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for many years.1 Cells migrating in this 
manner polymerize actin into filopodia and 
lamellipodia at their leading edge, where 
these protrusions facilitate recognition of 
chemotactic gradients and adhesion to 
underlying substrata.2,3 At sites of integrin 
engagement with the extracellular matrix 
(ECM), focal contacts form and mature into 
focal adhesions through recruitment and 
concentration of kinases (e.g., focal adhesion 
kinase), adaptor proteins (e.g., a‑actinin) 
and actin binding proteins (e.g.,  paxillin). 
Following adhesion, actomyosin contractility 
generates traction forces enabling forward 
translocation of the cell body. Adhesions at 
the trailing edge are then released, and the 
process continues in a cyclic fashion as the 
cell migrates away from the primary tumor.2

Transition from epithelial to mesenchymal 
features (EMT) in cancer cells is a well‑ 
recognized mechanism of motility that is 
relevant to disease progression. A  defining 
characteristic of cells having undergone EMT 
is dependence on pericellular proteolysis 
for migration. The observation that some 
migrating cells are relatively insensitive to 
protease inhibition led to the suggestion that 
alternative, nonproteolytic mechanisms of 
tumor cell escape must exist. Wolf et al.4 were 
the first to show that, under conditions of 
protease inhibition, certain tumor cells undergo 
a dramatic morphological, biochemical 
and migratory transition, converting from 
spindle‑like to rounded morphologies, with 
loss of focal integrins. These tumor cells also 
formed constriction rings, enabling squeezing 
of the cell body through ECM fibers. Notably, 
the transition was accomplished in the absence 
of proteolytic matrix remodeling. Sahai and 
Marshall extended these observations, showing 
that RhoA/ROCK (Rho kinase) signaling and 
pliable matrices prompted tumor cells to adopt 

Prostate cancer (PCa) remains a principal 
cause of mortality in developed countries. 

Because no clinical interventions overcome 
resistance to androgen ablation therapy, 
management of castration resistance and 
metastatic disease remains largely untreatable. 
Metastasis is a multistep process in which 
tumor cells lose cell‑cell contacts, egress from 
the primary tumor, intravasate, survive shear 
stress within the vasculature and extravasate 
into tissues to colonize ectopic sites. Tumor 
cells reestablish migratory behaviors employed 
during nonneoplastic processes such as 
embryonic development, leukocyte trafficking 
and wound healing. While mesenchymal 
motility is an established paradigm of 
dissemination, an alternate, ‘amoeboid’ 
phenotype is increasingly appreciated as 
relevant to human cancer. Here we discuss 
characteristics and pathways underlying the 
phenotype, and highlight our findings that 
the cytoskeletal regulator DIAPH3 governs the 
mesenchymal‑amoeboid transition. We also 
describe our identification of a new class of 
tumor‑derived microvesicles, large oncosomes, 
produced by amoeboid cells and with potential 
clinical utility in prostate and other cancers.

THE AMOEBOID PHENOTYPE
The classic mesenchymal mode of tumor 
cell migration has been actively investigated 

a rounded, blebbing morphology.5 Similarly 
to observations by Wolf and colleagues4, 
inhibition of proteolysis provoked elongated 
cells to become round, a conversion that 
induced sensitivity to ROCK inhibitors. Given 
the migratory resemblance to the amoeba 
Dictyostelium discoideum, this phenotype has 
been coined ‘amoeboid’ motility.

Following these two seminal studies, 
further investigation unveiled additional 
biochemical and cellular features inherent 
in amoeboid migration. Wilkinson et  al.6 
observed that heightened RhoA/ROCK 
signaling induced cortical actomyosin 
contractility through phosphorylation of 
myosin light chain (MLC2). In vivo, MLC2 
localized perpendicularly to the direction of 
migration, providing amoeboid cells with the 
force necessary to deform proximal matrices 
and thereby push fibers from their path.7 ECM 
deformation appears to confer a migratory 
advantage, as amoeboid behavior predominates 
at tumor margins,8,9 with migration rates in vivo 
10–30  times those observed in culture and 
relative to cells migrating in a mesenchymal 
fashion.2 Amoeboid behavior also confers 
greater sensitivity to chemotactic agents,10,11 
potentiating intravasation,12,13 and enables 
cell survival during extensive shear stress 
within the vasculature.14 Extravasation and 
colonization are also promoted, as evinced by 
increased pulmonary metastases of amoeboid 
variants in murine metastasis models.8,12,15,16 
Collectively, these observations suggest that a 
‘mesenchymal‑to‑amoeboid’ transition (MAT) 
increases tumor cell aggressiveness relative to 
EMT, and thereby augments transit through 
the metastatic cascade.17

RELATIONSHIP OF EMT TO MAT
Both EMT and MAT are adaptive and reversible 
mechanisms mediating diverse aspects of the 
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plasticity underlying dissemination. Not 
surprisingly these behaviors share promigratory 
features, however, they are also functionally and 
morphologically distinguishable.

Intercellular adhesion
Acquisition of a mesenchymal phenotype is 
characterized by loss of epithelial markers 
(e.g., E‑cadherin) and expression of ectopic 
markers (e.g.  N‑cadherin). This ‘cadherin 
switch’ weakens adherens junction strength1, 
facilitating single‑cell migration. Cells 
migrating in an amoeboid fashion may 
similarly become extricated from cell‑cell 
constraints through reduced expression of 
junctional components.18

Cell‑matrix adhesions
A key difference between amoeboid and 
mesenchymal migration modes lies in their 
relative dependence on integrins. Cells 
exhibiting a mesenchymal phenotype display 
focal, clustered localization and increased 
utilization of integrins, and differences in 
integrin subtypes in the front and rear of the 
cells. These changes strengthen anchorage 
to the substratum for forward translocation 
of the cell body.19 In contrast, amoeboid 
cells exhibit reduced surface expression 
and engagement of integrins4,20 and display 
uropods.21,22 MAT is associated with reduced 
focal adhesion kinase autophosphorylation 
at Y39720,23,24, can be induced by low integrin 
expression, integrin blocking antibodies or 
integrin peptidomimetics,25 and is modulated 
by integrin turnover and downstream 
signaling.26–30 Because an inverse correlation 
exists between adhesion strength and 
migration speed, the weaker adhesions of 
amoeboid cells likely contribute to their faster 
migration rates.25,31

Pericellular proteolysis
A defining characteristic of EMT is dependence 
on proteases for ‘path generation’ during 
migration. Co‑clustering of β1‑integrins and 
matrix metalloproteinases  (MMPs)4 at sites 
of ECM contact allows focalized proteolysis 
of matrix fibers that allosterically impede 
migration.1 In contrast, MMPs in amoeboid 
cells are localized to the cytosol.4 Consistent 
with this distribution, MMPs are less central to 
amoeboid motility, which can be refractory to 
protease inhibition.4,5,7 MAT thus represents a 
mechanism by which tumor cells can migrate 
and invade under conditions where protease 
activity is suppressed.4,32

Directional and random migratory modes
In three‑dimensional  (3D) culture, both 
mesenchymal and amoeboid cells migrate 
directionally. This directionality is dictated by 

the leading edge in mesenchymal cells, yet in 
amoeboid cells is instead dependent on the 
site and direction of bleb outgrowth. Such 
directional migratory behaviors in 3D are in 
contrast to those in 2D, in which persistent 
migration in one direction is characteristic 
only of cells migrating in a mesenchymal 
fashion. In contrast to directional persistence 
in 3D, in 2D cultures amoeboid cells instead 
display random and faster rates of motility,25 
consistent with the inverse correlation between 
directional persistence and migration speed.31

Morphogenesis through cytoskeletal remodeling
Morphology constitutes a fundamental 
d is t inc t ion b etween amo eb oid  and 
mesenchymal phenotypes. Mesenchymal 
cells are characteristically elongated and 
polarized, with leading and trailing edges. 
In contrast, amoeboid cells are rounded/
ellipsoid without signs of planar polarization 
and display prominent membrane blebs. Actin 
remodeling is employed by both cell types to 
produce these respective morphologies. Motile 
cells operating in a mesenchymal mode use 
actin polymerization to generate chemo‑and 
substrate‑sensing filopodia, and lamellipodia 
and stress fibers for traction and maturation of 
focal adhesions.3,33 In contrast, amoeboid cells 
display heightened actomyosin contractility, 
which provides the force for displacement 
of matrix fibers3,7,33,34 and facilitates bleb 
dynamics.35 Both mesenchymal and amoeboid 
cells are naturally occurring subpopulations 
within the DU145 PCa cell line (Figure 1a).

Thoug h less  charac ter ized  t han 
actin contractility, microtubule (MT) 
dynamics also influence EMT and MAT. 
These long, cylindrical tubulin polymers 
undergo stochastic cycles of elongation and 
disassembly.36 This ‘dynamic instability’ 
underlies MT‑dependent  processes, 
perturbation of which elicits numerous 
features of neoplastic transformation. EMT 
appears to render the MT cytoskeleton 
less stable than in differentiated epithelia.37 
Functional loss of tumor suppressor proteins 
can cause MT disruption, which cooperates 
with the pleiotropic events underlying 
EMT.37 Regulators of MT dynamics also 
affect EMT.38–40 While relevant to EMT, 
MT instability may contribute even more 
substantially to MAT. Inhibiting MT 
polymerization with vincristine promotes 
amoeboid invasion through hyperactivation 
of GEFH1, an activator of RhoA/ROCK41. 
Overexpression,42 downregulation of 
inhibitory phosphorylation,42 or loss of 
sequestration by p27kip1,12,43 of the MT 
depolymerizer stathmin also induces MAT, 

in part through disruption of endocytic 
trafficking.44 Such events are detected in 
human tumors,42 including PCa.45,46

Consistent with a role for the cytoskeleton 
in triggering amoeboid behavior, our laboratory 
has identified the diaphanous‑related 
formin‑3, DIAPH3, as potentially a pivotal 
regulator of MAT in prostate cancer and 
possibly other tumor types.23 DIAPH3 belongs 
to the formin family that shares tandem FH1 
and FH2 domains, which nucleate, elongate 
and bundle linear actin filaments and/or 
stabilize MT.47 DIAPH3 silencing causes 
redistribution of actin structures (stress fiber 
loss and cortical MLC2 relocalization) and 
reduces MT stability, alterations associated 
with transition to an ellipsoid, blebbing 
and amoeboid phenotype23 (Figure  1b). In 
3D matrices, invading DIAPH3‑silenced 
cells assume rounded morphologies, while 
controls are elongated. Consistent with 
these cytoskeletal defects and the amoeboid 
characteristics above, DIAPH3 silencing 
disrupts endocytic trafficking, suppresses 
focal adhesions and promotes migration, 
invasion and metastatic colonization.23 
Enforced DIAPH3 expression instead induces 
mesenchymal characteristics, including 
N‑cadherin upregulation, suppression of 
membrane blebbing and increased stress fiber 
formation,23 phenotypes modulated by the 
phosphorylation state of DIAPH3 at S624. Our 
studies situate DIAPH3 as a node controlling 
mesenchymal and amoeboid behaviors.

Non‑apoptotic membrane blebbing
While mesenchymal cells display lamellipodia 
and filopodial protrusions, a defining 
characteristic of amoeboid cells is protrusion of 
bulky, non‑apoptotic and dynamic membrane 
blebs from the cell surface. Cortical tension,48 
substrate adhesion strength,49 and relative 
RhoA and Rac1 activities2 influence the choice 
to bleb or form lamellipodia.50 Dissociation 
of the actin cortex and plasma membrane or 
alternatively cortical ruptures,35,51 initiates bleb 
formation. Hydrostatic pressure inflates these 
structures, whose growth is reverted by cortex 
regeneration.52 Blebs contribute to amoeboid 
migration, and their release can modify the 
tumor microenvironment (TME, see below).

Our group recently demonstrated that 
membrane blebs formed from amoeboid cells 
can be shed into the extracellular space.53,54 Such 
extracellular vesicle (EV) shedding produces 
atypically large (1–10  µm) EV that can 
condition the TME and reach the circulation. 
We named this type of poorly‑characterized 
particle a ‘large oncosome’, employing the term 
‘oncosome’ used previously by Janusz Rak and 
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colleagues as a tumor‑derived microvesicle 
that carries tumor biomarkers and can transfer 
signaling complexes to recipient cells.55 
Oncosomes horizontally transfer proteins, 
mRNA, miRNA and metabolites to neighboring 
tumor and stromal cells,55 in a manner distinct 
from paracrine signaling by soluble factors. The 
realization that the size range of large oncosomes 
far exceeds that of other EV (e.g.,  exosomes, 
≤70 nm) identified a significant advantage for 
their visualization and isolation. Thus, while 
detection of smaller EV requires electron 
microscopy, large oncosomes are of sufficient 
size to be visualized by light microscopy or 
immunofluorescence methods. These tools 
can be applied in human tissues, raising the 
possibility for detection of amoeboid cells in situ, 
a significant advance for clinicopathologic 
detection of this malignant phenotype in 
tumor biopsies.54 In addition to detection 
techniques in tissues, we have also developed 
a method for large oncosome identification 
using size beads and immunoflow cytometry,54 
and more recently, a filtration‑based system 
enabling exclusion of smaller EV and selective 
enrichment for large oncosomes.56 With these 
approaches, we have identified large oncosomes 
shed from cultured cells and in biological fluids 
from mice and humans with PCa.

Using a quantitative blebbing assay, 
we observed that the oncogene Akt1 and 
mitogens of the EGF family promote large 

oncosome genesis, a process attenuated by 
epidermal growth factor receptor  (EGFR) 
inhibition with gefinitib.53 Proteomic 
analysis of microvesicles shed from cells 
overexpressing activated Akt1 revealed the 
presence of numerous signaling mediators, 
including Akt1, Src and a biomarker for 
metastatic PCa, caveolin‑1.53 More recently, 
analyses of large oncosomes from tumorigenic 
RWPE‑2 or non‑tumorigenic RWPE‑1 
isogenic prostate cells revealed abundant, 
differentially‑expressed miRNAs.56 Large 
oncosomes display gelatinase activity,53 
promote gene expression in recipient 
fibroblasts54 and stimulate migration in 
cancer and endothelial cells.54 Together, 
these disparate bioactivities suggest that large 
oncosomes contribute to cancer progression. 
In support of this notion and MAT induction 
by DIAPH3 loss,23 DIAPH3 silencing 
stimulates formation and shedding of large 
oncosomes,23,53,54 which promote proliferation 
and motility in recipient cells.53 Similarly, 
DIAPH3 silencing enhances the secretion of 
smaller EV, which stimulate proliferation in 
recipient prostate and heterologous cancer 
cells (Kim et al. in press). Our data suggest 
that EV secretion is upregulated in amoeboid 
cells, and that the diverse biological activities 
of these microvesicles contribute to the 
malignancy and greater invasiveness of such 
tumor cell variants.

PATHWAYS MEDIATING THE AMOEBOID 
PHENOTYPE
Networks underlying MAT remain poorly 
defined, though their elucidation would 
greatly facilitate therapeutic strategies 
with which to impact metastasis. Below, 
we summarize pathways modulating this 
transition (Figure 2).

Rho family GTPases, their regulators and 
downstream targets
The canonical GTPases Rac1, Cdc42 and RhoA, 
play critical roles in specifying migration 
strategies.5,8,57 Like all GTPases, the Rho family 
is cyclically activated by guanine nucleotide 
exchange factors (GEFs) and deactivated by 
GTPase‑activating proteins  (GAPs).58 RhoA 
and Rac1 control the transition between 
amoeboid and mesenchymal phenotypes, 
respectively, and display an inter‑relationship 
also with Cdc42. While inducing filopodia 
during mesenchymal motility, Cdc42 also 
paradoxically promotes amoeboid migration; 
activation by DOCK10 induces MAT,59 while 
this Cdc42‑mediated transition is suppressed 
by RasGRF1/2.15 In contrast to Cdc42, Rac1 
functions as an antagonist of the amoeboid 
phenotype. Hyperactivation of Rac1 by 
the GEF DOCK3 promotes mesenchymal 
behavior,8 while inactivation by the GAPs 
ARHGEF228 or FilGAP60 promotes MAT. 
Arguably, the most characterized GTPase 
mediator of the amoeboid transition is RhoA, 
which is activated by disparate upstream 
GEFs.27,61–64 Signaling through its effector 
kinase ROCK, RhoA promotes actomyosin 
contractility, and thereby enables ECM 
deformation and ‘path finding’ through 
tissue matrices. RhoA/ROCK signaling is 
positively regulated by PDK116 and p53 loss,33 
and negatively regulated by RhoE/Rnd316,65 
and the ubiquitin E3 ligase SMURF1.34 
Consistent with the requirement of RhoA/
ROCK for MAT, we observed that DIAPH3 
silencing promotes ROCK activation, as 
evinced by enhanced MLC2 and MYPT‑1 
phosphorylation.23

Receptor tyrosine kinases
Chemotactic sensitivity is heightened by 
transition to an amoeboid phenotype. In 
agreement with their contribution to PCa 
progression and metastasis,66,67 the hepatocyte 
growth factor receptor, c-MET,68 and Ephrin 
A1 receptor, EphA2,69,70 are both implicated 
in MAT. Extensive work by the Condeelis 
laboratory demonstrates that amoeboid 
migration is also highly EGFR‑responsive, with 
amoeboid cells hypersensitized to EGF, a soluble 
factor that facilitates chemotaxis and promotes 

Figure 1: (a) Mesenchymal (top) and amoeboid (bottom) subpopulations occur naturally within DU145 
PCa cells. Cells were stained with antitubulin (green) and phalloidin (red) to demonstrate differences 
in tubulin and actin cytoskeletal organization. The cell nucleus is blue (DAPI). Note the difference in 
size between mesenchymal and amoeboid cells. (b) Mesenchymal (top)-amoeboid (bottom) transition in 
HMEC-HRasV12-transformed HMECs upon DIAPH3 silencing.23 DAPI: 4',6-diamidino-2-phenylindole; 
HMEC: human mammary epithelial cells; PCa: prostate cancer.

ba
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metastasis.14,71 Concordantly, we observed 
elevated EGFR activation and EGF‑responsive 
membrane blebbing, migration and invasion in 
DIAPH3‑deficient PCa cells.23,53

The TME
Mitogenic and morphogenic components 
within the TME participate in conversion 
of tumor cells to an amoeboid phenotype. 
Secretion of tenascin C72 or plasminogen 
activator inhibitor type‑1 (PAI‑1)73 by tumor 
cells promotes MAT, a transition similarly 
induced by the proinflammatory cytokines 
IL‑674 and transforming growth factor b1.62 
Crosstalk with stroma also potentiates 
amoeboid migration.75 Paracrine interactions, 
through reciprocal ligand secretion and 
complementar y receptor expression, 
promote  co‑migrat ion of  amoeboid 
cells and macrophages.13 Carcinoma cell 
migration is further mediated by activation 
of cancer‑associated fibroblasts  (CAFs) by 
the pro‑inflammatory cytokine OSM, which 
promotes CAF contractility and in turn ECM 
remodeling.74 While CAFs induce EMT in 
PCa cells, in cooperation with the tumor 
cells they recruit endothelial progenitor 
cells that stimulate further transition to an 
amoeboid phenotype.76 Adhesion of PCa 
cells to endothelial progenitor cells increases 
following MAT, potentially promoting 
neovascularization and intravasation.76

Amoeboid‑derived large oncosomes have 
the potential to pleiotropically condition 
the TME. Enriched in numerous oncogenic 
biomolecules, large oncosomes stimulate 
signal transduction, proliferation and 
migration in recipient tumor cells,53,54 and 
gene expression in CAFs.56 Large oncosomes 
upregulate pro‑metastatic factors in fibroblasts, 
enhance migration in tumor endothelial 
cells and activate stromal myofibroblasts 
to enhance PCa cell migration.53,54 EV shed 
by amoeboid cells also suppress immune 
cell proliferation (Kim et  al. in press). It is 
tempting to speculate that amoeboid‑derived 
EV contribute to the ‘relay system’ proposed 
by Wyckoff and colleagues,13 by transmitting 
promigratory signals from the minority of 
highly chemotactic amoeboid cells to the 
remainder of the tumor mass.

Cytoskeletal remodeling and formins
Cytoskeletal rearrangements are fundamental 
to the reprogramming underlying motile 
behaviors in tumor cells. Alterations in 
actin and MT networks thus contribute 
to both EMT and MAT. Formins regulate 
cytoskeletal dynamics downstream of Rho 
GTPases77 and are thereby poised to contribute 
to both mesenchymal and amoeboid 
morphogenesis. Indeed, several formins and 
their upstream regulators induce transition 
to an amoeboid phenotype. Overexpression 

of the Formin-like protein 2 evokes MAT,78 
and FHOD1 promotes membrane blebbing 
in conjunction with ROCK1 and Src79, while 
Dia1 promotes bleb‑based cell motility 
through the GEF LARG.80 Eisenmann and 
colleagues demonstrated that inhibition of 
mDia2, through binding to DIA‑interacting 
protein (DIP), similarly induces an amoeboid 
transition.81,82 Interestingly, the DIAPH3 
locus encodes multiple splice variants that 
differentially impact actin dynamics and 
membrane blebbing.83 Thus, formins both 
positively and negatively participate in the 
amoeboid transition.

Genomic deletion of the formin DIAPH3
Our laborator y has  demonstrated a 
relationship between DIAPH3 and the 
amoeboid phenotype in PCa.23 We identified 
the DIAPH3 locus within a small frequent focal 
deletion on chromosome 13q. Copy number 
variation analyses revealed a significant 
correlation between DIAPH3 loss and disease 
progression. Genomic DIAPH3 deletions 
increased in frequency with Gleason grade, 
most frequent in metastatic PCa.23 A 100K 
SNP array analysis of primary and metastatic 
tumors yielded a similar conclusion, one 
supported by fluorescent in situ hybridization 
on an independent cohort.53 In tissues from 
PCa patients, DIAPH3 protein levels were 
diminished in metastases relative to primary 
tumor or benign prostate epithelia. DIAPH3 
loss was also more prevalent in disseminated 
tumor cells from patients with advanced 
disease, relative to those with organ‑confined 
disease or solid tumors.23

In agreement with association with 
metastasis, targeting DIAPH3 by RNAi in 
cultured cells evoked an amoeboid transition, 
characterized by membrane blebbing, cell 
rounding, hyperactivation of ROCK/MLC2 
and fast, random migration23. Echoing the 
above examples of enhanced extravasation/
colonization of amoeboid cells,8,12,15,16 DIAPH3 
silencing potentiated metastases in mice. 
Molecularly, DIAPH3 loss destabilized MT, as 
evinced by diminished tubulin acetylation, a 
posttranslational modification accumulating 
on MT with slow turnover rates (stable MT).84 
The cytoskeletal defect was associated with 
disrupted endocytic trafficking of EGFR,23 
whose activation promotes blebbing in PCa 
cells.53 EGFR accumulated in early endosomes, 
with transport to lysosomes and membrane 
recycling both mitigated. Consequently, 
attenuation of receptor activity was delayed, 
evoking downstream ERK1/2 hyperactivation. 
Sustained MEK1/ERK1/2 signaling was 
essential for maintenance of MAT. These 

Figure 2: Signal transduction mechanisms and cell processes that regulate or are associated with the 
amoeboid phenotype. CSF-1: Colony stimulating factor 1; EGFR: epidermal growth factor receptor; EPC: 
endothelial progenitor cell; EV: extracellular vesicle; GAP: GTPase-activating protein; GEF: guanine 
nucleotide exchange factor; IL-6: interleukin-6; MAT: mesenchymal-to-amoeboid transition; PAI: 
plasminogen activator inhibitor type-1; TGFb1: transforming growth factor beta 1; TNC: Tenascin C.
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findings suggest that assessing DIAPH3 lesions 
in PCa patients may have prognostic utility.

CONCLUSIONS
The studies described in this article highlight 
the importance of tumor cell plasticity in 
patient stratification and attempts to discover 
new, clinically informative biomarkers. 
Methods for identifying amoeboid cells 
in human tumors are emerging, including 
detection of large oncosome features in 
tumor tissue or in the blood. The role of the 
amoeboid phenotype in tumor progression is 
still poorly understood and much fascinating 
tumor biology lies ahead, waiting discovery.
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