
Nuclear Pore Complex Assembly Studied with a Biochemical Assay for 
Annulate Lamellae Formation 
Eva Meier,* Brian R. Miller,* and Douglass J. Forbes* 

*Department of Biology, University of California at San Diego, La Jolla, California 92093; and*Scripps Clinic and Research 
Foundation, La Jolla, California 92093 

Abstract. Formation of the nuclear pore is an intricate 
process involving membrane fusion and the ordered as- 
sembly of up to 1,000 pore proteins. As such, the study 
of pore assembly is not a simple one. Interestingly, an- 
nulate lamellae, a cytoplasmic organelle consisting of 
stacks of flattened membrane cisternae perforated by 
numerous pore complexes, have been found to form 
spontaneously in a reconstitution system derived from 
Xenopus egg extracts, as determined by electron mi- 
croscopy (Dabauvalle et al., 1991). In this work, a bio- 
chemical assay for annulate lamellae (AL) formation 
was developed and used to study the mechanism of AL 
assembly in general and the assembly of individual nu- 
cleoporins into pore complexes in particular. Upon in- 
cubation of Xenopus egg cytosol and membrane vesi- 
cles, the nucleoporins nup58, nup60, nup97, nup153, 
and nup200 initially present in a disassembled form in 
the cytosol became associated with membranes and 
were pelletable. The association was time and tempera- 
ture dependent and could be measured by immunoblot- 
ting. Thin-section electron microscopy as well as nega- 

tive staining confirmed that annulate lamellae were 
forming coincident with the incorporation of pore pro- 
teins into membranes. Homogenization and subsequent 
flotation of the membrane fraction allowed us to sepa- 
rate a population of dense membranes, containing the 
integral membrane pore protein gp210 and all other nu- 
cleoporins tested, from the bulk of cellular membranes. 
Electron microscopy indicated that annulate lamellae 
were enriched in this dense, pore protein-containing 
fraction. GTP~/S prevented incorporation of the soluble 
pore proteins into membranes. To address whether AL 
form in the absence of N-acetylglucosaminylated pore 
proteins, AL assembly was carried out in WGA- 
sepharose--depleted cytosol. Under these conditions, 
annulate lamellae formed but were altered in appear- 
ance. When the membrane fraction containing this al- 
tered AL was homogenized and subjected to flotation, 
the pore protein-containing membranes still sedi- 
mented in a distinct peak but were less dense than con- 
trol annulate lamellae. 

T 
HE nuclear pore is responsible for establishing the 
distinct nuclear and cytoplasmic compartments of 
the eukaryotic cell. The pore is a highly selective 

channel through which macromolecular traffic must pass 
to enter or exit the nucleus. Although ions and other small 
molecules freely diffuse through the pore, larger mole- 
cules require a specific targeting signal for transit (for re- 
views, see Goldfarb and Michaud,.1991; Forbes, 1992; 
Gerace, 1992; Osborne and Silver, 1993; Powers and 
Forbes, 1994). 

The nuclear pore complex is a large and elaborate struc- 
ture of ~120 million daltons and is comprised of N1,000 
proteins. Structurally, it appears to consist of three rings 
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stacked one upon the other, with the central ring com- 
posed of eight spokes surrounding a central hub or trans- 
porter. Short fibers extend into the cytoplasm from the cy- 
toplasmic ring of the pore, while an unusual basket 
structure extends from the nucleoplasmic ring (see Pante 
and Aebi, 1993, for a review). Of the estimated 60-100 dif- 
ferent polypeptides that comprise the nuclear pore, only a 
handful have been identified. These include a component 
of the basket (nup153), proteins of the central region of 
the pore (p62/nup60, nup58, and nup54), components of 
the cytoplasmic filaments (nupl80, nup200/CAN, and TPR), 
and integral membrane pore proteins (gp210 and POM121), 
among others (Davis and Blobel, 1986; Starr et al., 1990; 
Cordes et al., 1991; Finlay et al., 1991; Hallberg et al., 1993; 
Radu et al., 1993; Sukegawa and Blobel, 1993; Wilken et 
al., 1993; Byrd et al., 1994; see Rout and Wente, 1994, for a 
review). A family of pore glycoproteins that contain 
N-acetylglucosamine residues and consequently bind the 
lectin WGA are among these pore proteins (for reviews, 
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see Hart et al., 1989; Forbes, 1992; Rout and Wente, 1994). 
A number of pore proteins have also been characterized in 
yeast, and a subset have homologues in vertebrate pores 
(for reviews, see Fabre and Hurt, 1994; Rout and Wente, 
1994), Nonetheless, the dozen or so vertebrate nucleopor- 
ins identified to date are estimated to constitute only 5-10% 
of the total mass of the pore (Snow et al., 1987; Finlay et 
al., 1991; Loeb et al., 1993). 

While relatively little is known about the molecular 
composition of the pore, even less is known about the 
mechanism of pore assembly and disassembly. Studies of 
pore formation were hampered for many years by the lack 
of in vitro systems that would allow for biochemical analy- 
ses. More recently, it has been possible to examine nuclear 
envelope and pore assembly using nuclear reconstitution 
systems. A CHO cell extract derived from mitotic cells has 
been used to study lamin and nuclear envelope assembly 
(Burke and Gerace, 1986; Foisner and Gerace, 1993). 
Many groups have used a different cell-free extract de- 
rived from Xenopus eggs to study various nuclear pro- 
cesses (for review, see Leno and Laskey, 1990; Smythe and 
Newport, 1991; Almouzni and Wolffe, 1993). The Xeno- 
pus extract, which contains large stockpiles of disassem- 
bled nuclear components, readily reconstitutes nuclei in 
vitro. 

Using the Xenopus system, reconstituted nuclei were 
observed to import nuclear proteins, indicating that nu- 
clear pores were also being reconstituted in vitro (New- 
meyer et al., 1986a, b). Biochemically altered nuclear 
pores were created by carrying out nuclear assembly in 
an egg extract depleted of the family of N-acetylglu- 
cosamine-modified nucleoporins. It was found that pores 
continued to form but were less dense in appearance and 
failed to import, indicating that this family of pore proteins 
is not absolutely required for nuclear pore assembly but is 
required for pore function (Finlay and Forbes, 1990). The 
effect of removing single pore proteins from the nuclear 
reconstitution system has also been examined and has 
proved enlightening on the topics of nuclear function and 
the function of specific nucleoporins (Dabauvalle et al., 
1990, 1991; Finlay et al., 1991; Miller and Hanover, 1994; 
Powers et al., 1995, see Discussion). Focusing on the as- 
sembly of nuclear membranes, Wilson and Newport (1988) 
have shown that the egg contains a specific class of nuclear 
membrane vesicles, present in a disassembled state. Vigers 
and Lohka (1991, 1992), analyzing the membranes of the 
egg, identified two particulate fractions (NEP-A and 
NEP-B) which, in addition to cytosol, are required for 
proper nuclear envelope assembly. The molecular identity 
of these membrane-containing fractions has yet to be de- 
termined but should prove interesting for understanding 
the mechanism of nuclear envelope assembly. Interest- 
ingly, Sheehan et al. (1988), also using the egg extract, ob- 
served a putative intermediate in the pathway of pore as- 
sembly which occurs specifically at the end of mitosis (see 
Discussion). 

An inherent complication of studying pore assembly us- 
ing nuclear reconstitution assays is that the assembly of 
the pore cannot be examined independent of other nu- 
clear events, such as chromatin decondensation and lamin 
assembly. One way to circumvent these constraints would 
be to study pore formation in annulate lamellae (Chen and 

Merisko, 1988; for review, see Kessel, 1992). Annulate 
lamellae (AL) 1 are found in the cytoplasm and consist of 
stacks of flattened membrane cisternae perforated by nu- 
merous and densely packed pore complexes lacking both 
chromatin and a lamina. AL are frequently observed in 
rapidly growing or differentiating cells, such as male and 
female gametes, tumor ceils, and viraUy infected cells. Al- 
though they may have an additional functional role, AL 
are believed to store excess nuclear envelope and pore 
components for later use (Kessel, 1983, 1992; Stafstrom 
and Staehelin, 1984; Merisko, 1989). 

Nuclear and annulate lamellae pores appear morpho- 
logically indistinguishable in their basic structure when 
viewed by a number of different electron microscopy tech- 
niques (Smith and Berlin, 1977; for review, see Kessel, 
1992; see Discussion for exceptions). Several nucleoporin- 
specific antibodies as well as gold-labeled WGA recognize 
AL pores (Chen and Merisko, 1988; Allen, 1990; Dabau- 
valle et al., 1991). Moreover, nucleoplasmin-coated gold 
particles associate with the pores of both the nuclear enve- 
lope and AL (Feldherr et al., 1984), mimicking the binding 
step of nuclear import (Newmeyer and Forbes, 1988; Rich- 
ardson et al., 1988). It is not yet known whether AL pores 
are capable of translocating nuclear signal proteins. 

Annulate lamellae disassemble, together with the oocyte 
nucleus, upon meiotic maturation of an oocyte into an egg 
(Stafstrom and Staehelin, 1984; Bement and Capco, 1989). 
The disassembled nuclear membrane and pore compo- 
nents derived from these events are present in the mature 
egg in amounts equal to that found in >4000 somatic nu- 
clei. It is these disassembled components that provide the 
basis of the nuclear assembly extract described previously. 
When DNA or chromatin is added to the extract, nuclei 
assemble (Lohka and Masui, 1983, 1984; Forbes et al., 
1985; Newport, 1987). Interestingly, if no DNA or chroma- 
tin is added, Dabauvalle et al. (1991) found that AL as- 
semble spontaneously in an extract. Specifically, employ- 
ing immunofluorescence and electron microscopy, they 
observed the formation of stacks of AL replete with pore 
complexes. These findings suggest that if nuclear forma- 
tion is prevented from proceeding normally around chro- 
matin templates, the default pathway is to assemble pore 
and nuclear membrane components into AL. 

Thus, the in vitro formation of annulate lamellae provides 
an attractive model system for studying pore assembly and 
disassembly, independent of the concomitant processes in- 
volved in nuclear assembly. Previously, pore assembly in 
both nuclei and AL could only be studied by using micros- 
copy or, in the case of nuclei, by using functional assays. 
Here we describe the development of a biochemical assay 
that allowed us to study the assembly of nuclear pore pro- 
teins into the pore complexes of annulate lamellae. We 
used this assay to study the conditions necessary for AL 
assembly, the inhibitors of AL assembly, and an initial 
characterization of the nucleoporins present in annulate 
lamellae pores. In addition, we found that AL, once 
formed, can easily be recovered from a Xenopus assembly 
extract by pelleting. They can then be separated from a 

1. Abbreviat ions used in this paper: AL, annulate lamellae; Con A-HRP, 
Concanavalin A-horseradish peroxidase; GSB, gel sample buffer; 
WGABP, WGA-binding protein. 
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large fraction of the other membranes in the Xenopus ex- 
tract by homogenization and flotation, which potentially 
allows isolation of the vertebrate pore. A study of whether 
the N-acetylglucosaminylated nucleoporin family is neces- 
sary for AL assembly has also been pursued and charac- 
teristics of such modified AL examined. 

Materials and Methods 

Antibodies 
The antibodies to the Xenopus nucleoporins nup60, nup97, and nup200 
were raised against the appropriate gel-purified protein. Before use, they 
were affinity purified against their respective antigens immobilized on ni- 
trocellulose strips (Macaulay et al., 1995; Powers et al., 1995). The anti- 
body to rat nup58 has been previously described (Finlay et al., 1991). The 
integral membrane nucleoporin gp210 was detected with either Con- 
canavalin A-horseradish peroxidase (Con A-HRP; E.Y. Laboratories, 
Inc., San Mateo, CA) or an affinity-purified rabbit antiserum raised 
against an E. coli-expressed glutathione-S-transferase fusion protein cor- 
responding to amino acids 28-222 of rat gp210 (Wozniak et al., 1989). 
Nup153 was detected by mAb414 (Davis and Blobel, 1986; obtained from 
BAbCO). The mAb recognizing ribophorin was the generous gift of Dr. 
David Meyer (UCLA). Rabbit anti-HSA was obtained from Calbiochem- 
Novabiochem Corp. (La Jolla, CA). 

Preparation of Xenopus Egg Extracts 
Both crude and fractionated Xenopus egg extracts were prepared in egg 
lysis buffer (ELB) (10 mM Hepes-NaOH, pH 7.4, 3 mM MgC12, 50 mM 
KC1, 250 mM sucrose, 1 mM DTT, 100 ixg/ml cycloheximide) as previ- 
ously described (Newmeyer and Wilson, 1991), except for the following 
modifications. The cytosol was clarified by a second centrifugation at 
200,000 g for 30 min, and 50-~1 aliquots were stored at -70°C until use. 
Membranes were washed by dilution in at least 20 vol of membrane wash 
buffer (10 mM Hepes, pH 7.4, 250 mM sucrose, 250 mM KC1, 2.5 mM 
MgCI2, 1 mM DTF) and recovered by centrifugation through a sucrose 
cushion for 20 min at 34,000 g (0.5 M sucrose in ELB); the membrane pel- 
let was gently loosened and stored in 10-1xl aliquots at -70°C. These mem- 
branes were estimated as concentrated 10-fold over that found in the 
crude extract and were therefore used as a 10× stock. Glycogen was puri- 
fied from the gelatinous pellet derived from the 200,000 g centrifugation 
using a previously described method (Hartl et al., 1994) and was stored at 
-70°C as a 200 mg/ml stock in ELB. 

Annulate Lamellae Formation 
For each reaction, cytosol was mixed with the membrane fraction (1:10 or 
1:20 dilution of the 10× stock) and purified glycogen (final concentration 
of 20 mg/ml, 1/10 volume of a 200 mg/ml stock), and allowed to incubate at 
room temperature for 0-5 h, depending on the experiment. In experi- 
ments where either membranes or glycogen were omitted, an equivalent 
volume of ELB was substituted. A typical assay consisted of 40 ~1 cytosol, 
5 ixl membranes, and 5 ~1 glycogen stock. An ATP-regenerating system 
was not added; the cytosol fraction has abundant endogenous ATP. At 
designated time points, 10 p~l of the reaction mix was diluted 40-fold in 
ELB and centrifuged through a 300-pA sucrose cushion (0.5 M sucrose in 
ELB; 20 min at 34,000 g). If the pellets were to be analyzed directly using 
SDS-PAGE and immunoblotting, the samples were resuspended in load- 
ing buffer to a volume 20-fold the original sample volume. 

To examine the effect of GTP3,S on the ability of nucleoporins to incor- 
porate into the membrane pellet, either GTP or GTP~tS was added to a fi- 
nal concentration of 2 mM at t = 0'. Both of these reagents were diluted 
from 50 mM stocks in ELB. 

Depletion of WGABPs from Egg Cytosol 
The cytosolic fraction was depleted of the WGA-binding proteins (WGA- 
BPs) by two to three rounds of passage over WGA-sepharose (E.Y, Labo- 
ratories, Inc.), as in Finlay et al. (1990), except that the nonspecific 
binding sites on the WGA-sepharose were blocked by preincubation 
with 2 volumes of WGA-depleted cytosol. Where indicated, the cytosol 
was mock-depleted by the inclusion of 125 mM N-acetylglucosamine 

(GIcNAc) and 2 mM trichitotriose (TCT) in high sugar/ELB (HS/ELB) 
with the WGA-sepharose. 

Electrophoresis and Western Blotting 
Protein samples in Laemmli gel sample buffer (GSB) were resolved on 
standard polyacrylamide gels (Laemmli, 1970) and transferred to PVDF 
in Tris-glycine-SDS buffer. The presence of WGA-binding proteins was 
detected by prehybridization of the blots with PPT (2% polyvinyl-pyrroli- 
done, 0.1-0.4% Tween 20 in PBS) and probing with either lZ~I-labeled 
WGA or WGA-HRP (1-2 h, RT) in PPT. Con A blots were performed in 
a similar manner; both lectin-HRP conjugates were obtained from E.Y. 
Laboratories, Inc. Antibody blots were performed by prehybridization in 
blocking buffer (3% BSA, 0.2% Tween 20 in PBS) and incubation with 
the appropriate dilution of antibody in BB for 1 h at room temperature. 
After extensive washing, the blots were again prehybridized in BB and 
probed either with ~I-Prote in  A or with HRP-conjugated goat anti-rab- 
bit IgG. HRP was detected by chemiluminescence (Renaissance kit, New 
England Nuclear, Boston, MA). 

Fractionation of the Annulate Lamellae 
In a first attempt to isolate the in vitro synthesized annulate lamellae 
(AL), the extract containing them was centrifuged through a sucrose gra- 
dient (Fig. 3). More specifically, a 300-~1 reaction mix was brought to a fi- 
nal concentration of 15% sucrose by the addition of 65% sucrose/ELB (fi- 
nal volume of 0.475 ml). The sample was then loaded onto a step gradient 
consisting of 0.475 mi each of the following layers: 65, 60, 55, 50, 45, 40, 35, 
30, 25, and 20% sucrose in ELB. The gradient was centrifuged at 45,000 
rpm in a Ti55 rotor (Beckman Instruments, Inc., Fullerton, CA) for 20 h. 
The gradient was fractionated from the bottom into 10 × 0.5 ml fractions. 
GSB was added to two duplicate 15-~1 aliquots of each fraction, and the 
samples were resolved by SDS-PAGE. The gels were transferred to sepa- 
rate PVDF blots and were probed with 125I-Con A to determine the posi- 
tion of gp210, an anti-ribophorin monoclonal antibody to determine the 
position of ribophorin, or 125I-WGA to determine the position of nupt0  
and nup200. 

Because all of the ConA-binding proteins as well as the ER marker ri- 
bophorin comigrated at the same position in the above gradient, it ap- 
peared that all of the membrane vesicles had fused into large continuous 
networks. To disperse these structures into distinct subclasses of m e m -  
branes, we homogenized the assembly reaction before flotation up 
through a sucrose gradient. For this, AL  assembly assays (100 p.l final vol- 
ume) were incubated at room temperature for 3 h, before dilution with 2 
vol of ELB containing 15 ixg/ml RNAse A (Sigma, St. Louis, MO) to re- 
lease ribosomes from the ER. After a 15-rain incubation on ice, the sam- 
ples were homogenized by 8-10 slow passes with a small ground-glass tis- 
sue homogenizer (Duall homogenizer, No. K-885450-0020; Kontes, San 
Leandro, CA), with gentle mixing after each pass. Note that the homoge- 
nization step is critical to the separation of AL  from ER. Overhomogeni- 
zation leads to the apparent disruption of pore complexes (Miller, B. R., 
unpublished observations), while use of a more  gentle method such as 
douncing fails to separate the AL from ER. The samples were then recov- 
ered by centrifugation onto a two-step cushion of 2 M sucrose/ELB over- 
laid with 0.5-M sucrose/ELB, centrifuged at 30,000 g for 20 min. The 
membrane fraction was recovered from the 2 M/0.5 M interface, diluted 
with 4 vol of 10 mM Hepes, pH 7.4, and pelleted as above. The resulting 
pellet was carefully but completely resuspended in 125 Ixl ELB, and ad- 
justed to 65% sucrose with 375 ~,1 of 2.5 M sucrose/ELB. This sample was 
placed in the bottom of a prechilled SW55 tube and overlaid with one of 
two sucrose profiles. For the experiments shown in Figs. 4 and 5, the gra- 
dient consisted of 0.5 ml each of 60, 55, 50, 45, 42.5, 40, 37.5, 35, and 32.5% 
sucrose/ELB. The gradients were centrifuged at 300,000 g for a maximum 
of 20 h, and 0.25-ml fractions were collected from the bottom. The gradi- 
ents in Fig. 8 were modified slightly by substituting a 1 ml block of 35% 
sucrose for the last two steps. This modification allowed for easier visual- 
ization of the difference in density of WGA-depleted and normal AL. 

Electron Microscopy 
For transmission electron microscopy of ultrathin sections of AL, samples 
(50 I~1) of the extract were diluted 20-fold in ELB and centrifuged through 
0.5 M sucrose onto a 2 M sucrose cushion at 34,000 g for 20 min. The fluffy 
layer at the interface was fixed in 2.5% glutaraldehyde (final) in buffer C 
(0.2 M cacodylate, pH 7.4) for 30 rain on ice. After centrifugation for 10 
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rain at 3,000 g, the pellet was resuspended in 20 ixl of 2% low-melting- 
point agarose/buffer C and chilled on ice for 3 min. The pellet was then 
treated with 200 ~1 2.5% glutaraldehyde/buffer C for 5 min, washed well 
with buffer C alone, and then postfixed in 2% osmium tetroxide/buffer C 
for 3 h. After several washes with ddH20, the pellet was treated with 0.5% 
uranyl acetate for 12-16 h at 4°C. The following day, the pellet was 
washed several times in water and subsequently dried in a graded series of 
ethanol washes (50, 70, 90, 95, 99, and 100%). The sample was embedded 
in Spurrs resin, cut into ultrathin sections, and poststained on grids with 
2% uranyl acetate in H20 for 20 min. Micrographs were taken with an 
electron microscope (EM 300; Philips Technologies, Cheshire, CT). 

For negative staining of AL, samples of extract were diluted in ELB 
and centrifuged onto a 2 M sucrose cushion, as described previously. The 
interface was removed, washed, and resuspended in 10 mM Hepes, pH 
7.4, 3 mM MgC12. Ionized, carbon-coated grids were placed face down on 
a drop of the resuspended material for i min, washed in 1-120, and placed 
on a drop of 2% uranyl acetate for 1 min. The grids were blotted dry and 
viewed with an electron microscope (EM 300; Philips Technologies). 

Densitometry 
The blots were scanned using of an 8-bit CCD camera, and the intensities 
of the bands were quantitated by NIH Image (ver. 1.49) software. To facil- 
itate scaling of the resulting graphs, values are expressed as a percentage 
of the most intense band. 

Results 

A Biochemical Assay for the Formation 
of Annulate Lamellae 

To develop a biochemical assay for nuclear pore forma- 
tion and to study the assembly of known nucleoporins into 
pore complexes, we focused on their potential incorpora- 
tion into annulate lamellae (AL). AL reconstitution, as 
discussed earlier, represents a simplified system for study- 
ing nuclear envelope and pore formation in the absence of 
chromatin. It had been demonstrated that while annulate 
lamellae are abundant in the cytoplasm of Xenopus oo- 
cytes, fully mature eggs and extracts harbor no pore-con- 
taining membranes (Steinert et al., 1974; Kessel and Sub- 
telny, 1981; Imoh et al., 1983; Larabell and Chandler, 1988; 
Bement and Capco, 1989; Dabauvalle et al., 1991). During 
meiotic maturation of the oocyte, AL respond to mitotic 
signals in a manner similar to the nuclear envelope and, 
therefore, disassemble. Thus, the nuclear pores are in their 
disassembled state in a freshly prepared egg extract. 

Dabauvalle et al. (1991) showed previously that, in the 
absence of added chromatin, annulate lamellae can form 
spontaneously over time in a crude egg extract. The AL 
were detected visually by either immunofluorescence or 
immunoelectron microscopy performed on the assembly 
extract. Their starting extract, though lacking AL, con- 
tained large amounts of membrane vesicles, Golgi stacks, 
coated vesicles, mitochondria, ribosomes, and disassem- 
bled nuclear pores (Scheer et al., 1988). To simplify the 
system, we fractionated the extract by centrifugation and 
used only those fractions we found were specifically re- 
quired for AL formation in our assembly reaction. A 
crude extract was centrifuged at 200,000 g for 1.5 h, as pre- 
viously described (Newmeyer and Wilson, 1991), which 
separated the extract into a gelatinous pellet consisting 
predominantly of glycogen and ribosomes, a mitochon- 
drial layer, a membrane vesicle fraction, and a cytosolic 
fraction (Lohka and Masui, 1984; Newport, 1987; Hartl et 
al., 1994). 

To prepare AL de novo, cytosol was mixed with the 
membrane fraction and allowed to incubate at room tem- 
perature for a period of several hours. We reasoned that if 
AL were indeed forming in the extract, the soluble disas- 
sembled nucleoporins would associate with the mem- 
branes over time as they became incorporated into pores. 
Several years ago the family of N-acetylglucosaminylated 
glycoproteins was shown to be required for pore function 
(for a review, see Introduction and Rout and Wente, 1994; 
Featherstone et al., 1988). In Xenopus the major members 
of this family of glycoproteins are the nucleoporins, nup60, 
nup97, and nup200, which bind to the lectin WGA (re- 
ferred to here as the WGABPs) nuclear pore complexes. 
WGA-coated gold particles specifically decorate the NPCs 
of Xenopus nuclei (Scheer et al., 1988; Akey and Gold- 
farb, 1989; Pante and Aebi, 1993). Antibodies to the most 
prominent WGA-binding band in Xenopus, nup60, local- 
ize to the nuclear pore and block transport in vivo (Da- 
bauvalle et al., 1988; Benavente et al., 1989). The glyco- 
proteins nup97 and nup200 are also pore proteins (Powers 
et al., 1995; Powers, P., C. Macaulay, and D. Forbes, 
manuscript in preparation). These WGA-binding nucle- 
oporins are initially soluble in the cytosol of egg extracts 
(Fig. 1, lane 13). Previously it had been shown that re- 
moval of the WGABPs before nuclear reconstitution re- 
suits in the inability of the resultant nuclei to import pro- 
tein (Finlay and Forbes, 1990). The proteins nup60, nup97, 
and nup200 were thus used as examples of typical pore 
proteins that are initially soluble in an extract. 

To initiate a biochemical study of AL assembly, we first 
asked whether these proteins become associated with the 
membrane fraction during incubation, as would be ex- 
pected if they were becoming assembled into pores. The 
cytosol and membrane fractions of an extract were mixed 
and incubated at room temperature. At various times, ali- 
quots were removed, diluted, and centrifuged through a 
sucrose cushion to separate the membranes from the solu- 
ble material. Fig. 1 shows an immunoblot of the pelleted 
membranes, probed with anti-nup60, anti-nup97, and anti- 
nup200 antibodies. At 0 h, no association of the soluble 
nucleoporins with the membranes was apparent (Fig. 1, 
lane 7). The presence of nucleoporins in the pellet in- 
creased with time (Fig. 1, lanes 8-9). By 90 min, a signifi- 
cant fraction of nup60, nup97, and nup200 had become as- 
sociated with the membrane pellet. Incorporation of the 
soluble nucleoporins was in the range of 30--60% of the to- 
tal, depending on the extract. The ability to pellet the nu- 
cleoporins was membrane dependent; it did not occur in 
the absence of membranes (Fig. 1, lanes 1-6). We also 
noted that, although not required, this association seemed 
enhanced by the addition of glycogen, which was purified 
from the gelatinous pellet of the 200,000 g centrifugation 
step (Fig. 1; compare lanes 8-9 with lanes 11-12). Glyco- 
gen alone, in the absence of membranes, did not cause any 
Significant pelleting of the nucleoporins (Fig. 1, lanes 4--6). 
Because of this seemingly specific effect, glycogen was 
generally included in the assembly reactions. Interestingly, 
the optimal concentration of glycogen was found to be 20 
mg/ml, the same concentration shown to be optimal for 
nuclear envelope formation around protein-free lambda 
phage DNA in a fractionated egg extract (Hartl et al., 
1994). 
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Figure 1. The nucleoporins nup60, nup97, and nup200 associate 
with the membrane fraction with increased incubation time. (A) 
AL formation assays (50 ~1 final volume) were incubated in the 
presence or absence of membranes (1× final concentration) and 
glycogen (final concentration of 20 mg/ml) at room temperature 
for several hours. At 0, 1.5, and 3 h, 10-1~1 aliquots were removed, 
diluted 40-fold in ELB, and pelleted through a sucrose cushion to 
separate the membranes from the soluble material. The pellets 
were resuspended in 200qxl loading buffer, 10 ixl was subjected to 
SDS-PAGE, and the proteins were transferred to nitrocellulose 
(top portion of the blot) or PVDF (bottom portion of the blot). 
The top portion of the blot was pretreated with 4 M guanidine 
hydrochloride for 30 min to make the antigen more reactive. The 
transferred proteins were probed with affinity-purified anti- 
nup200 antibodies (top portion) or a mixture of affinity-purified 
anti-nup97 and anti-nup60 antibodies (bottom portion). The posi- 
tions of nup200, nup97, and nup60 are indicated to the left. Lanes 
1-13 each contain the equivalent of 0.5 ixl of the input reaction 
mixture. Lanes 1-3 are derived from an assembly mix without 
added membranes or glycogen (-MEM, -GLY) and were incu- 
bated for 0, 1.5, and 3 h. Samples in lanes 4-6 contain added gly- 
cogen (+GLY) and were incubated for 0, 1.5, and 3 h. Lanes 7-9 
contain cytosol with added membranes (+MEM; 0.05 Ixl equiva- 
lent per lane) and were incubated for 0, 1.5, and 3 h. Lanes 10-12 
contain cytosol, with both added membranes and glycogen 
(+MEM, +GL.Y), and were incubated for 0, 1.5, and 3 h. Lane 13 
contains 0.167 i~1 of the input cytosol, and lane 14 contains 0.05 ~1 
of the input membranes for comparison; the results in lanes 13-14 
demonstrate that nup200, nup97, and nup60 were present only in 
the cytosol prior to the start of the reaction. For calculating the 
percentage of incorporation of individual nucleoporins, an amount 
of nucleoporin equal to that in lane 13 would be the equivalent of 
30% incorporation. (B) AL assembly reactions were incubated at 
room temperature for up to 3 h. At the designated times, an ali- 

It appeared from the data above that, upon incubation, 
the soluble nucleoporins became associated with the mem- 
brane fraction. When  a similar A L  assembly reaction w a s  
examined for the presence of nup58, which is found in a 
600-kD complex with nup60 in the initial extract (Ma- 
caulay et al., 1995; see also Dabauvalle et al., 1990; Finlay 
et al., 1991; Haino et al., 1993), nup58 was also associated 
with the membrane pellet (Fig. 1 B). This association in- 
creased with time and paralleled the incorporation of  
nup60, nup97, and nup200 into membranes exactly. 

Annulate Lamellae Are Present in the Membrane Pellet 

To confirm that the association of  nucleoporins with the 
membrane  fraction represents true formation of  annulate 
lamellae, we examined ultrathin sections of the pelleted 
membranes by transmission electron microscopy. Fig. 2 A 
shows an example of a stack of A L  found after a 4-h incu- 
bation at room temperature. Such stacks were common in 
the pellet. In agreement with the results of others, we did 
not detect any pore-containing membranes at t = 0',  con- 
firming that intact NPCs were not being introduced by any 
of the individual components  of the reaction mixture 
(Steinert et al., 1974; Kessel and Subtelny, 1981; Imoh  et 
al., 1983; Larabell and Chandler, 1988; Bement  and Capco, 
1989; Dabauvalle et al., 1991). 

Because the transmission electron microscopy used in 
this study requires a lengthy sample preparation, we asked 
whether the presence of A L  could be detected by a simple 
negative-staining procedure. For  this, a carbon-coated grid 
was placed on a drop of the resuspended membrane pellet 
from a 3-h incubation reaction. We found that, indeed, A L  
could be identified in this manner. A single lamella is 
shown in Fig. 2 B. These single lamellae were easy to visu- 
alize, but perhaps not surprisingly, most  of  the A L  on the 
grid were present as large stacks, prohibiting good resolu- 
tion of  individual pores. However,  the dense hexagonal 
packing characteristic of  A L  was clearly visible in the sin- 
gle sheets. In some patches, the eightfold symmetry of in- 
dividual NPCs was also discernible when observed at 
higher magnification (Fig. 2 C). 

Comigration of the WGABPs with the 
Integral Membrane Nucleoporin, gp210, in a 
Distinct Membrane Fraction 

At  this point, a correlation had been established between 
the presence of the nucleoporins nup58, nup60, nup97, and 
nup200 in the membrane pellet and detection of A L  in this 
pellet by electron microscopy. There was still a possibility, 
however, that the pelleting of  the nucleoporins with the 
membranes  did not reflect A L  assembly but some random 
process such as nonspecific sticking to membranes or sim- 

quot was removed, diluted in ELB, and cemrifuged through a 0.5 M 
sucrose cushion. The entire membrane pellet (equivalent to 2 Ixl 
membranes) was resuspended in loading buffer containing SDS, 
boiled for 5 min, and resolved on a 9% polyacrylamide gel. The 
proteins were transferred to PVDF and probed with the anti-rat 
nup58 antisera, followed by incubation with an HRP-conjugated 
goat anti-rabbit IgG secondary antibody. The position of the 
cross-reacting Xenopus 58-kD band is shown. 
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Figure 3. Nup60 and nup200 cosediment with the pore integral 
membrane protein gp210 as well as with the ER membrane pro- 
tein ribophorin. An AL assembly reaction was incubated for 4 h, 
diluted with ELB, and layered onto a sucrose gradient as de- 
scribed in Materials and Methods. After centrifugation at 300,000 g 
for 20 h, 0.5-ml fractions were collected from the bottom. Ali- 
quots (15 ixl) were resolved by SDS-PAGE in duplicate. One gel 
was probed with 125I-WGA to detect nup60 and nup200 (circled 
fraction; data not shown). The other blot (Fig. 3) was cut horizon- 
tally at a position corresponding to 70 kD. The top half was 
probed with 125I-Con A and the bottom with an antibody against 
the ER marker ribophorin followed by 125I-Protein A. The cir- 
cled number indicates the fraction that contained the peak of the 
WGABPs, as determined by Western analysis with WGA. In the 
WGA blot, nup60, nup97, and nup200 were observed in a distinct 
peak in fraction 2. The positions of ribophorin and gp210 are 
shown. With each probe, the majority of the signal was detected 
in a distinct peak centered on fraction 2. The lane marked M con- 
tained 2 ~1 of total membranes. 

Figure 2. In vitro synthesized AL are present in the membrane 
pellet. (A) Cytosol was incubated with membranes and glycogen 
for 4 h at room temperature. The assembly reaction was diluted 
in ELB and centrifuged through a layer of 0.5 M sucrose onto a 
2 M sucrose cushion. The fluffy pellet at the interface between 
the two sucrose layers was removed, mixed with a drop of low- 
melting agarose, and processed for thin-section transmission 
electron microscopy as described in Materials and Methods. (B) 
Alternatively, the fluffy pellet was gently homogenized, applied 
to ionized, carbon-coated grids, washed with H20, and negative- 
stained with uranyl acetate. (C) In some views, elements of the 
eightfold symmetry of individual nuclear pores could be seen. 

pie aggregation of the soluble pore proteins into a large, 
dense pelletable mass. We therefore at tempted to isolate 
the A L  away from free vesicles by centrifugation through 
a sucrose gradient to test whether nup60, nup97, and 
nup200 enriched together and did so in the fraction that 
contained AL.  When the assembly reaction was centri- 
fuged through the gradient, however, all of the particulate 
material visible by eye sedimented in one large peak near 

but not at the bot tom of the gradient (at ~ 4 5 %  sucrose). 
Furthermore,  when aliquots of the fractions from the gra- 
dient were resolved by S D S - P A G E  and probed for vari- 
ous nuclear membrane and E R  proteins, all of those pro- 
teins peaked in the same fraction (Fig. 3, fraction 2). The 
probes used were (1) W G A ,  to detect the glycosylated nu- 
cleoporins nup60, nup97, and nup200, (2) antibody to ribo- 
phorin, an integral membrane protein of  the ER,  and (3) 
Con A, which recognizes complex carbohydrate modifica- 
tions common to E R  integral membrane  proteins. Note 
that gp210, an integral membrane  pore protein recognized 
by Con A (Gerace et al., 1982; Wozniak et al., 1989; 
Greber  et al., 1990), was present in fraction 2 (Fig. 3), as 
were nup60, nup97, and nup200 (indicated by the circled 
fraction number; data not shown). 

It had been reported previously that in vivo annulate 
lamellae are often continuous with both the outer nuclear 
envelope and the E R  network (for review see Kessel, 
1992). It appeared that a similar phenomenon might be oc- 
curring in the extract, since all the vesicles had apparently 
fused into large membranous structures. It has also been 
shown that E R  vesicles spontaneously fuse into tubules 
and sheets in this same type of extract reaction mix (New- 
port  and Dunphy,  1992). We wished, therefore, to sepa- 
rate these membrane entities by homogenization, in an at- 
tempt to disperse them into discrete subpopulations of 
membranes. Following this treatment, we would then be 
able to determine whether the WGA-binding  nucleopor- 
ins and the integral membrane pore protein gp210 were 
specifically enriched in a single fraction that was separate 
from other membrane proteins. To do this, an A L  assem- 
bly reaction was set up and incubated at room tempera- 
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Figure 4. Separation of gp210-containing membranes from the 
bulk of ER membranes. To attempt to separate AL from ER 
membranes, an AL assembly reaction was set up and incubated 
for 3 h at room temperature. The mixture was then homogenized 
and the membrane fraction recovered, as described in Materials 
and Methods. The membrane pellet was resuspended in a small 
volume of ELB, 2 Ixg HSA was added, and the resuspended 
membranes were adjusted to 65% sucrose and layered at the bot- 
tom of a prechilled SW55 centrifuge tube. The sample (0.5 ml) 
was overlaid with 0.5 ml blocks of 60, 55, 50, 45, 42.5, 40, 37.5, 35, 
and 32.5% sucrose (all solutions contained the same buffer com- 
position as ELB), and the gradient was centrifuged at 300,000 g 
for 20 h. Fractions (0.25 ml) were collected from the bottom, and 
the proteins were precipitated as in Wessel and Flugge (1984). 
Samples (10% of each fraction) were run on a 7.5% SDS gel and 
transferred to PVDF. The top portion of the blot corresponding 
to polypeptides >175 kD was probed with affinity-purified anti- 
serum to a portion of rat gp210 and detected with an HRP- 
labeled goat anti-rabbit secondary antibody. The remainder of 
the blot was probed with HRP-ConA. The integral membrane 
pore protein gp210 was found predominantly in fractions 5-7, 
while most of the Con A-binding proteins (Con A BPs) were 
found to enrich near the top of the gradient. Greater than 80% of 
the loaded amount of any individual nucleoporin was recovered 
in the peak gradient fractions. 

ture for 3 h. The reaction was homogenized as described in 
Materials and Methods, pelleted, applied to the bot tom of 
a 32-65% concave sucrose gradient, and centrifuged at 
300,000 g for 20 h to float the membrane-containing struc- 
tures. As shown in Fig. 4 (upper portion), when the reac- 
tion mix was homogenized and subjected to flotation, the 
pore protein gp210 peaked in fractions 5-7 (at a density 
N1.20 g/cc), In contrast, the majority of other Con A-bind-  
ing proteins, as well as ribophorin, were dispersed 
throughout  the gradient, peaking near the top of the gradi- 
ent in fraction 15 (Fig. 4, lower portion). 

When the fractions were probed with antisera to the ini- 
tially soluble glycosylated nucleoporins, it was observed 
that fractions 5-7 also contained the peak of  nup60, nup97, 
and nup200 (Fig. 5). These results demonstrate that the 
initial pelleting of the soluble nucleoporins is not due to 
aggregation or precipitation, because such nonmembra-  
nous structures would remain at the bot tom of the flota- 
tion gradient. Instead, the cosedimentation of the initially 
soluble nucleoporins with the integral membrane  pore 
protein gp210 in a dense fraction, separate from the bulk 

Figure 5. All the nucleoporins tested comigrate with the gp210- 
containing membrane fraction. Aliquots of the gradient fractions 
in Fig. 4 were resolved on multiple SDS gels and transferred to ei- 
ther nitrocellulose (for anti-nup200) or PVDF (all other antibod- 
ies, i.e., anti-rat nup62, anti-Xenopus nup97, mAb 414 to detect 
nup153, anti-HSA, and anti-ribophorin). The initially soluble 
pore proteins, nup60, nup97, nup153, and nup200, after incuba- 
tion to form AL and homogenization were all detected in frac- 
tions 5-7 (Fig. 5), coincident with the integral membrane pore 
protein gp210 (shown in Fig. 4). Distribution of the ER marker ri- 
bophorin (rp) was found to follow the pattern of the Con A-bind- 
ing proteins and peaked in fraction 15. HSA was included in the 
gradient load zone as a control for nonspecific sticking or entrap- 
ment of protein with the membranes. As expected, the HSA was 
found primarily in fraction 1. 

of  the membrane proteins, supports the conclusion that 
these nucleoporins are incorporated into pore complexes 
within the membranes. 

The number  of vertebrate pore proteins that have been 
identified, and to which there are antibodies, is limited. 
One protein, nup153, is a pore protein found in the distal 
ring of the basket of  the pore and on filaments extending 
from the basket into the nucleoplasm (Cordes et al., 1993; 
Sukegawa and Blobel, 1993). The Zn 2+ finger-containing 
nup153 protein contains G X F X G  repeat sequences, as do 
nup200 and nup60, and is therefore recognized by the 
an t i -GFXFG monoclonal  antibody, mAb414. To deter- 
mine whether nup153 cofractionates with the pore pro- 
teins gp210, nup58, nup60, nup97, and nup200, a blot of 
the same set of  membrane  vesicle fractions was probed 
with m A b  414 (Fig. 5). Nup153 can clearly be seen to co- 
fractionate with the other pore proteins. In contrast, the 
soluble protein human serum albumin (HSA), which was 
added to the homogenized membranes before flotation as 
a negative control, did not float up with the membranes 
but remained at the bot tom of the gradient (Fig. 5). Ribo- 
phorin, an E R  protein, was also present in small amounts 
in the pore-containing fractions 5-7, as was a small amount  
of the E R  integral membrane  proteins visualized with Con 
A, consistent with the predicted derivation of A L  mem- 
brane components  f rom the E R  (Kessel, 1983). The bulk 
of  ribophorin, however, floated higher in the gradient (Fig. 
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5), peaking in fractions 13-15 with the bulk of the Con 
A-binding ER proteins (Fig. 4). 

When the fraction containing the peak of nucleoporins 
was fixed, sectioned, and examined by transmission elec- 
tron microscopy, it was found to be enriched in small 
stacks of AL (not shown). In contrast, when the fraction 
containing the peak of the ConA-binding or ER proteins 
(fraction 15) was examined in the electron microscope, 
it was found to be devoid of AL and to consist entirely of a 
heterogeneous population of vesicles (not shown). We 
conclude that after AL formation and homogenization, 
the soluble pore proteins cofractionate with gp210 in an 
AL-containing membrane fraction. Furthermore, this 
dense membrane fraction can be separated from the bulk 
of the ER. 

Association of  Nucleoporins with the Membrane Pellet 
Is Blocked by GTP~,S 

Many cellular processes are known to require small GTP- 
binding proteins (Dickey and Birnbaumer, 1993). With re- 
spect to potential steps in AL formation, GTP might be 
expected to be involved in one or more steps in the actual 
assembly of the pore complex, and/or in the fusion of vesi- 
cles that would be required for forming a large membra- 
nous structure such as the AL (for reviews see Balch, 1989; 
Hall, 1990). Indeed, Boman et al (1992a) have shown that 
during nuclear envelope assembly in a Xenopus egg ex- 
tract, GTP hydrolysis is required for the fusion of chroma- 
tin-bound, nuclear-specific vesicles into a double mem- 
brane nuclear envelope. 

To test the dependence of AL formation on GTP hydrol- 
ysis, GTP~S was added to an assembly reaction at t = 0'. 
GTP was added to a control sample to the same final con- 
centration. AL were allowed to form for 0-3 h as usual, 
after which the membranes were recovered by centrifuga- 
tion. Fig. 6 shows an immunoblot of the pelleted mem- 
branes, using anti-nup60, anti-nup97, and anti-nup200 an- 
tibodies as probes. No incorporation was observed if the 
reaction was carried out at 0°C (Fig, 6 A, lanes 4-6). Incor- 
poration of the nucleoporins into membranous structures 
proceeded normally either under control conditions (lanes 
1-3) or in the presence of added GTP (lanes 7-9). How- 
ever, the incorporation was essentially blocked by addition 
of the nonhydrolyzable analogue, GTP~/S (lanes 10-12). 
When the fractions in Fig. 6 A were probed with the 
mAb414 for the presence of the nucleoporin nup153, this 
nucleoporin's incorporation into AL was also found to be 
blocked by GTP~S in the assembly reaction (Fig. 6 B, 
lanes 10--12). A protein of 1>270 kD, which reacts with the 
anti-GXFXG mAb 414, also failed to incorporate into the 
membrane pellet (Fig. 6 B). We do not know if this protein 
is a pore protein but assume it is because it coenriches on 
sucrose gradients with AL and  known pore proteins. 
These results indicate that AL assembly, measured by 
pore protein association with the membranes, requires 
GTP hydrolysis. Indeed, when the samples incubated in 
the presence of GTP',/S were examined by thin-section 
electron microscopy, no AL were observed. The bulk 
membranes appeared identical to membranes at t = 0', 
that is, the vesicles had undergone no membrane fusion 
(data not shown). 

Figure 6. Association of the soluble nucleoporins with AL-con- 
taining membranes requires physiological temperature and hy- 
drolyzable GTP. A 1130 ~1 AL mix was assembled on ice and di- 
vided into four aliquots. One aliquot remained on ice for the 
reaction course (lanes 4--6), while the other three were placed at 
room temperature after the addition of buffer (lanes 1-3), GTP 
(2 mM final, lanes 7-9), or GTP~S (2 mM, lanes 10-12). Samples 
were removed at the indicated times (0, 1.5, and 3 h), diluted 40- 
fold with ELB, and pelleted as described in Materials and Meth- 
ods. A sample of the cytosol added to each reaction at t = 0', cor- 
responding to 30% of the input, was loaded in lane 13. Lane 14 
contains an amount of input membranes equivalent to that in 
lanes 1-12. Duplicate gets were run, one of which was transferred 
to nitrocellulose (anti-nup200) and one to PVDF. The blots were 
probed with either anti-nup200 (6 A, upper portion), a mixture of 
anti-nup97 and anti-nup60 antibodies (6 A, lower portion), and 
mAb414 (6 B). The positions of nup60, nup97, nup200 in Fig. 6 A, 
and p270 and nup153 in Fig. 6 B are indicated at the left. As in 
Fig. 1, an amount of nucleoporin equal to that in lane 13 would be 
the equivalent of 30% incorporation. 

With respect to the amount of incorporation of the dif- 
ferent nucleoporins into AL, the efficiency of incorpora- 
tion of nup153 into AL is somewhat lower than that of the 
WGABPs (Fig. 6, A and B; compare lanes 2-3 with lane 13 
in both figures; lane 13 contains 30% of the input cytosol). 
At the present time the significance of this observation is 
unclear as it is not known whether the cytosolic fraction 
contains equivalent stoichiometric amounts of each pore 
protein. However, it is possible that the apparent excess of 
the WGABPs over nup153 in AL may be related to the 
way that pore complexes and individual pore proteins are 
assembled in annulate lameUae. The amount of incorpora- 
tion of the nup60 and nup97 was relatively high, usually 
30-80% (see Fig. 6 A). The degree of incorporation of 
nup200, a presumed component of the cytoplasmic fila- 
ments extending from the nuclear pore, was consistently 
less (Fig. 6 A). Possible reasons for the lower amounts of 
incorporation of nup153 and nup200 are addressed in the 
Discussion. 
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Annulate Lamellae Pore Formation Occurs in 
Extracts Depleted of  WGABPs 

Finlay and Forbes (1990) showed that when the WGABPs 
are removed from egg cytosol prior to nuclear reconstitu- 
tion, an intact nuclear envelope still forms around exoge- 
nously added sperm chromatin. This envelope is studded 
with numerous nuclear pore complexes which are incom- 
petent for import. By transmission electron microscopy, 
the nuclear pores appeared relatively normal in structure 
but were less densely stained by uranyl acetate (Finlay and 
Forbes, 1990). It was concluded that the major structural 
scaffold of the nuclear pore assembles independent of the 
WGABPs. This finding corroborated much EM labeling 
data, which showed a nonscaffold location for the WGABPs 
in the pore (Finlay et al., 1987; Akey and Goldfarb, 1989; 
Pante et al., 1994). In other studies, nuclear pores failed to 
form in a WGA-depleted extract (Dabauvalle et al., 1990) 
or were structurally defective (Miller and Hanover, 1994). 
It may be that slight differences in experimental protocol 
are the cause of these discrepancies, since multiple com- 
plex processes must occur for nuclear formation to take 
place. To analyze the pore protein requirements for AL 
assembly, we wished to determine whether AL can assem- 
ble independent of the WGABPs. Cytosol was depleted of 
WGABPs by passage over WGA-sepharose. The depleted 
cytosol was then mixed with membrane vesicles and glyco- 
gen, and incubated at room temperature for 4 h. A mock- 
depleted sample was prepared simultaneously by incu- 
bation of the cytosol with the lectin-sepharose in the 
presence of the competing sugar N-acetylglucosamine, 
followed by incubation with membranes for 4 h. The as- 
sembly reactions were diluted and pelleted through a su- 
crose cushion as described above. The membrane pellets 
were then prepared for thin sectioning as detailed in Mate- 
rials and Methods and observed in the electron micro- 
scope. Examination of a number of sections revealed that 
both the mock-depleted and the depleted samples con- 
tained stacks of AL, although the AL in both were some- 
what smaller and had fewer pores/area than those typically 
found in untreated cytosol. Fig. 7 A shows a cross-section 
of a representative patch of A L  which was formed in the 
depleted cytosol. An en face view is shown in Fig. 7 B. 
This result indicates that the pores of both nuclear enve- 
lopes and annulate lamellae can form in the absence of 
WGABPs. 

As stated earlier, previous work indicated that WGABP- 
depleted pores in nuclei showed a loss of electron density 
by thin-section electron microscopy (Finlay and Forbes, 
1990). When WGABP-depleted AL were formed, homog- 
enized, and then assayed biochemically for their migration 
in a sucrose density flotation gradient, they were found to 
have a different buoyant density than control AL. To 
locate the position of the depleted AL, an immunoblot 
for nup153 was used (Fig. 8, A and B, open circles). We 
have observed that this nucleoporin is not significantly re- 
moved by WGA-sepharose depletiQn (Finlay and Forbes, 
1990; Fig. 8). As shown in Fig. 8 B, the depleted nup153- 
containing membranes were found at a lighter position in 
the gradient (fractions 8-11) than in the control reaction, 
where the majority of the nup153 was found in fractions 
6-10 (Fig. 8 A). Note that the gradients were altered slightly 

Figure 7. AL form in an extract depleted of WGABPs. Cytosol 
was depleted of WGABPs by two consecutive 1-h incubations 
with 0.5 volume WGA-sepharose. A control sample was incu- 
bated with WGA-sepharose in the presence of the competing 
sugars (HS/ELB). The depleted or mock-depleted cytosol was 
then mixed with glycogen (20 mg/ml final concentration) and 
membranes (1 × final concentration) and allowed to incubate at 
room temperature for 4 h. The reaction mixes were diluted 20- 
fold in ELB and centrifuged through a 0.5 M sucrose layer onto a 
2 M sucrose cushion. The fluffy pellet at the interface between 
the 0.5 M and 2 M layers was removed and processed for thin sec- 
tioning as described in Materials and Methods. Shown in the up- 
per panel is a cross-section of a small stack of AL formed in the 
depleted cytosol; shown in the lower panel is an en face view of 
AL found in the same sample. These stacks are representative of 
what was found in both the depleted and the mock-depleted sam- 
pies. The arrowheads mark pore complexes. 

from those in Figs. 4 and 5 to obtain better separation of 
depleted AL from control AL (see Materials and Meth- 
ods). The peak position of the control AL in Fig. 8 corre- 
sponds to a density of 1.20 g/cc, whereas the density of the 
WGA-depleted AL had a density of 1.185g/cc. In both 
cases, the position of the nup153 pore protein in the gradi- 
ents corresponded with the position of the integral mere- 
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Figure 8. Removal of the pore proteins nup60, nup97, and 
nup200 results in the formation of AL of lighter buoyant density. 
AL reactions were set up using (A) unfractionated or (B) 
WGABP-depleted cytosol as described in Materials and Meth- 
ods. At 3 h, the reactions were homogenized and analyzed by flo- 
tation through 65-35% sucrose gradients. Samples were pro- 
cessed as in Figs. 4 and 5. The amount of nup153 (open circles), 
gp210 (open squares), and ribophorin (filled circles) in each frac- 
tion was determined by densitometry and is expressed as a per- 
centage of the peak fraction. The density of sucrose (filled dia- 
rnonds) was calculated from the refractive index of each fraction. 
As in Figs. 4 and 5, the peak of the pore proteins nup153 and 
gp210 in the control sample occurred at a density of 1.20 g/cc 
(peaking in fraction 7, A). In contrast, the pore proteins nup153 
and gp210 in the WGABP-depleted AL peaked in fraction 9 at a 
density of 1.185 (B). There was no significant difference in the su- 
crose density profile of the gradients. The ER marker protein, ri- 
bophorin, showed very similar distributions in both the control 
and depleted samples, peaking at 1.16 g/cc. The density of pure 
protein is assumed to be in the range of 1.27-1.3 g/cc, so free pro- 
teinaceous structures would remain at the bottom of the gradient 
(density ~1.24 g/cc). 

brane pore protein gp210 (Figs. 8, A and B, open squares). 
In the control AL reaction, the WGA-binding nucleopor- 
ins also peaked in these fractions. The peak of ER mem- 
branes, as followed by the marker ribophorin, was much 
lighter in density and was identical in both gradients (Fig. 
8, A and B). Although the density difference between the 

WGA-depleted and control AL is small, it was highly re- 
producible. This indicates that removal of a subset pore 
proteins can be correlated with a change in the physical 
properties of the annulate lamellae. 

Discussion 

In this study, the assembly of soluble nucleoporins into 
pore complexes was probed using a cell-free extract pre- 
pared from Xenopus eggs. Specifically, a biochemical as- 
say was developed and used to monitor the incorporation 
of different, initially soluble nucleoporins into membranes, 
concomitant with incorporation of an integral membrane 
pore protein, gp210, into the same membrane population. 
Upon incubation of an egg extract, all nucleoporins tested 
became membrane associated in a time- and temperature- 
dependent manner, as determined by membrane sedimen- 
tation. Annulate lamellae formation was observed to oc- 
cur with the same time course by EM. In the presence of a 
nonhydrolyzable analog of GTP, visible AL did not form. 
Importantly, and perhaps due to an inhibitory effect dis- 
tinct from the observed block in membrane fusion, the 
membrane association of the soluble nucleoporins also 
failed to occur. Upon examination of the physical proper- 
ties of AL in a normal assembly reaction, AL were initially 
found to sediment in a large membrane population that 
contained all pore and ER protein markers. This finding is 
consistent with the one that AL and ER membranes are 
contiguous in vivo (Kessel, 1983), and with the finding that 
upon incubation of Xenopus egg extracts, the membrane 
vesicles fuse into large, ER-like reticular structures (New- 
port and Dunphy, 1992). Homogenization and flotation al- 
lowed us to separate a dense membrane fraction enriched 
in AL from the bulk of the ER and nonlamellar mem- 
branes. By immunoblotting, nucleoporins were observed 
to be incorporated along with gp210 in this dense mem- 
brane fraction. When the AL assembly reaction was al- 
tered by removing the WGA-binding nucleoporins, we 
found that AL continued to assemble but had an altered 
density. Thus, the results described are an initial study of 
the mechanism of envelope assembly under conditions 
where all nucleoporins are present and under conditions 
where a subset is absent. 

Molecular Composition of  Annulate Lamellae Pores 

It is generally believed that the structure and molecular 
composition of the nuclear pore, at a basic level, is similar 
to that of pores of annulate lamellae. Because the elabo- 
rate imaging and Fourier averaging techniques used to 
study nuclear pores have not yet been applied to AL and 
because little biochemical work has been done on AL, this 
conclusion is based largely on microscopic observations 
(for review see Kessel, 1992). Such structural work indi- 
cates that both types of pores have eightfold radial sym- 
metry. Both consist of two large rings stacked above and 
below a smaller central ring of spokes (for review, see Hin- 
shaw et al., 1992; Kessel, 1992; Akey and Radermacher, 
1993). Movement of substrates through the nuclear pore is 
thought to be mediated by a transporter located at the 
center of this spoke ring (Akey and Goldfarb, 1989; Akey 
and Radermacher, 1993; Dingwall, 1990). Although trans- 
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port through AL pores cannot be assayed, these pores, 
like nuclear pores, have been shown to bind gold particles 
coated with nuclear transport substrate (Feldherr et al., 
1984). 

From the structural similarity of the pores, the nucleo- 
porins nup60 and nup58, located near the central trans- 
porter, and the membrane pore protein gp210 could be 
predicted to be present in AL, as these proteins are inte- 
gral to pore structure and function. Previously, AL pores 
have been shown to be recognized by antibodies to the nu- 
cleoporin nup60 (also known as p62; Allen, 1990; Dabau- 
valle et al., 1991). Indeed, we confirmed biochemically the 
presence of nup60 in the AL fraction; by immunoblotting, 
we find that nup58 is also present. In addition, we find that 
the dense AL-containing fraction contains the integral 
membrane nucleoporin gp210. All the gp210 present in the 
egg extract, upon incubation, becomes incorporated in this 
densely sedimenting membrane population. These results 
support the conclusion that the nucleoporins are becoming 
incorporated into AL pores. A further conclusion that can 
be derived from the presence of gp210 in AL is that AL 
and nuclear pores must share, at least in part, a common 
membranous precursor. 

Until recently the nuclear pore appeared bilaterally sym- 
metrical. High-resolution electron microscopy has now re- 
vealed additional structural elements which indicate that 
the nuclear pore has a polar nature. On the nucleoplasmic 
side, eight long filaments of 1,000A project away from the 
pore and join at their distal ends to a terminal ring; the en- 
tire structure is termed the nuclear basket (Ris, 1990; 
Goldberg and Alien, 1992; Pante and Aebi, 1993; Pante et 
al., 1994). Extending from the cytoplasmic ring of the pore 
is a set of eight short fibers termed the cytoplasmic fila- 
ments. Biochemically, the nuclear basket contains the 
pore protein nup153, while the cytoplasmic filaments con- 
tain the proteins CAN/nup214, nupl80, and TPR/nup265 
(Snow et al., 1987; Cordes et al., 1993; Sukegawa and Blo- 
bel, 1993; Wilken et al., 1993; Byrd et al., 1994; Kraemer et 
al., 1994; Pante et al., 1994). Both CAN and TPR have 
been associated with oncogenesis in humans when fused to 
other genes, presenting the intriguing possibility that a 
new class of oncogenes causes tumorigenesis by altering 
the function of the nuclear pore. 

The asymmetry of the nuclear pore may be generated by 
internal nuclear constituents. DNA could direct polar as- 
sembly of the basket, as at least one component of the bas- 
ket, nup153, has intrinsic DNA-binding ability (Sukegawa 
and Blobel, 1993). Alternatively, since the nuclear pore is 
imbedded in the nuclear lamina, the lamina may play a 
role in seeding the assembly of the basket so that it occurs 
exclusively on the nuclear face of the pore. A third possi- 
bility is that the newly described nuclear lattice may ini- 
tiate polarity of the pore (Goldberg and Allen, 1992). A 
priori there is no reason to assume that the pores of the 
AL would be polar, that is, that they would contain nu- 
clear baskets and/or cytoplasmic filaments. Indeed, the 
tight packing of the adjacent membrane stacks in AL 
might seem to preclude the existence of at least one of 
these extended structures, there being less than 1,000A be- 
tween stacks. The reconstitution assay developed here al- 
lowed us to determine whether constituents of the basket 
and cytoplasmic filaments were present in AL. Upon anal- 

ysis, we found that both the nucleoporin nup200, which is 
the Xenopus equivalent of CAN/p214 (Powers, M., C. 
Macaulay, and D. Forbes, manuscript in preparation), and 
the basket protein nup153 are incorporated into AL. Al- 
though we do not know whether egg extracts contain sto- 
ichiometric amounts of all the pore proteins, both nup153 
and nup200 do seem to be incorporated at lower efficien- 
cies into AL when compared to nup60 (see Figs. 1 and 6). 
In explanation of this, it is possible that the AL pore is in- 
deed polar but has only remnant (or incipient) structures 
corresponding to the basket and cytosolic filaments. The 
tight packing of the stacks would prevent full assembly on 
all but the outermost stacks. Alternatively, it is possible 
that, without topological cues such as chromatin or a lam- 
ina, the AL pore is inherently an apolar structure. Limited 
amounts of filament assembly may then occur randomly 
on either face of the pore, so that each pore contains small 
amounts of nup153 and nup200 on both sides. Further ex- 
amination of the specific location of nup153 and nup200 in 
AL needs to be addressed by immunoelectron microscopy. 

Nup153, in addition to being a basket component, is also 
found on fibers extending from the basket farther into the 
nucleus (Cordes et al., 1993). The WGA-binding protein, 
nup97, may have a similar nuclear localization pattern. By 
immunofluorescence, nup97 is a component of both the 
nuclear pores and the nuclear interior (Powers et al., 
1995). Peptide sequence analysis (Powers et al., 1995) indi- 
cates that nup97 has regions of strong similarity to the 
yeast GLFG nucleoporin, nupll6,  and other members of 
the GLFG nucleoporin family (Wente et al., 1992; see 
Rout and Wente, 1994, for review). When AL were exam- 
ined biochemicaUy for the presence of nup97, it was found 
that this protein clearly associates with the dense gp210- 
and AL-containing membranes. Thus, all the nucleoporins 
examined, which now include gp210, nup58, nup60, nup97, 
nup153, and nup200, become incorporated into the same 
physically distinct, pore-containing fraction in the assem- 
bly reaction. 

BiochemicaUy Altered Pores of AL 

We examined whether AL were able to form in the ab- 
sence of the WGA-binding nucleoporins nup60, nup97, 
and nup200. We found that AL do indeed form in such de- 
pleted extracts, as judged both biochemically and by elec- 
tron microscopy. In this instance, nup153 was used as a 
marker for the assembly of AL. The initially soluble nu- 
cleoporin nup153 was found to cofractionate with the inte- 
gral membrane pore protein gp210, both in normal 
extracts and in extracts lacking WGA-binding proteins. 
However, the density of the depleted AL (1.185 g/cc) was 
lighter than that of control AL (1.20 g/cc). The distribution 
and peak position of ER membranes in both gradients 
were identical (peak 1.16 g/cc). These results indicate that 
depleted AL are still formed as a discrete structure separa- 
ble from the ER, but that this structure has an altered den- 
sity. 

The density difference between glycoprotein-depleted 
and normal AL could result from one of two possibilities. 
The most prominent of the Xenopus WGA-binding nucle- 
oporins, nup60, nup97, and nup200, have been shown by 
gel filtration to be present in the cytosol initially as dis- 
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tinct, high molecular'weight, protein complexes (Dabau- 
valle et al., 1990; Finlay et al., 1991; Macaulay et al., 1995). 
Based on the elution profile, nup60 is found with nup58 
and nup54 in a 600-kD complex, nup97 in a 450-kD com- 
plex, and nup200 in a 1,000-kD complex. A simplistic pre- 
diction stemming from the eightfold radial symmetry of 
the pore might suggest that there are eight copies of each 
complex in the pore. If this is so, depletion of these pro- 
teins would reduce the mass of the pore by 16 MD. Using a 
value of 120 MD for the mass of an unaltered pore, the 
reduction would represent an ,'-~13% decrease in protein 
mass, resulting in a lower overall density for the AL. This 
estimate is, of course, highly speculative because the exact 
stoichiometry of the WGABPs in the pores is not known 
and, as mentioned earlier, because nup200 may be present 
in lower amounts in AL. Moreover, the lack of these pro- 
teins could lead to a greater change in density if they 
themselves are required for incorporation of other pore or 
lamella-specific proteins. In an alternate explanation, the 
biochemical data would be consistent with there being 
fewer pores/membrane area in the depleted AL. Initial 
electron microscopy of the mock-depleted and WGA- 
depleted samples does not support this latter alternative. 
To determine the actual change in density of the glycopro- 
tein-depleted pores in AL, it would be useful in the future 
to combine the AL isolated here (Fig. 2 C) with the STEM 
mass determination technique used to calculate the mass 
of the nuclear pore (Reichelt et al., 1990). 

Models for the Assembly of Pore Complexes 
How do pore complexes assemble in an envelope? For nu- 
clei, there may be two such mechanisms. There is a great 
deal of evidence for the de novo assembly of pores in pre- 
existing nuclear envelopes. For example nuclear pore 
number increases twofold during S phase, in preparation 
for cell doubling (Maul, 1977a). Pore number also in- 
creases after lymphocyte activation as well as during oo- 
cyte growth (Franke and Scheer, 1970; Maul et al., 1972; 
Wunderlich et al., 1974). Moreover, in yeast and other or- 
ganisms that undergo closed mitosis, the increase in pore 
number before cell division must occur by assembly into 
an intact envelope, as the nuclear envelope does not break 
down at mitosis. When modeling a mechanism by which 
the pore can assemble in intact membranes, it would be 
logical to propose that a lateral association of individual 
integral-membrane pore proteins within the bilayer would 
occur first. This association might then lead to formation 
of a circular multimer capable of inducing fusion between 
the inner and outer nuclear membranes, yielding a "donut 
hole" in the double membrane system. Such holes have 
been observed in electron micrographs of mitotic cells 
during disassembly of the pore (Maul, 1977a, b). Concomi- 
tant with the fusion and formation of a membrane hole, 
the myriad soluble proteins of the pore would then assem- 
ble, forming a complete pore complex. An interesting 
question to ask would be whether the association of any of 
the soluble nucleoporins is required early in the process, 
perhaps to induce aggregation of the pore membrane pro- 
teins. In our experiments, GTP~/S could be acting at one or 
more of these steps to block incorporation of the initially 
soluble pore proteins into pore complexes. 

A second model for pore formation was proposed by 
Sheehan et al. (1988). Their model does not explain pore 
assembly in intact nuclear envelopes or in AL but instead 
was invoked to explain the assembly of a nuclear envelope 
around chromatin at the end of an open mitosis. At this 
point in the cell cycle, it is known that the nuclear enve- 
lope forms using chromatin as a substrate. Indeed, a class 
of nuclear-specific vesicles has been shown to bind to 
chromatin and fuse to form a nuclear envelope (Lohka 
and Masui, 1983, 1984; Sheehan et al., 1988; Wilson and 
Newport, 1988; Newport et al., 1990; Pfaller et al., 1991; 
Vigers and Lohka, 1991; Boman et al., 1992a, b; Newport 
and Dunphy, 1992; Chaudhary and Courvalin, 1993; Sulli- 
van et al., 1993). Sheehan et al. (1988), using a Xenopus 
nuclear assembly system with very limiting amounts of 
membranes, observed electron-dense, circular structures 
of pore-like diameter lining the surface of their decon- 
densing chromatin templates. They interpreted these cir- 
cular structures, which were completely unassociated with 
membrane, to be immature or "half pores" in the process 
of formation. Membrane later associated with the half 
pores, and eventually full pores were formed. It may be 
that nuclei pore formation occurs by two pathways--a 
chromatin-dependent pathway used at the end of open mi- 
tosis, and a chromatin-independent pathway used more 
generally in intact nuclei. The formation of pores in AL 
would be predicted to occur by a mechanism similar to the 
latter pathway. 

Futures Uses for the Assembly System 
In summary, we have developed a biochemical assay for 
annulate lamellae formation and have used it to examine 
the assembly of specific nucleoporins into pore complexes. 
In the course of this study we have shown that a dense 
membrane fraction highly enriched in all nucleoporins 
tested can be separated from the bulk of other cellular 
membranes. The assembly system and/or the pore-con- 
taining membranes can now be used in a number of ways. 
First, using immunoblotting, comigration with the pore- 
containing fraction can be used as a powerful screen for 
whether a given-candidate pore protein is in fact a nucle- 
oporin. Previously, immunoelectron microscopy was the 
only method for establishing whether a protein was a com- 
ponent of the pore, a technique dependent on the posses- 
sion of an antibody functional for electron microscopy. 
Second, with the recent identification of new nucleopor- 
ins, antibodies to their Xenopus homologs can be used to 
deplete these proteins from the extract to determine the 
role of the proteins in pore assembly. Third, biochemical 
manipulation of the assembly system should prove useful 
in trapping intermediates in pore assembly. These can 
then be used to establish the order of incorporation of spe- 
cific proteins into pores. Lastly, in vitro-reconstituted AL 
can be used as starting material for the isolation of verte- 
brate pores. To date, free pores have been successfully iso- 
lated only from the nuclei of budding yeast (Rout and Blo- 
bel, 1993), most likely because of differences in the 
nucleoskeletal components, such as the lamina between 
yeast and higher eukaryotes. However, the properties 
unique to yeast nuclear pores, which include smaller size, 
an absence of WGABPs, and a lack of similar assembly 

The Journal of Cell Biology, Volume 129, 1995 1470 



and disassembly processes due to the closed form of mito- 
sis, may reflect an even greater difference in the substruc- 
ture of the yeast nuclear pore from that of vertebrates 
(Allen and Douglas, 1989; Davis and Fink, 1990; Nehrbass 
et al., 1990; Wente et al., 1992; Rout and Blobel, 1993; for 
reviews, see Osborne and Silver, 1993; Fabre and Hurt, 
1994; Rout and Wente, 1994). Since AL lack a nuclear 
lamina, contain a high density of pores, and can be sepa- 
rated from contaminating membranes, in vitro-synthe- 
sized annulate lamellae hold promise for being the first 
system from which the pores of higher eukaryotes can be 
purified. 
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