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Abstract: Presently, most passive safety tests are performed with a precisely specified seat position
and carefully seated ATD (anthropomorphic test device) dummies. Facing the development of
autonomous vehicles, as well as the need for safety verification during crashes with various seat
positions such research is even more urgently needed. Apart from the numerical environment, the
existing testing equipment is not validated to perform such an investigation. For example, ATDs are
not validated for nonstandard seatback positions, and the most accurate method of such research is
volunteer tests. The study presented here was performed on a sled test rig utilizing a 50cc Hybrid III
dummy according to a full factorial experiment. In addition, input factors were selected in order to
verify a safe test condition for surrogate testing. The measured value was head acceleration, which
was used for calculation of a head injury criterion. What was found was an optimal seat angle
−117◦—at which the head injury criteria had the lowest represented value. Moreover, preliminary
body dynamics showed a danger of whiplash occurrence for occupants in a fully-reclined seat.

Keywords: vehicle passive safety; sled test; recline seat; autonomous vehicle; ATD crash test dummy

1. Introduction

Most passive safety tests are performed with a specifically determined position of
the seat, and the ATD (anthropomorphic test device) dummies are carefully seated in
order to ensure the repeatability of the tests. However, facing the development of smart
vehicles which, in theory, requires minimal driver input, allowing various positions of the
seat, an extensive investigation into this matter is justified [1–5]. Presently, the subject of
nonstandard seating positions has been relatively rarely investigated. Furthermore, even if
there is research about reclined seats, they are mostly in the range accessible to the driver.
A fully-reclined seat, as, for example, a sleeping passenger, is nearly always omitted. Such
investigations are performed almost exclusively in the simulative environment.

Seat position tendencies depend mainly on the age of the occupants and whether
the front or rear seats are considered [1,6–10]. It has been found that a partially reclined
seat is pre-dominant while a full reclined position constitutes a small proportion of cases.
Moreover, such a position was found predominantly in young men. This, of course,
has its impact on the style of driving and, for example, the likelihood of seatbelt use.
In consequence, the odds of mortality were the greatest for the fully-reclined seatback.
However, a partially reclined seatback, although rated with lower mortality, is represented
by a larger population, therefore it represents a significant health concern [7,8,11]. The most
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severe and commonly investigated factor occurring in a frontal crash with a reclined seat is
submarining—i.e., the occupant’s hips sliding under the lap belt, restraining the body at
the abdomen [12–14]. Submarining causes severe injuries to the lumbar spine and internal
organs [15–19]. Accident data analysis shows that the submarining phenomenon is the
reason for many fatalities and serious injuries during a frontal impact [20–22]. It is claimed
that this is due to the low performance of the restraining system securing the occupant’s
pelvis [23]. According to [24], submarining occurs when there is no lap belt contact with the
iliac crest, the seat cushion allows rotation of the pelvis beneath the lap belt, and no normal
friction forces between the lap belt and the iliac crest. Based on a literature survey, it is
apparent that such tests are mainly conducted in the numerical environment. Furthermore,
the models which predict the injury risk of reclined passengers are limited by the lack of
reference data with which to assess fidelity, particularly in terms of the pelvis and lumbar
spine motion [25]. The numerical environments for crash simulation provide many models
of high biofidelity (e.g., GHBMC-D, GHBMC-S, THUMS), but it appears that the same
scenario gives different out-comes for different human body models (HBM) [26]. The
main issue is that the Hybrid III ATD is not validated for reclined posture. For example, a
standard 50 cc Hybrid III has a constant, unchangeable angle between the thighs and torso.
Hence, a numerical investigation must be validated based on volunteer tests (which must be
conducted at low speed) or with the aid of postmortem human surrogates—PMHS (various
and unpredictable body postures and body reactions to the forces caused by the crash
pulse), but there are insufficient data regarding this matter [26–28]. In general, based on the
worldwide literature, a more reclined position is associated with higher lumbar spine forces,
as well as increased possibility of submarining. Therefore, in investigating nonstandard
seat positions, the main emphasis is given to the lumbar spine and pelvis [25,29,30]. The
occurrence of submarining can be suspected but, apart from the obvious situations related
to improper seatbelt–occupant relation, cannot be guaranteed. Submarining depends on
the position of the lap belt and the centre of gravity of the pelvis. Hence, as claimed by [31],
it can be caused by the anchorage locations or the wearing of a coat.

The dynamics and kinematics of occupants during a crash varies depending on the
body posture [32–34]. This has a reflection in reclined position crashes. For example,
according to [35–37], small females were prone to submarining. Moreover, according
to [38,39] the pelvis angle was significantly affected by BMI (body mass index). It appears
that the pelvis tends to rock backwards with increasing seatback angle. This increases
the likelihood of severe injuries, and in the case of obese occupants, the biofidelic model
is especially problematic. Hence, improved models of abdominal flesh, and specifically
subcutaneous adipose tissue, should be developed prior to employing the human body
model (HBM) for crash simulation [40].

Even though the standard ATDs are not validated for reclined seat testing, several
attempts to counter this issue have been made. In order to examine the force on the lumbar
spine, as well as submarining occurrence, the dummies were equipped with additional,
deformable objects at their abdomen. The hybrid III family of dummies can be equipped
with a Styrofoam insert which is meant to assess the occurrence of submarining and its risk
of injury [41]. A similar addition for child dummies was proposed by [42]. Additionally, the
authors validated a numerical model of a child dummy in terms of submarining detection
and nonstandard seat positioning body kinematics. Based on their numerical investigation
performed on the validated dummy model, it was claimed that dummy knee excursion,
torso rotation angle, and the difference between head and knee excursions were good
predictors for submarining. It was also found that restraint system design, in particular
D-ring height, and the seat coefficient of friction may present an opposing effect of head
and abdomen injury risk [8,43].

Due to the severity of the injuries of a reclined occupant, a specific attempt to mitigate
this phenomenon was established. Most often this is completed by altering the construction
of the seats or installing specifically designed add-ons—for example, alteration of the seat
cushion or changing its angle, belt pretensioners, or altering the body kinetics by adding
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a knee bolster [44–48]. However, inasmuch as those add-ons mitigate the submarining
itself, it was proven to be ineffective in terms of overall passive safety [49]. For example,
pretensioners increase the belt force during the tension phase, which may lead to abdominal
injuries, and when the seat is reclined, it also causes the belt to come closer to the neck,
resulting in undesirable chest loading [44,50]. On the other hand, increasing the cushion
angle reduces the forward motion and therefore reduces the risk of injures due to lap belt
loading [51].

It was found that submarining can be almost entirely avoided by reducing the de-
formation of the seat cushion [52,53]. However, a rigid seat constitutes a significant re-
duction in driving comfort, which ultimately excludes this countermeasure from possible
solutions. Nowadays, drivers and passengers tend to use additions that increase the
comfort of driving (additional cushion at the back, load limiters, etc.). It has been found,
however, that such devices change the body posture, and their excessive usage increases
the likelihood of injuries during a frontal impact [54,55]. For example, it was found that
with excessive use of such devices, the likelihood of submarining increases as well as the
sternal deflection [56].

Injuries of the lumbar spine and the submarining phenomenon are relatively well
recognized in the literature. Many researchers have investigated this phenomenon, focusing
on the injuries resulting from a reclined seat. However, there are very few papers focusing
on the body dynamics of the reclined seat. Different belt performance in terms of restraining
an occupant and altered body dynamics can lead to ineffective airbag performance, for
instance [57–59]. Greater head impact is achieved when submarining occurs, due to greater
distance to the airbag [60]. Therefore, the overall body dynamics cannot be neglected
by the cost of only the submarining or lumbar spine injuries. The sled test has shown
that the distance between the seatbelt anchor and ATD hip is associated with a decrease
in head injury criteria (HIC) and an increase in sternal deflection [18,56]. A volunteer
test with reclined seats has proven that, apart from the altered body dynamics, reclined
occupants suffer larger soft tissue deformation [28]. This could be mitigated by using belt
pretensioners, but this would be achieved at the cost of greater axial spine loading [61].

Taking all the above into consideration, the aim of the study was to investigate the
influence of the seatback position on an acceleration measured at the dummies head. This
acceleration was further used for the evaluation of head injuries predictors (i.e., HIC).

2. Materials and Methods

The entire experiment was performed in the laboratory of Vehicle Dynamics and
Safety located in a Research Complex GEO-3EM ENERGY ECOLOGY EDUCATION. The
investigation of body dynamics with respect to the various seatback inclination was per-
formed on a sled rig for component testing. For this test, a standard seat, fixed on rails was
used. The seat cushion location was not changed throughout this study—only the position
of the seatback was altered. During each test, a standard Hybrid III 50cc ATD was used.

The tests were recorded with a Phantom Veo 410L high-speed camera. Every test
was recorded at 5000 FPS with the maximum available resolution (800 × 1280). The
experiment consisted of verifying two variables—i.e., seatback reclination and the crash
pulse. The seatback angle ranged from a fully straight comfortable position to fully-
reclined. Considering the preliminary nature of this research, as well as the fact that it
is to be repeated with volunteers, the generated pulses were relatively low. In general,
the volunteer tests are performed in the range of 2.5–5 g. For this reason, the crash pulse
was approximated to 3–5 g. Greater crash pulse can constitute a hazard for the human
body [16,28]. The values in seatback angle and crash pulse acceleration, as well as the
corresponding change of velocity, are shown in Table 1. The crash pulses with the trolley
acceleration and velocity with respect to time are shown in Figure 1.



Sensors 2022, 22, 2003 4 of 14

Table 1. Input factors of the experiment.

Input Factors Min Value Centre Value Max Value

Seat back angle 110◦ 130◦ 145◦

Crash pulse 3 (±0.3) g 4 (±0.3) g 5 (±0.3) g
Crash pulse ∆V 5 (±0.4) m/s 6 (±0.4) m/s 7 (±0.4) m/s
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The experiment was performed in a full factorial regime, in accordance with the
schematic drawing depicted in Figure 2. In other words, the experiment was performed
with each crash pulse on every seatback angle.
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Although the overall movement of the body was considered, the highest emphasis
was given to the head dynamics. Therefore, the dummy was equipped with an Endevco
piezoresistive accelerometer (model type: 7264C-2KTZ-2-396) measuring head acceleration
in X, Y, and Z directions. The resultant acceleration is considered only for the calculation of
the injury criteria. The most important direction of acceleration is X (parallel to the trolley
motion). This is because the resultant value of acceleration would not contain negative
acceleration which, in the case of this study, constitutes backward motion of the head
(direction opposite to the trolley motion). The negative acceleration is not within the time
limit required for HIC, therefore for calculation of those values, the resultant acceleration
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filtered with CFC 1000 was used [62]. The sample rate was set to 15 kHz. The acceleration
taken was used to calculate the head injury criterion (HIC). Additionally, the duration of
the peak was determined.

During the experiment, it was decided not to use any foot constraints because it does
not have a significant impact on upper body dynamics, nor on submarining [63]. It was,
therefore, considered an unnecessary device in the present investigation. The entire test
station is presented in Figure 3.
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3. Results

The results indicate that seat inclination has a significant impact on head acceleration
and duration of the acceleration peak and, therefore, on potential head injuries. Comparing
the head accelerations achieved with seat inclinations of 110◦ and 130◦, it appears that
the greater inclination leads to a lower risk of injury (Figure 4). Not only are the peaks
of acceleration similar, but also at 130◦, the signals are wider, which represents a longer
duration of the acceleration. In consequence, such a position appears to be more beneficial.
However, with a fully-reclined seat the head acceleration has the highest values. Further-
more, such movement is enhanced by negative acceleration, which represents backwards
head movement.

Apart from the obvious head acceleration, the seatback angle causes greater negative
acceleration. An analysis of high-speed records revealed that such a tendency is due to
seatbelt action. The position of the pelvis on the seat with the fully-reclined seat is farther
away from the lap belt. In consequence, at the initial part of the crash pulse, the head and
the torso of the dummy lose contact with the head restraints and the seatback, respectively.
As can be seen in Figure 5, the hips are then blocked by the belt and the dummy follows
the motion of the trolley, however at this point the dummy’s head experiences negative
acceleration because the torso propagates to the vertical position (Figure 5a). When the torso
meets the shoulder belt, the direction of acceleration is reversed (Figure 5b). Afterwards, the
main peak of acceleration occurs, which represents head forward motion. The backwards
head motion and, therefore, deceleration had a long duration and relatively low peak, which
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was not hazardous, however, it enlarges the main peak of acceleration. In other words, the
main peak of acceleration was enclosed between the maximum acceleration and minimum
acceleration. The more reclined the seat, the higher deceleration and, therefore, the higher
the overall acceleration of the head. Moreover, such backwards and forward head motion
usually causes whiplash injuries, but this type of injury was not under consideration during
these studies.
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The entire analysis requires considering both input factors simultaneously (i.e., crash
pulse and seat angle). Considering the input factors individually would be impractical.
The higher the crash pulse, the higher the value of acceleration. On the other hand, it
appears that the seat position changes the overall outcome of the head acceleration. The
signal of head acceleration was a basis for determining the standard safety coefficient,
Head Injury Criterion (HIC), as well as the average acceleration and the duration of the
acceleration. Additionally, the minimal and maximal value of the acceleration signal was
measured, the sum of which was the total acceleration which is experienced by the head
of the dummy. The entire set of results is shown in Table 2. These results were used to
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evaluate the response surfaces representing the relation between the input factors and
selected property.

Table 2. The accelerations for all crash pulses as well as the acceleration peak duration and HIC.

Seat Back
Angle

Crash Pulse
(g) HIC Duration

(ms)
Ave. Acceler.

(g)
Min Acceler.

(g)
Max Acceler.

(g)
Total Acceler.

(g)

110◦
3 24.6 92.5 9.3 −1.1 11.4 12.5
4 34.1 86.3 10.9 −0.6 13.6 14.2
5 48.0 95.0 12.1 −1.4 15.3 16.7

130◦
3 19.1 92.5 7.7 −0.7 9.8 10.5
4 52.0 104.5 12.0 −1.7 15.2 16.9
5 32.6 123.5 9.3 −1.0 11.4 12.4

145◦
3 26.9 106.9 9.14 −0.5 11.1 11.5
4 47.5 99.9 11.78 −2.6 15.0 17.5
5 66.5 86.8 14.25 −4.0 19.2 23.2

The 2D and 3D response surfaces of the HIC with respect to the input factors are shown
in Figure 6. The red dots on 3D response surfaces represent the measurement points. In
general, as expected, the higher the crash pulse, the higher the head acceleration and, hence,
the higher the value of HIC. However, this is not the case for the angle of the seatback. It
appeared that in almost all response surfaces, there is a saddle point that indicates that
there is an optimal value of the angle. For example, considering HIC as an indicator, its
value decreases with increasing seatback angle until 117◦ and increases afterwards. Further
increases of seatback angle cause more severe consequences of the crash.
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seatback. It appeared that in almost all response surfaces, there is a saddle point that in-
dicates that there is an optimal value of the angle. For example, considering HIC as an 
indicator, its value decreases with increasing seatback angle until 117° and increases af-
terwards. Further increases of seatback angle cause more severe consequences of the 
crash. 
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The reason for a saddle point in HIC is the duration of the acceleration peak, which
increases for increasing seatback angle (see Figure 7). Moreover, it appears the value of
duration does not change significantly for various crash pulses. Such a tendency justifies the
need to perform a further, in-depth kinematic study of the dummy at various seat positions.
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A comparison of average, maximal, and total acceleration (explained in Figure 5) is
shown in Figure 8. The duration of the acceleration pulse affects its average value. The
average acceleration calculated with the HIC represents the lowest value. This is because
it is calculated over the range of peak duration. In consequence, the peak of acceleration,
with no respect to the duration, represents a higher value. The mean difference between the
measured peak and calculated average acceleration is 26%, whereas the highest differences
exist at an angle of 145◦ and a crash pulse of 5 g. Similarly, the highest value acceleration
was found when the negative acceleration was included in overall consideration. This
is especially visible for a fully-reclined seat. In such a case, the head of the dummy
experienced the highest increase in acceleration. The mean difference between the total
acceleration and the average acceleration reaches 39% but for a fully-reclined seat and the
highest crash pulse, the difference is 63%.

This, of course, increases the danger of head injury, but most importantly it is expected
to cause a neck injury. In general, the worldwide literature rather poorly describes neck
injuries of a frontal crash with occupants sitting on a recline seat. Mainly the lumber spine
and submarining are considered.

The head acceleration presented in these studies was not life-threatening. Maximal
acceleration for each experiment run was located on a Wayne State Tolerance Curve (WSTC)
in order to verify the severity of the simulated crash (see Figure 9). It appeared that none
of the accelerations represent a danger of head injuries. Inasmuch as the duration and
acceleration differ by seat position and crash pulse, all of them are in the safe region.
Furthermore, it cannot be categorically stated that one result is more severe than another.
One could argue whether the acceleration at 145◦; 5 [g] represents the highest danger due to
the value of acceleration or the test at 130◦; 5 [g] due to its longest duration. Nevertheless,
all the accelerations are not likely to be life-threatening in terms of head injuries.
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4. Discussion

The worldwide literature is relatively poor in terms of reclined seat influence on body
dynamics. Mostly submarining and lumbar spine injuries are investigated. The present
studies provide information on the difference in head performance for various seatback
positions. The duration of the acceleration peak can be used to predict the appropriate
operation of a restrain systems, such as an airbag or seatbelt design [22,34,45,58,60]. Fur-
thermore, present studies constitute the inside of a safe environment for volunteer testing
on this matter.

Nowadays, the various seat positions while driving are gaining greater importance due
to the introduction of autonomous vehicles. Most of the research completed in this matter is
only conducted in the numerical environment and is rarely verified with experiments using
a dummy, volunteer, or postmortem human surrogate (PMHS) [27]. Generally, the research
focuses on the submarining effect and lumbar spine injury. The head kinetics for reclined
seat positions were considered in [61] where the authors stated that at high speeds the
submarining of the model dummy occurred, which caused increased head impact velocity
due to greater distance from the airbag. The authors suggested that the head impact
severity could be mitigated with an appropriate seatback angle. The research described in
this paper is in conjunction with our findings. Based on our research, it appeared, however,
that the relationship between the head movement caused by the change of vehicle velocity
and the seat position is not linear and there is a local optimum which does not constitute
the far-right position.

The dummy kinetics, and, therefore, head acceleration, are originated from the position
of the dummy’s pelvis and hips on the seat. The various angles of the seatback affect
the positioning of the dummy. The seatback moves behind the pelvis as it reclines [38].
Additionally, as was proven in the present study, negative head acceleration occurs due to
backwards head movement, which is reversed only when the hips are stopped by the lap
belt. Greater distance between hips and the belts generates longer free-movement of the
dummy during which the head is no longer supported by the head restraint. Furthermore,
the hips experience stronger hits by the belt [64]. This, in turn, causes dynamic backwards
movement of the dummy’s head, increasing the total acceleration.

Dummies are positioned differently than human passengers, which affect the overall
results. In general, according to [65], the lap belt of a passenger is typically much farther
from the dummy’s pelvis. Furthermore, the design of the dummies introduces an error to
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the overall investigation. For example, the weight distribution between the thighs and the
pelvises of the dummies is usually different from a passenger’s, and also the stiffness of
the abatement or skeletal frame [66]. Therefore, in order to fully analyse the various seat
positions, surrogate testing should be performed. The thresholds presented here suggest
that such tests are not hazardous for humans in terms of head acceleration and the lack of
submarining. However, a significant head motion backwards and forwards was observed
especially for a fully-reclined seat. Such movement can cause a severe whiplash injury,
which was not under consideration during these studies. Additionally, the research of
reclined seat positions focusses primarily on the pelvis and lumbar spine injuries due to
submarining, not on neck injuries, hence, a similar study which includes dummy kinematics
and neck injuries for various seat positions is justified. The determination of a neck injury
criterion was not in the scope of this study mainly due to the fact that such significant head
and neck behaviour was not anticipated. The literature-based knowledge focuses only on
lumbar spine injuries and submarining. Nowadays, there are a variety of means to mitigate
submarining and, hence, mitigate the severity of the lumbar spine injury [8,16,49,54,59,67].
However, as it appeared during this study, even if submarining does not occur, the body
kinetics on a reclined seat can be hazardous in terms of neck injuries. Therefore, further
in-depth research consisting of a body kinetics analysis on a reclined seat, as well as a neck
injury criterion analysis is justified.

5. Conclusions

The research performed here was completed firstly to evaluate the relationship be-
tween the crash pulse and the seatback angle on human performance. What was taken into
account was the acceleration in the dummy’s head, which was further used for the determi-
nation of head injury criterion. The response surfaces developed based on acceleration and
HIC measures with respect to the crash pulse and seatback angle revealed the nonlinearity
of such dependence. A saddle point was found in HIC, and, therefore, accelerations, which
suggests that there is an optimal seat position. It is speculated that the reason for such a
change tendency is the duration of head acceleration. Furthermore, it was found that the
acceleration and, therefore, the head injury criterion increases with increasing angle of the
seatback. There is an optimal value of seat reclination. With the experiment regime, the
optimal seat angle in terms of head acceleration was 117◦. Inasmuch as head accelerations
determined during this research do not constitute a danger in terms of head injuries, a
significant backward and forward motion of the head was detected during the test with a
reclined seat. This phenomenon could not be avoided due to the altered position of the
dummy’s pelvis on the seat. In consequence, even when the dummy’s head rested on a
restraint prior to the crash pulse, there was a longer time required for the pelvis of the
dummy to reach the lap belt. During this time, the head travelled backwards. This motion
was reversed only when the torso of the dummy was blocked by the shoulder belt. Such
motion is a potential reason for neck injuries.
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