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ABSTRACT Quantitative traits are important targets of both natural and artificial selection. The genetic
architecture of these traits and its change during the adaptive process is thus of fundamental interest. The fate
of the additive effects of variants underlying a trait receives particular attention because they constitute the
genetic variation component that is transferred from parents to offspring and thus governs the response to
selection. While estimation of this component of phenotypic variation is challenging, the increasing
availability of densemolecular markers puts it within reach. Inbred plant species offer an additional advantage
because phenotypes of genetically identical individuals can be measured in replicate. This makes it possible
to estimate marker effects separately from the contribution of the genetic background not captured by
genotyped loci. We focused on root growth in domesticated rice, Oryza sativa, under normal and aluminum
(Al) stress conditions, a trait under recent selection because it correlates with survival under drought. A dense
single nucleotide polymorphism (SNP) map is available for all accessions studied. Taking advantage of this
map and a set of Bayesian models, we assessed additive marker effects. While total genetic variation
accounted for a large proportion of phenotypic variance, marker effects contributed little information,
particularly in the Al-tolerant tropical japonica population of rice. We were unable to identify any loci
associated with root growth in this population. Models estimating the aggregate effects of all measured
genotypes likewise produced low estimates of marker heritability and were unable to predict total genetic
values accurately. Our results support the long-standing conjecture that additive genetic variation is depleted
in traits under selection. We further provide evidence that this depletion is due to the prevalence of low-
frequency alleles that underlie the trait.
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Unraveling the mechanisms of phenotypic evolution under selection
is a fundamental task in biology. Among-individual variation in most
traits of interest results from a collective action of multiple genes in

conjunction with environmental effects (Lynch and Walsh 1998). To
a first approximation, only the component of the genetic variation
that is due to the additive contribution of DNA sequence poly-
morphisms is passed on to the following generations. The fate of
this additive genetic variance is thus of particular interest since it is
an important factor determining both the speed and direction of
adaptation.

Fisher (1930) predicted that selection should deplete this com-
ponent of phenotypic variance as beneficial alleles become fixed. This
intuition has been extensively explored in theoretical studies. Most
analyses focus on two scenarios: stabilizing selection, where the
population is close to optimum fitness and extreme phenotypes
are deleterious, and directional selection, where the optimal pheno-
type is shifted and the population is allowed to evolve toward the new
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state. While the studies involve different sets of assumptions and
employ either analytical or simulation approaches, the general con-
clusion is that the predictions are very sensitive to model parameters.
In some cases (Lande 1975; Turelli 1984) mutation-selection balance
is expected to maintain a substantial amount of additive genetic
variation. In other scenarios, the variance is either reduced or pre-
served due to segregation of a few large-effect alleles (Turelli 1984;
Barton 1986; Johnson and Barton 2005; de Valdar and Barton 2014;
Jain and Stephan 2017; Stetter et al. 2018). The assumed shape of the
mutation effect size distribution appears to play a major role in
determining whether substantial additive genetic variation is main-
tained in the face of selection.

Empirical observations can help us distinguish which theoretical
models, and thus genetic mechanisms, are most consistent with data.
The difficulty is that we cannot directly observe the components of
phenotypic variance, but must rely on statistical models to estimate
them. Assuming reliable estimates, the common approach is to
compare additive genetic variances in fitness-related (often called
life-history) traits to a control group (e.g., seemingly unimportant
morphological characteristics). Since measurement scales differ among
traits, some scale factormust be used tomake comparisonsmeaningful.
A popular scaling factor is the total variance. Its use is well-motivated
by theory as the ratio of additive genetic to total variance yields
estimates of narrow-sense heritability, a parameter important in pre-
dicting outcomes of single-generation selection on phenotypes (Lynch
and Walsh 1998). Most empirical studies (Mousseau and Roff 1987;
Gustafsson 1986; Kruuk et al. 2000; Johnson and Barton 2005) find that
narrow-sense heritability of traits correlated with fitness is indeed low.
However, two traits can have equal levels of additive genetic variance
but different heritabilities due to differing amounts of environmental
variance (Price and Schluter 1991). Fisher’s prediction applies to the
total amounts of additive variation, so arguably estimates of heritability
are misleading. There is in fact some evidence (Price and Schluter 1991;
Houle 1992; Johnson and Barton 2005) that scaling genetic variances by
means reveals that life-history traits, if anything, possess a larger store
of additive variation than other traits.

While proper scaling of variance estimates for among-trait com-
parisons is important, precise estimates of variance magnitudes are
required for reliable inference. Observed (natural population pedi-
grees) or experimental (diallel) crosses have been necessary in the past
to partition phenotypic variance into the various genetic and envi-
ronmental components (Sprague and Tatum 1942; Lynch and Walsh
1998; Greenberg et al. 2010). Wide availability of dense DNA se-
quence markers makes it possible to dispense with crossing and
instead fit models that directly incorporate nucleotide polymorphism
effects (Meuwissen et al. 2001; Van Raden 2008). Plant species, as well
as some model animals, offer the additional possibility of assaying
genetically identical individuals in replicate. This makes it possible to
separate the overall genetic contribution into that explained by
markers and the rest (we refer to this quasi-residual as the “back-
ground” effect). Interpretation of this partitioning is not always clear,
however, and depends on the model used for the molecular markers.

Cultivated rice Oryza sativa is a selfing species with extensive
genomic resources, making it a useful model system to test quanti-
tative genetic theory. It is a major food crop that is mostly grown
under irrigated or lowland rain-fed conditions, where standing water
and anaerobic soil conditions are at least intermittently present
(Khush 1997; Bernier et al. 2008). However, a minority of area under
cultivation is occupied by rice grown under upland (aerobic) rain-fed
conditions, characterized by absence of standing water and frequent
droughts (De Datta et al. 1975; Khush 1997; Bernier et al. 2008). Since

initial rice domestication is associated with paddy rice (Oka 1988;
Fuller et al. 2010), this arid growth regime has likely imposed a recent
and strong selection for survival in the face of water scarcity (De Datta
1975). An additional difficulty for upland rice farmers is the
prevalence of acidic soils (von Uexküll and Mutert 1995) that lead
to metal toxicity (e.g., aluminum) and nutrient deficiency (e.g.,
phosphorus). These problems, in turn, exacerbate drought stress in
plants. Thus, rice accessions adapted to upland conditions have
been under additional selection pressure for tolerance to aluminum
toxicity and nutrient deficiency.

Root architecture is an important determinant of drought toler-
ance in rice. Accessions successfully grown under rain-fed (rather
than irrigated) conditions tend to have relatively long and thick roots
(De Datta et al. 1975; Champoux et al. 1995; Bernier et al. 2008).
There is evidence of a genetic correlation between root length,
survival, and grain yield under arid conditions (Champoux et al.
1995; Bernier et al. 2009; Cairns et al. 2009; Lyu et al. 2014).
Aluminum tolerance is also assessed by comparing root length of
treated and control plants (von Uexküll and Mutert 1995; Famoso
et al. 2010). While rice is relatively aluminum tolerant overall, japonica,
particularly tropical japonica, cultivars are particularly resistant
(Famoso et al. 2010, 2011). Accessions from this subpopulation are
often grown on acidic, upland, rain-fed soils in Africa, Latin America,
and South-East Asia (Khush 1997; Lyu et al. 2014). Root length,
including under aluminum treatment, is thus a good candidate for a
character undergoing strong directional selection. Examining its ge-
netic architecture thus may shed light on the evolution of quantitative
traits. In addition, any information gained can be used to explore the
adaptive potential of rice root length in water-limited environments.

Using a world-wide panel ofO. sativa accessions and a dense set of
single-nucleotide polymorphisms (SNP), Famoso et al. (2011) per-
formed a genome-wide association study (GWAS) to look for asso-
ciations between genotyped loci and relative root growth under
aluminum treatment. While they found associations in the aus
and indica subpopulations, they did not detect any signal in tropical
japonica despite significant overall variation in root growth. To
determine if this result reflects a depletion of additive genetic variance
under selection, we set out to build on this work. We first recapit-
ulated the previous analyses using a new, ten-fold denser, genotyping
platform (McCouch et al. 2016). We also introduced a more robust
approach to modeling replicated data. Despite these improvements,
we still failed to find any GWA signal in tropical japonica. Adding
more accessions, increasing the duration of aluminum treatment, and
measurement of additional traits did not produce a higher power to
detect loci associated with aluminum tolerance. Furthermore, while
total genetic variation accounted for a large portion of overall
phenotypic variance, additive genetic variation captured by SNP
genotypes was consistently low. We provide evidence that this is
due to a low frequency of alleles conferring susceptibility or tolerance.
These results are consistent with a set of theoretical expectations and
allow us to deduce a possible genetic architecture of root growth in
tropical japonica varieties adapted to upland cultivation. Our infer-
ences provide testable predictions for future experiments and point to
breeding strategies that are more likely to improve resistance to
drought and cultivation on acid soils in this population.

MATERIALS AND METHODS

Root measurements and accession sets
We expanded the tropical japonica accession set (n = 92) analyzed by
Famoso et al. (2011) by adding 77 new accessions. These were treated
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and measured using the same protocol as before (Famoso et al.
2010, 2011). We made an average of six replicate measurements per
accession under each treatment. We also chose a new set of
119 tropical japonica accessions (including some overlap with
the original 169). The Al treatment in the latter experiment was
conducted as before, but the duration was extended from three to
six days, with an average of eight replicates per accession under
each treatment. All plants were raised in a growth chamber (see
Famoso et al. (2010) Supplemental File 1 for details). The root
systems of seedlings were imaged and total and longest root length
measured using RootReader 2D, a digital imaging and quantifica-
tion system (Clark et al. 2013).

Genotype data
The accessions we chose have been previously genotyped using the
HDRA array platform (McCouch et al. 2016). We filtered the
original 700,000 SNPs for each accession set, including only
variants with minor allele count greater than two and with fewer
than 30% of the genotype calls missing. The minor allele count of
two represents a genotype of a single diploid individual, but
because our accessions are highly inbred (domesticated rice is
a self-pollinating species) our threshold effectively eliminates
singleton SNPs. We were left with 432,607 variants in the aus
population, 434,753 SNPs in the tropical japonica set used by
Famoso et al. (2011), 467,536 for the augmented tropical japonica
set, and 461,298 for the new set of 119 accessions. Given that the
rice genome is about 380 megabases in length (Kawahara et al.
2013), the average between-SNP distance in our data are roughly
0.8 kilobases. This is well within the linkage disequilibrium decay
window for all rice populations (McCouch et al. 2016). Since
average gene size is 3 kb http://rice.plantbiology.msu.edu/, each
gene contains about three SNPs. Thus moderate to high-frequency
causal variants should be tagged by at least several SNPs in our data
set with high probability.

Modeling of replicated experiments
All experiments involved measuring root traits on replicates of
genetically identical individuals (homozygous accessions). The plants
were grown either in control or aluminum-containing media. This
experimental structure informed our modeling approach. We sought
to concurrently estimate contributions of genotyped SNPs, total
genotypic effects, and random environmental fluctuations to overall
phenotypic variance. In addition, in the analyses of the original
Famoso et al. (2011) experiments and our augmentation of their
tropical japonica data set, we needed to take into account the year
each plant was measured, as there were a priori obvious year effects
(Supplemental Figure 2).

We fitted multi-trait Bayesian hierarchical models (Gelman et al.
2004; Greenberg et al. 2010, 2011) to estimate parameters of interest.
We treated each data set (the original Famoso et al. (2011) data in aus
and tropical japonica populations, the augmented tropical japonica,
and the new single-year measurements) separately. The single-year
experiment measured two root traits (total and longest root length).
We included them together in amulti-trait model, but analyzed the Al
treated and control sets separately. The other experiments measured
only total root length, but we modeled the treated and control
measurements as separate traits. However, because the treatments
were applied to different individual plants, the error covariance
between the two pseudo-traits was set to exactly zero. Genetic
covariances were estimated from data in all models, since the same
accessions were subjected to both treatment and control conditions.

The portions of our hierarchical models that estimate location
parameters (accession means, aggregate marker effects, and year
covariates) take the following form:

yi� � tne;d
�
macc
j½i�� þ xyeari� Byear;Σe

�

macc
j� � Nd

�
mþ uj�G;Σs�

gj� � tng ;dð0d;ΣaÞ

Location parameters of the form yi� are row-vectors of the corre-
sponding parameter matrices that have data points as rows and traits
as columns (for example, as mentioned above, yi� has two values for
the Famoso et al. (2011) data: the treated and untreated total root
length). The year effect is included via the xyeari� Byear term (xyeari� is the
row of the year contrast matrix, columns corresponding to years with
2016 set as the base; Byear is the matrix of year regression coefficients).
The correction is performed at the individual measurement level for
the Famoso et al. (2011) data set. There is some risk of confounding
between year and accession effects in the augmented data (see
Supplemental File 1). Therefore, year effects were modeled at the
level of accessions for that set. The third experiment was performed in
one batch and therefore no year effect correction was required. The
year effect coefficients (as well as the overall intercept m) were
modeled with high-variance (Is2

0;   s
2
0 ¼ 106) Gaussian priors. The

errors were modeled using a multivariate Student-t distribution with
three degrees of freedom to dampen the effects of outliers (Greenberg
et al. 2010, 2011) for the last experiment. Our set-up did not allow for
Student-t models for block-diagonal error matrices. Therefore, the
first two data sets were analyzed with Gaussian models for errors.

The marker effects enter through the eigenvectors U of the
relationship matrix, weighted by square roots of their eigenvalues.
We estimated the relationship matrix from all SNPs in each data set
using the Van Raden method (Van Raden 2008). We are using all the
eigenvectors that correspond to non-zero eigenvalues. If this re-
gression is performed using a Gaussian prior on the coefficients
gj�, it is the Bayesian analog of the (matrix-variate) mixed effect
model (Kang et al. 2010; Hoffman 2013). In this case, Σa is the
additive marker covariance matrix. However, the first few principal
components of the relationship matrix often correspond to large-
scale population structure and may have relatively large regression
coefficients (if the phenotypes are also stratified by subpopulation). A
Gaussian prior may over-shrink these coefficients. Therefore, we used
multivariate Student-t prior distribution on G. This is a multivariate
version of the BayesA model (Meuwissen et al. 2001). The results
presented in the main text were obtained by setting the degrees of
freedom to three (the minimal number that still results in defined
moments of the Student-t). We repeated all analyses with the degrees
of freedom set to 1000 (making the prior close to Gaussian) with the
same results. This is likely because we work within populations, in the
absence of deep population structure.

The covariance matrices Σx were modeled using Wishart distri-
butions with weakly-informative Wishart priors with two degrees of
freedom for Σe and Σs and four degrees of freedom for Σa (Gelman
et al. 2004; Greenberg et al. 2011). This implies a uniform prior on
narrow-sense (marker) heritability.

Detailed model descriptions are listed in the documentation
provided in the Supplemental File 1. This supplemental file also
includes the raw phenotypic data, scripts we used to manage the raw
data, Markov chain convergence diagnostics, and post-processing
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and plotting of the results. The analyses were implemented in C++.
The source code is included in the Supplemental File 1. The un-
derlying library is also available from https://github.com/tonymugen/
MuGen.

Heritability estimates
The hierarchical model allows us to estimate heritabilities. Narrow-
sense heritability (Lynch and Walsh 1998) is the fraction of total
phenotypic variance that is explained by additive genetic effects. If we
were to genotype all causal variants and accurately estimate their
effects, the fraction of total variance explained by the sum of these
polymorphisms’ contributions would be the narrow sense heritability.
In practice, we only assay tag SNPs that may be in linkage disequi-
librium with a fraction of causal variants. In addition, since linkage is
likely imperfect, most linked genotyped SNPs do not capture the
whole contribution of causal loci. We calculate marker heritability
h2m;p of the p-th trait from the total marker effects estimated in our
models:

h2m;p ¼
ðUGÞt�pðUGÞ�p

.
ðNacc 2 1Þ

ðUGÞt�pðUGÞ�p
.
ðNacc 2 1Þ þ Σs

p;p þ Σe
p;p

;

where Nacc is the number of accessions and the rest of the notation is
as described above. We used the variance of GEBV estimates
ðUGÞt�pðUGÞ�p=ðNacc 2 1Þ rather than values from the marker co-
variance matrix Σa

p;p because the latter reflects the additive covariance
only when the prior on the principal component regression (see
above) is Gaussian. We use a Student-t prior, thus Σa

p;p may un-
derestimate the additive genetic variance captured by SNPs.

The Σs
p;p values estimate the portion of total genetic variance not

explained by genotyped markers. They include the non-additive
effects and additive effects not tagged by SNPs. We call these
estimates “background effects” (e.g., Figure 1). The sum of the GEBV
and background variance, divided by total phenotypic variance, is
broad-sense heritability (Lynch and Walsh 1998).

Our models were fitted using a Markov chain Monte Carlo
approach, resulting in posterior samples of parameters. We used
calculated heritabilities for each sample, yielding numerical ap-
proximations of posterior distributions of these statistics. Summa-
ries of these distributions are plotted in the relevant figures.

GWA and genome prediction
Because full MCMC Bayesian model fitting is computationally de-
manding, we did not attempt to fit individual SNP effects within that
framework. In addition, treated to control root length ratio (a mea-
sure of Al tolerance, Famoso et al. 2010, 2011) was not modeled
directly and could not be used as a response in our hierarchical
models. We thus took a two-step approach, using the posterior modes
of accession means as responses with mixed-model correction for
population structure (Kang et al. 2010) using our own R package
(Greenberg 2019), available from https://github.com/tonymugen/
GWAlikeMeth. This is a maximum-likelihood method, first fitting
the mixed model

macc ¼ 1Nmþ uþ e

e � N
�
0; Is2

e

�

u � N
�
0;Ks2

u

�
;

where y is the response vector of posterior accession modes, 1N is a
column vector of ones of order, m is the overall mean, u is the column
vector of random genetic values, s2

u is the among-u variance,
K ¼ XXt=Nacc is the among-genotype covariance matrix estimated
from the Nacc ·Nsnp genotype matrix X, e is the column vector of
random errors, and s2

e is the error variance. Residuals of this model are
then used in individual SNP regressions. Each trait (including the
logarithm of the treated to control root length ratio) is treated in-
dependently, although computations that are shared among traits are
performed only once. We report 2log10p values as SNP effect scores.

To verify results obtained using the hierarchical Bayesian model
outlined in the previous section, we also took the two-step approach
to perform genome predictions. We again used modes of accession
mean distributions, as described above for GWA. We started with a
linear kernel K calculated as above. This is the genome best linear
unbiased predictor (GBLUP) model of additive effects. To test
whether modeling among-locus epistatic interactions improves pre-
diction, we repeated the analyses with a Gaussian kernel for K , setting
its elements to Kðxj; xjÞ ¼ expð2hd2ijÞ. Here, dij is the Euclidian
distance between genotypes i and j, h is the bandwidth parameter
that controls the speed of decay of K elements with genetic distance.
Following Crossa et al. (2010), we set h ¼ 2d22

m , where dm is the
sample median among all dij.

We used the R package Bayesian generalized linear regression
(BGLR, Pérez and de los Campos 2014) to fit the genome prediction
models. The package implements a Gibbs sampler. We ran 55,000
iterations including 5,000 burn-in steps and fivefold thinning.

We assessed prediction accuracy using 50 training-validation ran-
dom partitions. Pearson’s correlations (r) between the predicted and the
observed values were employed as accuracy measurements. To calculate
summary statistics, we transformed raw correlation values using Fisher’s
z transformation (z ¼ 1

2 ½lnð1þ rÞ2 lnð12 rÞ�). The mean and in-
terval values presented in Table 1 were back-transformed to the
original scale.

Introgression mapping
We used RFMix (Maples et al. 2013) to identify introgressions from
aus and indica in the six admixed tropical japonica accessions. We
used 10 training accessions from each of the three populations of
interest (see the Supplemental File 2 for the full list). We ran Beagle
v4.1 (Browning and Browning 2016) with default parameters to phase
genotypes, after filtering loci with minor allele frequencies below 0.08
and more than 30% missing genotypes. Our final data set included
304,488 SNPs. We then ran RFMix with the option “TrioPhased” on
the phased genotypes from 36 lines: three sets of 10 training pure
accessions plus the six admixed accessions. The results were plotted
using an R script included in the Supplemental File 1.

Data availability
Supplemental File 1 contains detailed models, raw phenotypic data,
scripts to manage the raw data, Markov chain convergence diagnos-
tics, post-processing and plotting of the results, and source code. The
raw phenotype data include those generated by Famoso et al. (2011).
Genotype data are from McCouch et al. (2016) and available at
https://ricediversity.org/data/index.cfm. Supplemental File 2 lists the
training accessions we used for admixture mapping. Supplemental
material available at figshare: https://doi.org/10.25387/g3.10321538.

RESULTS
The initial study (Famoso et al. 2011) only examined relative root
growth between Al-treated and control genotypes. To measure Al
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tolerance, separate individuals from the same accession are subjected
to aluminum treatment and compared to plants grown under control
conditions. The relative root growth is then estimated by calculating
the ratio of the means among the treated and control plants within
each genotype. Partitioning the phenotypic variance of this com-
pound trait into genetic and environmental components using this
experimental design is thus impossible. Therefore, we focused on
estimating genetic parameters for root length itself under the two
experimental regimes. This approach also fits better with results from
previous studies that suggest a role for root length in water stress
tolerance. The data are more sparse and ambiguous for relative root
growth.

Since Famoso et al. (2011) did not report heritabilities for root
length, we first re-analyzed their data, but using a denser SNP
genotype map (HDRA, McCouch et al. 2016). All accessions in the

original study were genotyped using this newer platform. Of the
700,000 variants available, we retained about 450,000 SNPs after
filtering out loci with singletons or more than 30% of the data missing
in our accession sets (see Methods for details). We built a Bayesian
hierarchical model (Gelman et al. 2004, see Methods for details) that
accounts for replicated measurements of accessions and the fact that
experiments were performed across several years (Supplemental Figure
2). We considered root length under control and Al treatment con-
ditions as separate traits and used a multivariate hierarchical model
(Greenberg et al. 2011) that included a SNP-derived relationship
matrix to account for marker effects (see Methods for model details).

Replication of identical genotypes, possible because rice is a selfing
species with almost completely homozygous accessions (McCouch
et al. 2016), allowed us to separate additive marker-based variance
from the total genetic variation and residual environmental effects.

Figure 1 Fraction of variance explained by markers and genetic background. The plots depict regions of highest posterior density (HPD; thin lines
are 95% and thick lines are 50% intervals, the points are modes) of separate estimates of variance fractions explained by markers and the rest of the
genetic background. (A) Results of the re-analysis of the (Famoso et al. 2011) data. (B) The larger data set of tropical japonica accessions. (C) Tropical
japonica accessions subjected to new measurements and experimental conditions. (D) as in (C), but using a quadratic kernel to estimate pairwise
epistatic interactions.
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We call the fraction of total phenotypic variance explained by the
sum of the additive effects of all SNPs “marker heritability.” If we
estimate accurately all causal variant effects, this is narrow-sense
heritability. However, most genotyped loci are likely only in linkage
disequilibrium with causal variants and our estimates of even
cumulative SNP effects are imperfect. Therefore, the residual ge-
netic variance (total genetic variance, estimated from the hierar-
chical model as the accession effect, minus the marker variance)
absorbs both additive effects of loci not tagged by our SNP panel
and non-additive components. We call this portion of genetic
variance the “background effect.”

We find that the heritability contributed by all markers considered
together accounts for less than half of overall genetic variance in the
tropical japonica population (Figure 1A). This does not seem to be
due to a lack of power resulting from a small sample size, sincemarker
heritability is higher in aus under stress (Figure 1A) despite a smaller
number of accessions in that population (55 in aus vs. 92 in tropical
japonica). To see if any individual SNPs are associated with either
trait, we used the posterior modes of accession effects (as well as log10
of the control to treated ratio, 2lgRRG) as predictors in a standard
single-trait mixed-model GWA (Kang et al. 2010, see Methods for
details). We were able to reproduce the GWA peak found by Famoso
et al. (2011) for untransformed RRG in the aus subpopulation
(Supplemental Figure 1A), but did not detect any new associations.
We did not unearth any associations in tropical japonica (Supple-
mental Figure 1B), and no associations of SNPs with root length traits
under Al treated or control conditions in either population.

Perhaps, as some theoretical results suggest, recent selection on root
traits keeps adaptive alleles contributing to trait variation close to
fixation. The resulting low minor allele frequency would diminish
opportunities for linkage disequilibrium with our genotyped SNPs. In
this case, increasing sample size should increase minor allele counts,
boosting power to detect marker heritability. We therefore added more
accessions to our tropical japonica sample, bringing the total to 169.
These lines were already genotyped using HDRA (McCouch et al.
2016). We administered the same treatment protocol as Famoso et al.
(2011) and analyzed the data as before. The measurements of each
accession were highly reproducible, with total genetic effects explaining
almost all phenotypic variance. However, the proportion of this genetic
variation accounted for by the sum of marker effects was much smaller
than in the initial limited sample (Figure 1B). Neither did we find any
significant individual SNP associations (Supplemental Figure 5A).

The estimates on a larger panel of tropical japonica accessions
further supports the idea that the sum of all genotyped marker effects
contribute little to phenotypic variation in root traits in this pop-
ulation. However, we wanted further confirmation that these esti-
mates are not the result of experimental or modeling artifacts.
Therefore, we selected a new panel of 119 tropical japonica accessions
that represented the full diversity of the representatives of this
population genotyped using HDRA (Supplemental Figure 4). To
increase confidence in our estimates of accession means (and thus

the fraction of phenotypic variance explained by all genetic factors),
we increased the number of replicates per line (eight on average). We
performed all experiments at the same time, eliminating the year
effect as a potential confounding variable. We measured two root
traits: total and longest root length (see Methods for details) and
included them together in a hierarchical Bayesian model (see Meth-
ods for details). However, we fit the model to the Al-treated and
control data sets separately.

Aluminum treatment of individuals from the aus population
increases the fraction of genetic variation explained by markers
(Figure 1A). This is not evident in tropical japonica. Furthermore,
we see a high total genetic correlation (mode: 0.886; 95% highest
posterior density (HPD) interval: [0.803, 0.945]) between control and
treated root lengths in our initial experiment. Therefore, we increased
the duration of aluminum treatment to put extra stress on the plants.
The longer treatment did reduce the genetic relationships between
treatment and control, although the correlations remained fairly high:
0.770 (0.733, 0.811) for total root length (the trait measured in the
previous set of experiments) and 0.816 (0.777, 0.844) for longest root
length, closer to the correlation observed in aus (0.597 [0.484, 0.704]).

Despite all these changes in experimental protocol and analysis,
we see the same low marker heritability despite the high fraction of
the phenotypic variance explained by total genetic effects (Figure 1C).
No single locus stood out when we performed GWAS on these new
accession means, either (Supplemental Figure 5B).

If our observation of extremely low marker heritability of root
length in tropical japonica is correct, we expect that the genotyped
SNPs would be poor predictors of phenotypic values. To test this, we
implemented a two-step genome prediction scheme, using the pos-
terior modes of accession means generated in the last experiment and
used a separate implementation of a penalized regression on geno-
types (Meuwissen et al. 2001; Pérez and de los Campos 2014) to
model additive SNP effects (see Methods for details). Given the high
total heritability, we are fairly confident in the robustness of accession
mean estimates. We separated the data into two sets. The first set was
used to train a model that used all markers to estimate model
parameters. Given these training set estimates, we attempted to
predict phenotypes of the remaining accessions. We repeated this
process 50 times and generated empirical distributions of prediction
accuracy. Consistent with the low additive marker heritability esti-
mates presented above, genome-enabled prediction accuracy was low,
with most distributions containing zero (Table 1). We also tried
alternative models with the same results (Supplemental Table S1).

All lines of evidence presented so far point to the conclusion that
additive marker effects do not explain much of the total genetic
variance of the root growth traits measured in tropical japonica.
Given the high broad-sense heritability, we wondered if non-additive
SNP effects can explain our results. Given the very high homozygosity
of individual lines (McCouch et al. 2016), dominance is highly
unlikely to play a measurable role. We are therefore left with epistatic
interactions among loci as the remaining possibility. However, the

n■ Table 1 Genome prediction accuracy. Mean (lower 95%, upper 95% confidence interval)

Trait name GBLUP RKHS

Longest root length, Al treated 0.034 (-0.147, 0.214) 0.130 (-0.052, 0.304)
Total root length, Al treated 0.118 (-0.065, 0.292) 0.102 (-0.081, 0.277)
Longest root length, control 0.138 (-0.043, 0.311) 0.025 (-0.156, 0.205)
Total root length, control 0.036 (-0.146, 0.216) 20.205 (-0.372, -0.025)
Longest root length, lgðRRGÞ 20.223 (-0.388, -0.044) 20.200 (-0.368, -0.020)
Total root length, lgðRRGÞ 20.194 (-0.362, -0.014) 0.0385 (-0.143, 0.218)
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parameter space of all interactions is prohibitively large, making it
statistically and computationally unfeasible to estimate individual
effects. However, models that rely on summaries of interactions are
available. It has been shown that using the Hadamard (element-wise)
product of the SNP-based relationship matrix (Van Raden 2008) with
itself in a genomic model gives approximate estimates of the sum of all
pairwise epistatic interactions (Jiang and Reif 2015). Similarly, use of a
Gaussian kernel (see Methods) approximates all by all interactions
(Jiang and Reif 2015). We used the quadratic in place of the additive
kernel in our hierarchical multi-trait model and the Gaussian kernel for
genome prediction. We did not observe any measurable improvement
in explanatory ability (Figure 1D) or prediction accuracy (Table 1).

Since we cannot find any evidence that epistatic interactions
account for much genetic variance, we are left with the possibility
that low-frequency DNA sequence variants underlie our root traits.
Because such alleles are not shared widely among accessions in our
panel, and are not in high enough linkage disequilibrium with the
SNPs we genotyped, we do not detect their effects in our models. If
this conjecture is correct, we would expect many regions of the
genome to make small contributions to the genetic variance. We see
some evidence of this when we look at accessions that carry intro-
gressions from the less Al tolerant indica and aus populations into the
tropical japonica background (Figure 2). We found six such lines in
the Famoso et al. (2011) data set. All of them have shorter roots than
the average tropical japonica accession in the sample, particularly
under aluminum stress (Figure 2A,B). When we looked at the
genomic regions that come from indica or aus in these lines using
RFMix (Maples et al. 2013) we found an idiosyncratic collection of
introgressed loci (Figure 2C). This is expected if each tropical japonica
accession carries a different set of rare causal variants.

DISCUSSION
Informative tests of the effects of selection on the genetic architecture of
quantitative traits require partitioning of the total genetic variation into
components. This can be achieved in selfing plants, O. sativa among
them, because replicatedmeasurements can be performed on genetically
identical individuals. Relying on genotyping rather than diallel crosses
saves on phenotyping costs. It also allows us to directly model additive
and various non-additive effects of variants in our genotyping panel as
well as loci that were not assayed but are in LD with those we assayed.

We employed this strategy to study the genetic architecture of root
length in the tropical japonica population of rice. A significant
fraction of accessions from this group are adapted to upland rain-
fed conditions (Khush 1997; Lyu et al. 2014) where root length is
under strong selection because it underlies drought and nutrient
toxicity tolerance (De Datta 1975; Champoux et al. 1995; Bernier et al.
2009; Cairns et al. 2009; Lyu et al. 2014). We find high broad-sense
heritability using two experimental set-ups and three sets of acces-
sions. However, we find that aggregate contributions of all genotyped
loci, assessed using relationship matrices in and Bayesian hierarchical
models, are very small in tropical japonica. Neither do we find any
individual loci contributing significantly to phenotypic variation.
This is in contrast to the situation in the aus population, where
we see moderate marker heritability, particularly under aluminum
stress, and a significant effect of the Nrat1 locus despite a smaller
sample of accessions. Alternative modeling approaches, including
genome-enabled prediction, yielded the same results. Employing
models that account for among-locus epistatic interactions, the only
plausible source of non-additive genetic variation in this highly
inbred panel, does not increase estimated marker heritability or
phenotype prediction accuracy.

Figure 2 Rank of accessions with aus admixture.
(A) Posterior highest-density intervals of accession
means, sorted from smallest mode to largest. Trop-
ical japonica accessions with aus admixture are
marked with orange (see plot legend). (B) Posterior
distributions of mean rank of admixed accessions
under control and treatment conditions, with the
expected value shown by the horizontal line. (C)
Introgression locations in the genomes of the six
admixed accessions. The six horizontal lines repre-
sent the genomes, with the accession with the short-
est roots under aluminum stress on the bottom and
the longest on top. Colored blocks mark the regions
of introgression from aus (“AUS”) or indica (“IND”),
as indicated on the legend. The tropical japonica
(“TRJ”) background is in gray.
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The possibility that we failed to detect major-effect loci with
moderate to high frequency alleles seems unlikely. Our genotype map
is dense enough to tag the vast majority of the euchromatic genome
of rice (McCouch et al. 2016, and the “Genotype Data” section
of Methods). Thus, if a moderate number of causal loci underlie
the root traits, the chances of identifying at least one are high (as
exemplified by the successful detection of Nrat1 in aus). On the
other hand, if there are only one or a few loci that drive trait variation
and reside in a region not tagged by our SNP collection, we should see
a two or more modes in the phenotypic distribution, particularly in
the last experiment where overall heritability is high (Figure 1C).
However, we see no evidence of this (Supplemental Figure 3).

We are then left with the possibility that the alleles underlying these
traits are at low frequency. Such variants, even if they located next to
genotyped SNPs of moderate to high frequency, would not be in linkage
disequilibrium with the tag polymorphisms due to the frequency mis-
match. Furthermore, the distribution of minor allele frequencies of the
SNPs genotyped by our array is skewed toward rare alleles compared to
the neutral expectation (Supplemental Figure 6). Even if these variants
are in complete LD with ungenotyped low-frequency causal polymor-
phisms, we have no power to estimate their effects and thus such tag
SNPs would not account for any phenotypic variance. This is true even if
the effect of allele substitution is large, since the power to detect the
contribution of the locus declines with allele frequency.

Models of directional selection on quantitative traits predict
genetic architectures dominated by loci with low-frequency alleles
under some parameter combinations (Jain and Stephan 2017; Stetter
et al. 2018). The models envision a shift in the optimal phenotype
value, followed by a change in the adaptive direction and finally
stabilizing selection at the new optimum. As populations approach
the new equilibrium, individuals carrying many positive alleles start
to emerge. Phenotypes of these individuals exceed the optimum,
generating selection against positive alleles that have not fixed yet.
These alleles can be close to fixation, however, with the alternative
allele at low frequency. This scenario fits with our understanding of
the role of root architecture in the relatively recent adaptation of rice
to cultivation under the arid upland rain-fed conditions (De Datta
et al. 1975; Oka 1988; Khush 1997; Fuller et al. 2010). While selection
for drought tolerance strongly favors longer roots, increasing root
biomass can negatively affect grain yield. Stabilizing selection may
therefore keep alleles driving root length from fixation, thus main-
taining genetic variation but precluding robust estimation of variant
effects. Genomic analyses of shifts in cultivation practices of domes-
ticated plants may thus be a promising avenue for empirical studies of
genetic architectures of traits under selection.

If our conjecture that low-frequency alleles underlie root traits in
tropical japonica is correct, each accession should have a unique set of
causal variants. Some would have a positive effect, some would be
negative. The balance would then determine the overall genotypic value
of the individual line. This, in turn, implies that most regions of the
genome can contribute to phenotypic variance. We indeed see some
evidence of this: introgressions from indica and aus populations reduce
total root length of tropical japonica accessions, particularly under
aluminum stress (Figure 2), and the introgressions are evenly distributed
throughout the genome. Conversely, Famoso et al. (2011) report that
introgressions from tropical japonica into indica increase relative root
length under aluminum stress, consistent with our hypothesis.

Although the low-frequency alleles may not individually contrib-
ute much to within-population variance, they should be detectable in
biparental crosses. This is because allele frequencies of the causal
variants present in these lines will be 50% and thus at high enough

frequency to measure. Indeed, multiple quantitative trait locus
mapping studies found loci contributing to root length under
various conditions (Champoux et al. 1995; Bernier et al. 2009;
Famoso et al. 2011; Arbelaez et al. 2017). However, subsequent
attempts to introgress favorable alleles into a variety of genetic
backgrounds have been largely unsuccessful (Bernier et al. 2008).
This is expected under our model, since every pair of parents
should have a different set of causal loci. Furthermore, the pre-
dicted presence of at least some negative-effect alleles even in the
high-value lines (Stetter et al. 2018) should lead to transgressive
segregation in the progeny. This is indeed often observed (Champoux
et al. 1995; Arbelaez et al. 2017).

Our results shed some light on a fundamental question in
quantitative genetics. They also should be taken into consideration
when designing breeding strategies to improve productivity of rice
grown in aerobic soils under water-limited conditions. The upland
cultivation method has been historically low-yielding (De Datta
et al. 1975; De Datta 1975; Bernier et al. 2008) and has resisted
efforts at genetic improvement (Bernier et al. 2008). If our model is
correct, progress is possible as long as the number of founding
accessions is not too high. All causal alleles would be at moderate
frequency and thus visible to selection. Total genetic, rather than
breeding, values of the founders should be used to select them from
the base population. GWAS, marker-assisted selection, and even
multi-parental mapping populations (Yu et al. 2008) are not
expected to be effective to determine the best founders. However,
genome prediction can still be used if the focus is within breeding
populations. Finally, periodic addition of new founders can in-
troduce additional beneficial alleles even if the new lines themselves
are not top performers in the environments of interest.

Our study highlights the importance of detailed genome-enabled
investigations of polygenic traits under selection to shed light on
fundamental evolutionary questions and guide practical artificial
selection decisions. We hope that it will stimulate further analyses
of such traits in agriculturally important plants, taking advantage of
sophisticated experimental designs and increasing availability of deep
whole-genome DNA sequence data.
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