCOME

Evidence of Complement Cascade Activation in

Human Ischemic Stroke and Association

With Outcome
Polymorphisms in C3, C5, and factor H are associated with an
increased incidence of ischemic stroke as are higher plasma levels
of C4 and C5 (57–60). Polymorphisms in MBL are associated
with a better outcome after ischemic stroke (43, 61). In patients
suffering a stroke, plasma levels of C3a, C3, C4, C5, C5a, factor
B, MBL, MASP-1/2, and MAC are all elevated and ficolin-1,
ficolin-2, and ficolin-3 reduced (62–66). Increased serum levels
of C3, C3c, C4, and MBL are all associated with increased stroke
severity, and patients who are MBL-sufficient have higher C3
plasma levels and suffer worse stroke outcomes (43, 67). Reduced
early (within 6 h of onset) ficolin-1, a marker of activation of
the lectin pathway, is independently associated with unfavorable
outcome in adult human stroke (68). Moreover, postmortem
studies have identified both complement and IgM deposition in
the brain after stroke (69).

In addition, there is data in several other clinical scenarios
of cerebral ischemia reperfusion injury where the complement
cascade is activated. In cardiopulmonary bypass, glial injury is
associated with complement cascade activation (70), and while
anti-C5 monoclonal antibody therapy with a problematically
long half-life did not improve overall cognition, it did improve
outcomes in visuo-spatial functioning both acutely and at 1
month (71). Clinically relevant cerebral reperfusion injury is
also experienced by a quarter of patients undergoing carotid
endarterectomy for carotid stenosis (72). Interestingly MBL,
C3, factor H, and C5 polymorphism correlate with both early
and late cognitive dysfunction, and C3a levels are not only
increased in those injured, but also correlate with duration
of cross-clamp (a surrogate of severity of ischemia), and are
predicted by MBL polymorphisms (73–75). In patients with T
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carotid stenosis, the degree of plaque burden, the severity of
the stenosis and the instability of the plaque is correlated with
elevated circulating levels of MAC and reduced circulating levels
of ficolin-2 (76, 77). Finally, in comatose post-cardiac arrest
patients, who suffer global cerebral ischemia reperfusion, C3a/C3
ratios independently predict survival (78).

Evidence of Complement Cascade Activation in

Hemorrhagic Stroke and Association With Outcome
While less common than ischemic stroke, hemorrhagic stroke
is associated with even worse outcomes and also exhibits
complement cascade activation. This is important given that
clinical efforts to revascularize ischemic stroke patients can
result in either intracerebral or subarachnoid hemorrhage. In
subarachnoid hemorrhage, C3a and M-ficolin levels are elevated
in serum, cerebrospinal fluid and in the brain parenchyma and
they are correlated with secondary ischemic injury and functional
outcome (79–81). In patients suffering intracerebral hemorrhage,
M-ficolin levels are similarly elevated and polymorphisms in
factor H as well as iC3b levels are associated with functional
outcome and mortality (51, 82). These observations support
the experimental intracerebral hemorrhage data from rodents
showing that inhibition of C3a and C5a receptors improve
outcome with the effect at least in part due to amelioration of
IL-1 dependent perihematomal edema formation (83, 84).

Blood-Brain Barrier Dysruption Following Human

Stroke and Its Implication for Systemic Intravascular

Complement Blockade vs. Intracerebral Blockade
There has been considerable speculation regarding the
importance of the blood brain barrier in developing therapeutic
strategies for central nervous system disease. Cerebral ischemia
reperfusion injury differs from most of these other diseases in
two important aspects. First, the blood brain barrier is opened
to some degree following cIRI (85–87). Moreover, this opening
is most profound in the time frame where anti-complement
strategies are likely to prove most protective (39) prior to when
regenerative and repair mechanisms appear most important.
Secondly, it appears that even if anti-complement strategies fail to
cross the blood brain barrier, much, if not most, of their beneficial
effect is likely to be mediated intravascularly at the level of the
cerebral arteriole and capillary. In this respect, anti-complement
therapies are distinct from most traditional neuroprotective
strategies aimed specifically at increasing the tolerance
of neurons to ischemia and the downstream intracellular
cascades that result. That said, even anti-complement
therapies with large molecular sizes, such as Eculizumab,
appear to be able to cross even a moderately impaired blood
brain barrier in neuromyelitis optica and improve clinical
outcome (88). This portends even better results for smaller
anti-complement therapies.

Complement Blockade in the Setting of Intravenous

Thrombolytic Therapy
The complement cascade has been implicated in cross-talk
between the inflammatory cascade and the thrombotic cascade.

While in some settings complement inhibition has been shown to
prolong bleeding times, the use of a variety of anti-complement
therapies together with intravenous thrombolytic therapies in
cIRI has consistently shown enhanced outcomes with no increase
in bleeding and in some instances a reduction in hemorrhagic
conversion, a complication of ischemic stroke, possibly due
to stabilization of the blood brain barrier (34, 89). This is
additionally important for use with pharmacologic thrombolytic
therapies that can exacerbate hemorrhage and edema (34).

Clinically Available Complement Cascade Modifying

Therapies for Clinical Translation
While it has widely been reported that anti-inflammatory
strategies shown to be effective in experimental model systems
fail to improve outcome following human stroke, most of this
failure can be explained by the fact that these strategies are
only useful in limiting reperfusion injury. Unfortunately, the
patients included in these largely underpowered phase II trials
do not have documented reperfusion and less than a third would
even be expected to have a penumbra sufficient to demonstrate
protection. Scientifically unjustified administration schedules
based on incompletely studied pharmacokinetics has only further
hindered efforts. Even so, despite all of these deficiencies, the
most recent trials have shown some modest signal of benefit in
both functional outcome and quality of life (90).

To date, anti-complement strategies have not been trialed in
human stroke. Given the data presented above one would expect
that either inhibition of the lectin and, or, alternative pathway
might prove useful, as might inhibition of C3 convertase or the
downstream anaphylatoxins, C3a and C5a. While recombinant
C1-INH is clinically available as Cinryze, Ruconest, and Berinert,
an important, but fairly rare side effect is pro-thrombotic events
which would be potentially disastrous in the setting of ischemic
stroke (91, 92). While anti-C5 Eculizumab, is well-studied and
has proven beneficial for a variety of diseases, both in and
outside of the central nervous system, its inability to block
C3a binding of C3aR and its extremely long half-life (>10
d) makes its development less attractive. Selective alternative
pathway inhibitors might also prove somewhat beneficial but
the anti-C3 compstatin analogs seem to hold the most promise.
Mechanistically, the latter block C3a and C5a generation,
regardless of the upstream pathway responsible for activation of
the cascade. They also appear to be safe in a variety of human
diseases and have been designed with short half-lives that allow
for ischemic protection without negatively impacting repair and
recovery (93). The complement inhibitors currently in clinical
development are listed in Table 2.
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