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Introduction. Gliomas are infiltrative neoplasms of a highly invasive nature. Different stages of gliomas feature distinct genomic,
genetic, and epigenetic changes. The long noncoding RNA Growth Arrest Specific Transcript 5 (GAS5) is an identified tumour
suppressor involved in several cancers. However, the underlying roles of the GAS5 gene in lower-grade glioma (LGG) patients
are not clear. Methods. Via bioinformatic analysis based on TCGA-LGG and TCGA-GBM data, we explored the mechanisms of
GAS5 expression in LGG (grades II and III) and high-grade glioma (glioblastoma multiforme, grade IV). The log-rank test and
multivariateCox analysiswere performed tofind the association betweenGAS5 andoverall survival (OS) in LGGpatients.Weighted
gene coexpression network analysis (WGCNA) and RNA-Seq analysis were applied to find the key gene network associated with
GAS5. Results.We found that GAS5 expression was downregulated in both LGG and glioblastoma multiforme (GBM) compared
with normal brain tissue. Low methylation in the GAS5 promoter region was detected in both LGG and GBM tissues. The
amplification type was the predominant type of GAS5 gene alteration in both LGG and GBM. High GAS5 expression was more
associated with long overall survival (OS) in LGG patients than in GBM patients. The multivariate survival analysis of GAS5 and
clinical andmolecular characteristics in LGGpatients further confirmed the association betweenGAS5 andOS in LGGpatients.We
then developed a nomogram for clinical use. WGCNA and RNA-Seq analysis indicated that ribosomal biogenesis and translation
initiation were the predominant events regulated by GAS5 in LGG patients. Conclusion. Taken together, these results demonstrate
that GAS5 expression is associated with OS in LGG patients and that its underlying roles involve the regulation of ribosomal
biogenesis and translation initiation, which may aid in identifying a new target for the treatment of LGG.

1. Introduction

Gliomas are commonly classified as low-grade glioma (LGG,
grades II and III) or glioblastoma multiforme (GBM, grade
IV). LGGs are infiltrative neoplasms that arise most often
in the cerebral hemispheres of adults, including oligoden-
drogliomas, oligoastrocytomas, and astrocytomas [1]. A sub-
set of LGGs progress into GBM within a few months, and
others may stay stable for several years, causing large varia-
tions in median survival [2, 3]. Hence, individual treatments
should be performed based on the identification of histologic
class, grade, and reactions to chemotherapy and radiotherapy
[4]. GBM is the most common cause of death among

children with central nervous system (CNS) neoplasms, and
no effective therapies currently exist [5]. In most cases,
GBM will recur after surgical resection, resulting in a poor
prognosis. Hundreds of molecular alterations exist in LGG
and GBM, making them react differently to chemotherapy,
radiotherapy, and surgical resection. Identifying the key
genes or genome alterations that drive the progression of
gliomaswill contribute to the understanding of the molecular
mechanism behind gliomas and help to improve the effects of
therapy.

Long noncoding RNAs (lncRNAs) are non-protein-
coding transcripts that play essential roles in cellular regu-
lation at various levels and in diverse biological functions,
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including chromatin modification, transcriptional regula-
tion, cell differentiation, immune responses, and epigenetic
regulation [6–8]. GAS5 produces a spliced lncRNA, which
sensitizes cells to apoptosis by suppressing glucocorticoid-
mediated induction of several responsive genes [9]. By
binding to the DNA-binding domain of the glucocorticoid
receptor, GAS5 acts as a decoy glucocorticoid response ele-
ment (GRE), thus competing with DNA GREs to bind to the
glucocorticoid receptor [9]. By analysingGAS5 level and clin-
ical parameters, it has been found that GAS5 correlates with
tumour progression and poor prognosis in many tumour
types [10–13]. Some publications have also indicated that
GAS5 is a predictor of survival in GBM patients [14, 15]. One
study revealed an association between serum GAS5 level and
the OS of GBM patients [14]. However, the potential roles of
GAS5 involvement in gliomas and the regulatory mechanism
of GAS5 expression in gliomas are not clearly identified.
Besides, the difference of GAS5 expression and the regulatory
mechanism of GAS5 expression in LGG and GBM patients
have not been shown yet. In this study, via bioinformatic
analysis, we explored the regulatory mechanisms of GAS5
expression in gliomas and compared its prognostic value in
LGG and GBM. In addition, based on TCGA-LGG RNA-Seq
datasets, we also applied WGCNA and enrichment analysis
to identify the pathways highly associated with GAS5 in LGG
and the network of genes highly associated with GAS5.

2. Materials and Methods

2.1. Clinical and Omic Data Download. RNA-Seq and DNA
methylation datasets from patients with primary LGG or
GBM were downloaded from the UCSC Xena browser
(https://xenabrowser.net/) [16]. GAS5 mRNA expressions
in different types of solid tumours and in corresponding
normal tissues were obtained fromTCGA datasets and GTEx
datasets [17]. A box plot was created using ggplot2 [18].

2.2. WGCNA of RNA-Seq Data from LGG Patients and
Network Visualization. The WGCNA R package was used
to evaluate the correlation of GAS5 expression and module
membership by the ‘p.weighted’ function [19]. An adjacency
matrix was generated to evaluate the weighted coexpression
values between all the subjects in the probe set. The coex-
pression similarity 𝑠𝑖,𝑗 was defined as the absolute value of the
correlation coefficient between the profiles of nodes 𝑖 and 𝑗:

𝑠𝑖,𝑗 =
󵄨󵄨󵄨󵄨󵄨𝑐𝑜𝑟 (𝑥𝑖, 𝑥𝑗)

󵄨󵄨󵄨󵄨󵄨 (1)

where𝑥𝑖 and 𝑥𝑗 were expression value of for genes 𝑖 and 𝑗 and
𝑠𝑖,𝑗 represented Pearson’s correlation coefficient of gene 𝑖 and
gene 𝑗.

A weighed network adjacency was defined by raising the
coexpression similarity to a power 𝛽:

𝑎𝑖,𝑗 = 𝑠
𝛽
𝑖,𝑗 (2)

with 𝛽 ≥ 1 [20]. We selected the power of 𝛽 = 4 and
scale free R2 = 0.95 as the soft-thresholding parameter
to ensure a signed scale-free coexpression gene network.

The salmon and blue modules, which had most significant
adjusted p-values, were selected. Genes involved in the
salmon and blue modules and their weights as calculated by
WGCNAwere visualized byCytoscape 3.4.0 [21]. GOanalysis
was performed using the clusterProfiler package [22] and
Metascape (http://metascape.org/gp/index.html) [23]. Gene
set enrichment analysis (GSEA) was applied by the GSEA
software from Broad Institute [24].

2.3. Statistical Analysis. Statistical analysis was performed
using R (R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. URL http://www.R-project.org/). The association
between GAS5 expression and the clinicopathological fea-
tures was evaluated by the different mathematical methods
listed in the table [25]. The log-rank test was performed to
assess the difference between the Kaplan-Meier curves. The
fold change and Q value for samples with high and low GAS5
expression were calculated using the limma package [26]. A
Q value < 0.05 was considered statistically significant.

3. Results

3.1. GAS5Was Upregulated in Both LGG and GBM Compared
with Normal Brain Tissues. GAS5 expression levels were
characterized in several types of solid tumours, including
LGG and GBM (Figure 1). The results indicated that GAS5
was downregulated in both LGG and GBM tissue com-
pared with the normal brain tissue. Then, we compared the
expression level of GAS5 between LGG and GBM (Figures
2(a), 2(b), and S1a). No significant difference was identified
between the LGG and GBM datasets. In addition, grade II,
grade III, and grade IV gliomas had similar expression levels
of GAS5, which were all higher than that of normal brain
tissues. The DNA methylation level of GAS5 was analysed
by DNA methylation 450K chips, and the six probes were
chosen from the CpG island in the promoter region of
GAS5. All probes showed low 𝛽 values (<0.1), and there
were no differences in 𝛽 values from any of the six probes
between LGG and GBM tissues, indicating low methylation
of the GAS5 promoter in both LGG and GBM patients
(Figure 2(c)). The association between GAS5 methylation
and GAS5 expression was tested, revealing no significant
relationship in either GBM or LGG tissues (Figures S1B and
S1C). Then, to investigate the driver of high GAS5 expression
in LGG and GBM tissues, we also examined copy number
alterations (CNAs) in LGG and GBM (Figures 2(d) and 2(e)).
The results showed that the amplification-type alteration
contributed to the high expression of GAS5 in both LGG and
GBM tissues (P = 0.044 and P = 0.047).

3.2. Low GAS5 Expression Was a Predictor of Poor Survival
in LGG. The associations between GAS5 expression and the
pathological parameters of patients with primary LGG and
GBM were summarized in Table 1. In patients with LGG,
higher GAS5 expression was significantly correlated with
higher tumour purity (Table 1 and Figure S2). Nevertheless,
we could not find a similar tendency in patients with GBM.
Furthermore, in LGG patients, higher expression of GAS5

https://xenabrowser.net/
http://metascape.org/gp/index.html
http://www.R-project.org/
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Table 1: The associations between GAS5 expression and pathological parameters in patients.

Attributes
GAS expression and . . .

GBM LGG
Statistic P-value FDR (BH) Statistic P-value FDR (BH)

Ethnicity (Wilcox test) 0.096 0.620 0.843 0.002 0.487 0.487
Histological type
(Kruskal-Wallis test) 2.467 0.291 0.843 3.918 0.141 0.197

Race (Kruskal-Wallis test) 1.110 0.574 0.843 4.180 0.243 0.283
Radiation therapy (Wilcox
test) -0.003 0.843 0.843 -0.025 0.019 0.045

Tumour purity (Spearman
correlation) -0.023 0.785 0.843 0.300 1.775e-11 1.243e-10

Age (Spearman correlation) -0.064 0.446 0.843 -0.093 0.041 0.073
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Figure 1: GAS5 mRNA expression in different types of solid tumours and corresponding normal tissues. The RNA-Seq data of normal brain
tissue were obtained from GTEx dataset.

was associated with longer OS according to the log-rank
test (Figure 3(a)). However, the level of GAS5 expression did
not show a strong association with the OS of GBM patients
(Figure 3(b)).

3.3. GAS5 Expression in LGG Patients with Different Clin-
ical and Molecular Characteristics. To further identify the
relationship between GAS5 expression and overall survival
of LGG patients, we first examined GAS5 expression in
LGG patients with different IDH1 status (Figure 4(a)), his-
tologic grades (Figure 4(b)), tumour sizes (Figure 4(c)), and
histologic types (Figure 4(d)). The results showed that the
expression of GAS5 in IDH1mutant patients was significantly
higher than that in IDH1 wild-type patients. In contrast,
histologic grade, tumour size, and histological type had no
association with GAS5 expression. A Kaplan-Meier survival
analysis stratified by clinicopathological risk factors was
performed to verify the effect of GAS5 on survival. In patients
with large or small tumours of histologic grade II or III,

GAS5 showed a good predictive effect for survival (Figures
5(a)–5(d)).

3.4. Multivariate Survival Analysis of GAS5 with Clinical and
Molecular Characteristics in LGG Patients. We applied the
Cox regression model to conduct a multivariable survival
analysis and used Cox regression coefficients to generate
a nomogram (Figure 6(a)). In the multivariable survival
analysis, we included histologic grade, gender, histological
type, IDH mutation status, age, and GAS5 expression level
as risk factors. The nomogram predicts LGG patients’ overall
3-year and 5-year survival probability. The results indicated
that the expression level of GAS5 was highly associated with
overall survival in LGG patients. Calibration plots showed
that the nomograms performed well compared with an
ideal model (Figure 6(b)). Then, the risk scores from Cox
regression were assessed with a time-dependent receiver
operating characteristic (ROC) curve (Figure 6(c)). The area
under the curve (AUC) was 0.897 and 0.825 for 3 years and 5
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Figure 2: GAS5 expression, DNA methylation, and copy number alteration (CNA) in LGG and in GBM. (a) Heatmap of GAS5 mRNA
expression, copy number alteration, and DNA methylation in patients with primary LGG or GBM. Data were obtained from TCGA-LGG
and TCGA-GBM. (b) Violin plots of GAS5 expression in LGG and GBM tissues. (c) Bar plots of GAS5 methylation level in LGG and in GBM
tissues; six probes were chosen from the CpG island before the transcription start site of GAS5. (d-e) Box plots of GAS5 expression in LGG
(d) and GBM (e) tissues with indications of genetic status. Data were obtained from TCGA-LGG and TCGA-GBM.
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Figure 3: The associations between GAS5 expression and OS in LGG (a) and GBM (b) patients.

years, respectively. The patients were separated into 2 groups,
namely, those with high and low risk scores according to the
Cox regression model. The Kaplan–Meier curve, which was
generated by the log-rank test, showed good performance in
predicting the OS of LGG patients (Figure 6(d)).

3.5. WGCNA of RNA-Seq in LGG. To identify the gene
network that was highly associated with GAS5 expression, we
further analysed LGG RNA-Seq data by WGCNA. WGCNA
has been widely applied to study coexpressed gene networks
by scale-free weighted network construction and module
detection. In our analysis, 43 modules were detected; the
clustering of genes is shown as a dendrogram (Figures 7(a)
and S3). The module similarity was quantified and is shown
as a heatmap below (Figure 7(b)). The weighted network
of identified genes from RNA-Seq is shown as a heatmap
below, which depicts the topological overlap matrix among
all genes (Figure 7(c)).Then, 26modules were identified to be
related with GAS5 expression by the heatmap of associations
between modules and GAS5 expression (Figure 7(d)).

3.6. Enrichment Analysis of Genes Highly Associated with
GAS5 Expression in LGG. Based on the results above, the
salmon and blue modules, which had the most significant
relationship with GAS5 expression, were selected. The scat-
terplot below illustrates genetic significance between GAS5
expression (the correlation of genes with GAS5 expression)
and module membership (the correlation of genes with
clusters) for the salmon module (Figure 8(a)) and the blue
module (Figure 8(b)). The results indicated that genes that
had high correlations with the salmon and blue modules were
also strongly associated with GAS5 expression. The genes

from the salmon and blue modules with coefficients higher
than 0.5 were selected and subjected to GO enrichment
analysis (Figures 8(c) and 9). rRNA processing, ribonu-
cleoprotein complex biogenesis, translation factor activity,
ribosomal subunit biogenesis, and other terms were enriched
in the analysis, indicating the key roles of GAS5 in the
regulation of ribosomes in LGG tissues (Figures 9(a), 9(c),
and 9(e)). The genes involved in GO analysis and their fold
changes between the high GAS5 expression group (the 50
samples with the highest GAS5 expression) and the lowGAS5
expression group (the 50 samples with the lowest GAS5
expression) are shown on the circular plots (Figures 9(b),
9(d), and 9(f)). RPL18A, RPL23, RPL24, PRL32, PRS12, and
other ribosome proteins were highly expressed along with
high GAS5 expression, resulting in the upregulation of rRNA
processing and ribosome biogenesis. Finally, the network
connections in the salmon and blue modules with weight
parameters higher than 0.19 fromWGCNA were loaded into
Cytoscape and analysed. A variety of ribosome proteins, such
as RPL10, RPL12, RPL17, and RPS24, were included in the
network (Figures 10(a) and 10(b)). High interconnectivity
within the gene cluster is depicted by thick edges. The
genes most strongly related to GAS5 were analysed in the
TCGA dataset and validated with a CGGA (Chinese Glioma
Genome Atlas) dataset (Figures 10(c) and 10(d)). The most
related genes included RPL6, RPL37A, RPL37, RPS24, and
C20orf199, which were included in the salmon module. The
results further confirmed the relationship between salmon
module and GAS5.

3.7. RNA-Seq Analysis of the High and Low GAS5 Expression
Groups. To validate the results of WGCNA, we performed
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Figure 4: GAS5 expression in LGG patients with different IDH1 statuses (a); histologic grade (b); tumour sizes (c); and histological type (d).

GO analysis and GSEA in the high and low GAS5 expression
groups. The workflow is shown in Figure 11(a). The volcano
plot indicates the fold changes and Q values of differentially
expressed genes (Figure 11(b)). A heatmap of the 200 differ-
entially expressed genes with the highest significance levels
between the high and low GAS5 expression groups is shown
in Figure 11(c). Then, differentially expressed genes were
analysed by GO analysis (Figure 11(d)). The results indicated
a high degree of association between GAS5 expression and
translation initiation. GSEA was performed using all genes
from GAS5 high-expressed group and GAS5 low-expressed
group, indicating translation initiation, ribosomal biogenesis,

and ribonucleoprotein complex biogenesis were significantly
upregulated (Figures 11(e), 11(f), and 11(g)). An MA plot was
generated to show the differentially expressed geneswith high
significance levels between the high and lowGAS5 expression
groups (Figure S4).

4. Discussion

LncRNAs are non-protein-coding transcripts longer than 200
nucleotides and have been demonstrated to play critical roles
in diverse cellular processes and the regulation of biological
functions [7, 27, 28]. LncRNAs regulate gene expression at
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Figure 5: Kaplan-Meier survival analysis for LGG patients according to GAS5 expression levels, stratified by clinicopathological risk factors.
(a, b) Tumour size. (c, d) Tumour grade. P values were calculated using the log-rank test.

the transcriptional, posttranscriptional, and epigenetic levels.
The expression levels of lncRNAs are frequently deregulated
in cancer [29–32]. For instance, GAS5 has been reported as
a crucial tumour suppressor in a variety of human cancers.
GAS5 expression is significantly decreased in prostate cancer
cells compared with prostate epithelial cells [33]. Ectopic
expression of GAS5 induces cell-cycle arrest in the G0–G1
phase by increasing the activity of the P27Kip1 promoter. In
addition, GAS5 interacts with E2F1 and enhances the binding

of E2F1 to the P27Kip1 promoter in prostate cancer [33].
GAS5 expression is also markedly downregulated in gastric
cancer tissues and influences gastric cancer cell proliferation
via regulating the expression of E2F1 and P21 [11]. One
study revealed that GAS5 was significantly downregulated in
lung adenocarcinoma tissues compared with paired adjacent
nontumorous tissue samples. The overexpression of GAS5
varied inversely with the expression of EGFR pathway and
IGF-1R proteins in lung adenocarcinoma tissues [12].
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Figure 6: Multivariate survival analysis of GAS5 and clinical and molecular characteristics in LGG patients. Data are AUC (95% CI) or p
values. ROC: receiver operating characteristic. AUC: area under the curve. (a) The nomogram to predict overall survival in LGG patients.
(b) Plots depict the calibration of each model in terms of agreement between predicted and observed 3-year and 5-year outcomes. Model
performance is shown by the plot, relative to the 45-degree line, which represents perfect prediction. (c) Time-dependentROC curves indicate
the prognostic accuracy of the nomogram over 3 and 5 years. We used AUCs at 3 and 5 years to assess prognostic accuracy. (d) Kaplan-Meier
survival analysis was conducted for LGG patients in the high-risk-score group and the low-risk-score group from a Cox regression model,
and p values were calculated using the log-rank test.
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Figure 7:WGCNAof RNA-Seq data from LGG patients andGBMpatients. (a) Dendrogram ofmodules identified byWGCNA. (b) Heatmap
of module-GAS5 expression associations. (c) Topological overlap matrix among detected probes from RNA-Seq. (d) Heatmap for module
similarity. (e-f) Scatterplot of gene significance for GAS5 expression versus module membership in the salmon (e) and blue modules (f).

Recent studies have implied that lncRNAs participate
in the development and malignancy of GBM by regulating
glioma stem cell self-renewal, proliferation, differentiation,
therapeutic response, and resistance [34–37]. In this study,
we focused on GAS5, one crucial noncoding gene in glioma
progression [37–39]. GAS5 plays a critical role in the control
of mammalian apoptosis and acts as a competitive glucocor-
ticoid response element to mediate cell population growth
by suppressing glucocorticoid receptors [9]. GAS5 inhibits

the association of glucocorticoid receptors with their DNA
recognition sequences by binding to their DNA-binding
domain through its double-stranded RNA glucocorticoid
receptor element mimic [9]. Thus, GAS5 is upregulated
in growth-arrested cells and sensitizes mammalian cells to
apoptosis [40]. In this study, we focused on the mRNAs
coexpressed with GAS5 in gliomas and howGAS5 controlled
the survival of glioma patients. By characterizing the lev-
els of GAS5 expression based on data from TCGA-LGG
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Figure 10: Visualization of genes in the salmon and blue modules with weights higher than the threshold (weight > 0.19) and correlations
between GAS5 and the most closely related molecules. Node sizes indicate betweenness centrality, which reflects the amount of control that
this node exerts over the interactions of other nodes in the network. Edge sizes depict the weight of the connection between genes. (a) Genes
in the salmonmodule with weights higher than 0.19. (b) Genes in the blue module with weights higher than 0.19. (c)The correlations between
GAS5 and the most closely related genes in the TCGA dataset. (d) The validation of the association in the CGGA dataset.

and TCGA-GBM patients, we demonstrated a significant
downregulation of GAS5 expression in LGG and GBM com-
pared with normal brain tissue. One previous study revealed
that GAS5 expression decreased as the histologic grade of
glioma increased [38]. However, by analysing TCGA-LGG
and GBM RNA-Seq datasets, we arrived at the conclusion
that histologic grade did not influence GAS5 expression.
The discrepancy may be due to the sample numbers. In
this study, we analysed the expression levels of GAS5 in
702 samples, far more than Zhao’s study used. One previous
report revealed that hypermethylation of CpG islands in
promoter regions contributes to the downregulation of GAS5
expression [10]. The methylation level of the GAS5 gene
was detected by the six probes targeting the CpG island
before the transcription start site of GAS5. Both LGG and
GBM tissues had low GAS5 methylation levels. However,

there was no significant association between the methylation
level and the expression level of GAS5. Amplification-type
alteration was associated with increased GAS5 expression
in both LGG and GBM tissues. GAS5 expression played
different roles in affecting the OS of LGG and GBM patients.
GAS5 expression was strongly associated with OS in LGG
patients. We also examined GAS5 expression in LGG patients
with differentmolecular characteristics and histologic grades.
GAS5 expression was higher in IDH1 mutant patients than
in patients with wild-type IDH1. To confirm the association
between GAS5 and OS in LGG patients, we performed
Kaplan-Meier survival analysis on LGG patients according
to their GAS5 expression levels, stratified by clinicopatholog-
ical characteristics. Kaplan-Meier survival analysis showed
high association between GAS5 expression level and OS in
both grade II and grade III gliomas. We also performed
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Figure 11: RNA-Seq analysis of LGG tissues with the highest and lowest GAS5 expression. (a) Workflow for RNA-Seq and downstream
analysis based on differentially expressed genes and all genes in RNA-Seq. (b) Volcano plot for differentially expressed genes in the groups
with high and low expression of GAS5. (c) Heatmap of the 200 differentially expressed genes with the highest significance levels between the
groups with high and low expression of GAS5. (d) Heatmap of gene ontology analysis for biological processes. (e-g) Gene set enrichment
analysis for the groups with high and low expression of GAS5.
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multivariate survival analysis of GAS5 with clinical and
molecular characteristics in LGG patients. The Cox HR
model indicated that GAS5 was strongly associated with the
overall survival of patients. Based on the results discussed
above, a nomogram was developed to predict the 3-year
and 5-year survival probabilities of LGG patients. Time-
dependent ROCs and log-rank tests further confirmed the
results.

To understand the molecular mechanism behind the
effect of GAS5 in LGG tissues, we performed WGCNA and
downstream enrichment analysis. The results indicated that
the genes in the salmon and blue modules played important
roles in ribosome function, which was consistent with previ-
ous reports on the involvement of GAS5 in ribosomal RNA
biosynthesis [41]. In addition, the genes highly correlated
with GAS5 expression showed intensive connection when
visualized by Cytoscape. A variety of the hub genes were
ribosomal proteins, e.g., RPL13, RPL37, PRL38, and PRL10A,
indicating the strong association between GAS5 and ribo-
somal function. The results were consistent with a previous
study, which revealed that GAS5may act as a “ribo-repressor”
of glucocorticoid receptors to influence cell survival and
metabolic activity during starvation by modulating the tran-
scriptional activity of the glucocorticoid receptor [40]. To
further confirm the results fromWGCNA,we also performed
RNA-Seq analysis and downstream GO analysis and GSEA.
Translation initiation was the most predominant result from
GO, implying that GAS5 may be an important regulator of
transcription initiation. One study demonstrated that GAS5
was enriched with eIF4E, which had two RNAbindingmotifs
for GAS5 [42]. The deletion of either motif inhibited the
binding of GAS5 to eIF4E. In addition, GSEA results also
indicated upregulation of translation initiation and ribosomal
biogenesis in group with high GAS5 expression, which was
consistent with GO analysis and previous research [43].

Altogether, the data presented here suggest that GAS5
plays essential roles in the physiological process of LGG. The
mechanism may include ribosome biogenesis and regulation
of translation initiation. In conclusion, based on molecular
and clinical analysis, our study demonstrated that GAS5
is linked tightly to ribosomal biogenesis and translation
initiation in LGG tissues and acts as a predictor of survival
in patients with early-stage gliomas.
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