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Abstract

Purpose

Previous behavioural studies demonstrate that face caricaturing can provide an effective

image enhancement method for improving poor face identity perception in low vision simula-

tions (e.g., age-related macular degeneration, bionic eye). To translate caricaturing usefully

to patients, assignment of the multiple face landmark points needed to produce the carica-

tures needs to be fully automatised. Recent development in computer science allows auto-

matic face landmark detection of 68 points in real time and in multiple viewpoints. However,

previous demonstrations of the behavioural effectiveness of caricaturing have used higher-

precision caricatures with 147 landmark points per face, assigned by hand. Here, we test

the effectiveness of the auto-assigned 68-point caricatures. We also compare this to the

hand-assigned 147-point caricatures.

Method

We assessed human perception of how different in identity pairs of faces appear, when

veridical (uncaricatured), caricatured with 68-points, and caricatured with 147-points.

Across two experiments, we tested two types of low-vision images: a simulation of blur, as

experienced in macular degeneration (testing two blur levels); and a simulation of the phos-

phenised images seen in prosthetic vision (at three resolutions).

Results

The 68-point caricatures produced significant improvements in identity discrimination rela-

tive to veridical. They were approximately 50% as effective as the 147-point caricatures.
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Conclusion

Realistic translation to patients (e.g., via real time caricaturing with the enhanced signal sent

to smart glasses or visual prosthetic) is approaching feasibility. For maximum effectiveness

software needs to be able to assign landmark points tracing out all details of feature and

face shape, to produce high-precision caricatures.

Introduction

Low-resolution vision occurs in many eye conditions, including age-related macular degenera-

tion [1–3] and prosthetic vision (the ‘bionic eye ’ [4–7]) (Fig 1). In low vision, the ability to recog-

nise individual faces is poor (e.g., poor ability to tell apart a set of young adult Caucasian males

with short hair) [1–3,8,9]. Poor identity recognition is associated with significant difficulties in

real-world social interaction [10,11], and thus it is important to develop techniques that can

improve face identity perception. Image enhancement offers potential for this purpose [8,12–16].

One method of image enhancement shown to be effective is caricaturing of face identity.

Caricaturing exaggerates the distinctive ways in which an individual person’s face shape differs

from the average face, such that, for example, a naturally long nose becomes even longer, or

naturally close together eyes become even closer together (see Fig 2A). It is well established

that caricaturing can improve identity processing for high-resolution faces, in a wide range of

tasks assessing both perception and memory [8, 17–23]. Theoretically, the standard explana-

tion of caricature improvements is in terms of the human perceiver’s mental ‘face-space’ (Fig

2B [17,24]). Face-space has several key properties, established by multiple methods (e.g., dis-

tinctiveness effects on face memory [25,26], multidimensional scaling of pairwise similarity

ratings [17,27], and Dan-antiDan face identity adaptation aftereffects [28]; for recent review

see [29]). These key properties include: the centre of the space is the average face derived from

the "diet" of faces to which the observer has been exposed in everyday life; the space is multidi-

mensional, with the exact information coded on the axes still unknown but covering all impor-

tant ways in which individual faces differ from each other; typical faces lie near the centre

while distinctive faces lie further out; and the density of exemplars in face space decreases as

one moves away from the centre [29].

Caricaturing is then explained as shifting the face along a vector away from the average face

at the centre (Fig 2B). Staying on this vector retains perceived identity, making a person look

like a "more distinctive version of themselves". It also improves both face discrimination and

face memory. Face-discrimination is improved (Fig 2B) because caricaturing shifts any face

further away from all other faces, meaning that any two (or more) people seen together will

look more different from each other when caricatured than when veridical (i.e., uncarica-

tured). Face memory is also improved (Fig 2B) because caricaturing moves the face into a

region of lower exemplar density, meaning that there are fewer nearby neighbours with which

the target can be confused.

Our own lab’s research has focussed on exploring the potential for caricaturing to benefit

low-resolution face recognition. We have established significant caricature improvements

across multiple settings. To date, these include: (a) blurred faces [8,23], noting blur is a key

property of the low-resolution vision experienced in macular degeneration [30]; (b) simula-

tions of prosthetic vision (both with and without allowing scanning across the image) [9], (c)

a wide range of resolutions (i.e., multiple blur levels or bionic eye resolutions) [8,9], (d) in

young-adult and elderly observers [23], (e) for faces of one’s own race and of other, less
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familiar, races [23], and (f) in multiple tasks of everyday relevance, including dissimilarity rat-

ings in simultaneous perception (as relevant to telling apart two people seen at once), old-new

recognition memory (knowing whether someone has been seen before or not), and face-name

learning [8,9,23]. This broad generalisability of caricature benefits derives theoretically from

an origin within face-space coding in mid- and/or high-level cortical vision (e.g., V4 and/or

areas in inferotemporal cortex) [9], rather than in early visual processing which would be sen-

sitive to the specific details of the type of low vision.

Fig 1. Simulations of facial appearance in low vision. A. High resolution face and then the same face blurred to simulate peripheral-vision blur, as relevant to blur

experienced in macular degeneration. The three resolutions illustrated are those tested in Experiment 1. B. The same face phosphenized to simulate appearance in

prosthetic vision (bionic eye). The three resolutions illustrated are those tested in Experiment 2 (ND = no electrode dropout; DO = random 30% electrode

dropout).

https://doi.org/10.1371/journal.pone.0204361.g001
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Given these laboratory demonstrations of the potential wide applicability of caricaturing,

our long-term aim is to translat this to technology that can be used by patients in everyday life.

The goal is to eventually be able to caricature all faces a patient sees (after first isolating the face

from the natural complex background [31]), with the caricatured versions fed to the patient

via smart glasses (e.g., in macular degeneration) or their prosthetic implant (in patients fitted

with bionic eyes).

Fig 2. Caricaturing and face-space theory. A. Caricaturing illustrated using one of our face stimuli. The shape information in the veridical (original) face is

physically altered to exaggerate it away from the average face (matched to the veridical on sex, race, age group and viewpoint, to ensure caricaturing of only

identity information). Note how caricaturing makes the man’s longer-than-average chin become even longer, the smaller-than-average eyebrow-to-eye distance

become even smaller, the slightly turned up nose become more so, and so on. B. Standard explanation (for review see [29]) of caricaturing benefits in terms of a

multidimensional mental face-space. The dimensions coded on the axes remain unknown (but might represent, for example, attributes such as lip thickness or

width of the face).

https://doi.org/10.1371/journal.pone.0204361.g002
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For this to work, the process needs to be fully automated. While the morphing of the face

images that comprises the actual caricaturing stage has been automated for decades [18], pro-

ducing an accurate caricature also requires, as a first step, the assignment of multiple landmark

points to the face (Fig 3). Our previous demonstrations of the effectiveness of caricaturing

[8,9,23] have all used hand-assignment of landmark points (as is usual in behavioural work on

caricaturing [17,18,32]). Specifically, we hand-assigned 147 points to each face, with the num-

ber and locations selected to be sufficient to trace out the detailed shape of every facial feature

and also including all of the external outline of the face (Fig 3A). This level of detail produces

highly precise caricatures. These caricatures resulted in a caricature benefit large enough to

make the method of practical value (e.g., 6–14% improvement in recognition accuracy when

task difficulty is set such that performance is half-way between chance and perfect [8,9,23]).

The downside, however, is that hand-assignment is far too slow for practical applicability to

patients: creating the set of 26 caricatured faces used in our previous articles took approxi-

mately 3 months of work full-time for one person.

Clearly, development and validation of automatic-assignment of landmark points is

needed. Facial landmark detection has been an active research topic over past decades in com-

puter vision [33,34]. Most existing approaches rely on machine learning techniques to train a

landmark detector based on image features learned from a large human-annotated face data-

base. Recently, however, Yang et al [35] developed a facial landmark estimation method that

operates without human input, and can be applied not only to single images but also video

streams in near real time. It determines if and where there is a face in the image, assigns land-

mark points to the face image at a speed of roughly 15 frames per second on a 3.3GHz CPU

machine. It can also deal successfully with moderate viewpoint changes (up to 30˚ rotation

away from front-view), and with partial occlusion of the face (e.g., by glasses, beards, or hands

moving in front of the face). These attributes place the above method as a serious contender

for offering a genuinely useful landmark assignment procedure to support caricaturing for

patients in the real world.

Currently, however, the Yang et al [35] software assigns only 68 landmark points to each

face, in specified locations illustrated in Fig 3B. Compared to our hand assignment [8] it has

lower precision: for example, it traces out the eyes and mouth slightly less exactly, and does

not cover some aspects of the face at all, notably forehead shape, ears, width of the eyebrows,

or width of the middle section of the nose. (Similarly, even the best commercial software,

using machine learning, does not cover the full faces due to regions not having been annotated

in the available training databases; e.g., Face++, as described in their Application Program-

ming Interface).

Here, we test whether this reduced number of landmark points is still sufficient for

caricaturing to improve human perception of facial identity, and also how effective it is com-

pared to using our larger number of hand-assigned points. Currently, little is known about the

exactness of coding in humans’ perceptual face-space. If the coding is extremely precise, we

might find that the 68-point caricatures would produce no benefit; theoretically, this would be

because these caricatures would not shift the veridical face precisely enough on a vector away

from the centre of the space to ensure it is shifted away from all other possible individuals. At

the other extreme, if face-space coding is sufficiently fuzzy (i.e., has large tolerance in the cod-

ing) or uses only limited face-shape information that all happens to be captured in the Yang

et al [35] landmark locations (e.g., face-space codes the location of the centre of the nose but

not the width at its middle), then we might find that 68-point caricatures are as effective at

improving identity discrimination as the 147-point caricatures.

We tested normal-vision observers shown low-resolution images. Experiment 1 used

blurred images (Fig 1A), simulating the feature of visual appearance most commonly reported
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by patients with macular degeneration. Experiment 2 used phosphenised images (Fig 1B) to

simulate a bionic eye, noting that implanted patients report seeing separated fuzzy balls of

light (i.e., ‘phosphenes’ [36]). Each experiment tested three caricature conditions—uncarica-

tured (Veridical faces, V), caricatured based on 68 automatically-assigned landmark points (at

60% caricature strength, C-68p), and caricatured based on our previous 147 hand-assigned

Fig 3. Landmark point assignment. The location of landmark points (green dots) for: A. 147 points per face assigned by hand as used in previous studies

demonstrating caricature benefits for low-vision simulations; B. 68 points per face assigned automatically by the software of Yang et al (2015) [35].

https://doi.org/10.1371/journal.pone.0204361.g003
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landmark points (also at 60% caricature strength, C-147p)—crossed with three resolution con-

ditions (Fig 1).

To measure identity discrimination, we used the simultaneous perception task in Fig 4.

This required rating 26 faces against each other for pairwise dissimilarity [8,9]. Given our pre-

vious findings that, using identical 147-point caricature stimuli to those we use here, low-reso-

lution caricature improvements replicate well across multiple tasks including both perception

and memory (dissimilarity ratings, old-new recognition, face-name learning) [8,9,23], our

choice of task for the present study was based on efficiency of testing. In old-new recognition,

our previous results [8,9] implied we would need of the order of 300 participants to complete

experiments in the present article. In contrast, dissimilarity ratings produce smaller error bars,

with a smaller number of observers, across a larger number of conditions, than either old-new

recognition or face-name learning [8,9,23]. Using dissimilarity ratings allowed us to produce

neat data on nine different conditions with only 40 participants in total.

On each trial, observers rated how dissimilar in identity two faces appeared, on a scale of 1

to 9. To the extent that caricaturing improves ability to tell apart faces, the relevant caricatured

Fig 4. Example trial from our task. Two faces seen simultaneously captures the real-world situation in which a low-

vision patient sees more than one person in a room at once who must be told apart. Dissimilarity ratings provide a

sensitive measure of the degree to which the two identities appear different. Higher ratings indicate the two faces

appear more different in identity (i.e., are easier to tell apart). Example trial is from high-resolution veridical condition

in Experiment 1. Note the layout on the screen is not captured exactly, e.g., the face images were further apart

horizontally.

https://doi.org/10.1371/journal.pone.0204361.g004
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condition (C-68p or C-147p) will increase ratings of dissimilarity compared to veridical (V).

Our specific research questions were: (a) Do we replicate our previous findings that high preci-

sion caricatures improve identity discrimination (i.e., predicting C-147p> V)? (b) Do less pre-

cise caricatures also produce a significant caricature benefit (i.e., predicting C-68p > V)? (c)

How do less precise caricatures compare in effectiveness to highly precise caricatures (i.e.,

does C-68p remain below C-147p, or are these conditions equal)? and (d) Do the patterns

revealed remain similar as resolution is decreased, or might it be, for example, that the less pre-

cise caricatures are effective at higher resolutions, but lose effectiveness as resolution worsens

(e.g., mimicking prosthetic implants with fewer electrodes, or vision loss worsening over time

in macular degeneration)?

Method

Participants

For Experiment 1, participants were N = 20 undergraduates (ages 18–22, mean = 19 yrs; 5

male, 15 female). For Experiment 2, participants were a different N = 20 undergraduates (ages

18–31, mean = 21 yrs; 7 male, 13 female). All were Caucasian, matching the race of the face sti-

muli, with normal or corrected-to-normal vision at the experimental screen-viewing distance

of 60 cm (acuity of at least 20/20 using an ETDRS eye-chart). None reported conditions

known to impair face perception (e.g., Autism Spectrum Disorder, prosopagnosia, brain

injury). Participants were tested individually and given course credit or paid $15 for the 1–1.5

hour session (Experiment 1) or $20 for 1.5 hours (Experiment 2). The research followed the

Declaration of Helsinki and was approved by Australian National University Human Research

Ethics Committee (protocols 2015/305-2017a and 2015/305-2017b); informed written consent

was obtained from subjects after explanation of the nature and possible consequences of the

study.

Stimuli

We used 26 faces (from [8]): 13 male and 13 female young adult Caucasians, with neutral

expression, hair occluded, and no facial hair, glasses, etc. To ensure judgements were based on

characteristics of the person’s face, not one specific photographic image, the task showed each

person in four viewpoints (front-view, 10 degrees right, 10 degrees left, and 30 degrees left)

and various sizes (4.3˚–6.2˚ wide to 6.2˚–9.1˚, matching our previous blur and phosphenisa-

tion studies [8,9]). To ensure identity-specific information was caricatured, each image was

caricatured away from an average face matched to the target for category (i.e., same race, sex,

age-group, expression and viewpoint; e.g., a female face facing 30˚ left was caricatured away

from an average 30˚ left female). Average faces were the average of a large number of individu-

als from that category (e.g., 50 young adult Caucasian males); for details see [8].

Creation of 147-point caricatures. The 147-point caricature stimuli were identical to

those used in our previous studies [8,9,23]. The method for making them is detailed in full in

[8]. Briefly, the 147 landmark points (see locations in Fig 3A) were placed by hand on every

face, including the 104 Veridical images (26 identities x 4 viewpoints) and the 8 average faces

(2 sexes x 4 viewpoints). Frontal views used the full 147 points; non-frontal views used 136

points due to only one ear showing. The caricatures were then created using Abrosoft Fanta-

Morph 5 software. To avoid exaggerating lighting information in images (noting that lighting

is not a reliable cue to identity), caricaturing was applied only to shape information not tex-

ture/reflectance (i.e., in morphing-software language, caricaturing was applied to the warp but

not the fade function). The caricature strength was 60% (where 100% is defined as a doubling

of distances between the landmark points in the veridical face and the average face); 60% was

Auto-assigned face landmarks and low vision
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selected because our previous studies have found this produces maximum improvement in

identity discrimination without introducing morphing artefacts (i.e., image discontinuities,

such as a random slash across a part of the image) or making the face look weird [8,9] and thus

falling outside the coding range of face-space [37].

Creation of 68-point caricatures. Yang et al [35] provide a full description of their auto-

matic landmark point assignment procedure. Their software was applied to each of the 104

Veridical face images and 8 average faces, and the coordinates of the auto-assigned landmark

points were saved. To ensure any differences in human perception of the 68-point and

147-point caricatures were due to the landmark number/locations (and thus to the precision

of the caricatures), and not to other factors, we imported the 68-point coordinates into Abro-

soft FantaMorph 5 and used identical caricaturing procedures for the 68-point caricatures as

for the 147-point caricatures (i.e., both 60% strength, shape-only, caricatured away from sex-

and-viewpoint-matched average, same average faces).

Experiment 1: Adding blur. For Experiment 1, we took the 312 high-resolution final

images described above (104 Veridical, 104 C-68p, 104 C-147p), and rendered each in two lev-

els of blur. This was designed to approximately simulate the blur seen by patients with macular

degeneration, based on Marmor and Marmor’s [38] formula for blurring perceived in periph-

eral vision. Our labels Blur20 and Blur30 are as used in [8], where we had assumed peripheral

viewing of a face subtending 18.11˚ along the horizontal (equivalent to a real person viewed at

54 cm [39]) at 20˚ eccentricity (’Blur 20’ condition) or 30˚ eccentricity (’Blur 30’ condition).

These blur levels are not intended to be precise representations of the amount of blur seen by

patients, but testing two levels of blur (Blur20 = moderate, Blur30 = severe) was used to reflect

the general idea that, in patients, residual level of acuity varies widely in different individuals

and at different stages of disease progression. Testing two blur levels also provides data on

caricaturing benefits at two different levels of performance difficulty (noting that identity dis-

crimination worsens as blur level increases [8]). The blurring formula applied uniform spatial

blur across the image, by reducing the contrast of spatial frequencies higher than a given

threshold (with threshold set lower for higher eccentricities, using a Gaussian kernel filter of

size defined by the cutoff frequency;). Supporting Information S1 File provides more details of

the blur procedure (also see [8]).

Note our simulation does not capture all aspects of macular degeneration in patients: as

well as blur, some patients also report also seeing distortions or missing/moving parts [30];

patients vary in whether their residual acuity is supported by peripheral vision or by a small

island of intact retina left within central vision; and while we used spatially uniform blur, the

degree of blur across the face could vary depending on which region of their retina individual

patients use to look at a face and the resolution of surrounding retinal regions. Note that simu-

lating AMD precisely is an impossible task, given that every patient differs in their exact pat-

tern of retinal damage, and also in their experience of how the world looks [30]. Our general

argument is that, if similar caricature results are found across multiple blur levels, correspond-

ing to looking at the face image at different distances into the periphery—and also in the very

different phosphenised low-vision format of prosthetic vision simulation (Experiment 2)—

then the results are not dependent on the precise details of the simulation, and thus are likely

to transfer well to real patients.

Experiment 2: Adding phosphenisation. For Experiment 2, we took the 312 high-resolu-

tion final images described above (104 Veridical, 104 C-68p, and 104 C-147p), and rendered

each in three different prosthetic vision resolutions. These were: a grid of 40x40 phosphenes

tiling the face (hair-line to just below the chin) with all assumed to be functional (i.e., No

Dropout, 40x40ND), a grid of 40x40 with a random 30% dropout of phosphenes (40x40DO)

to simulate electrode failure or implantation of an electrode over dead retinal tissue (following

Auto-assigned face landmarks and low vision
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[40]), and a grid of 32x32 with 30% random dropout (32x32DO). This range was chosen as

based around resolutions similar to values realistic for some devices currently implanted in

patients (e.g., 38 x 40 in [5]), while excluding lower resolutions at which we have previously

found even 147-point caricaturing to be ineffective (i.e., 16x16DO in [8]). The phosphenisa-

tion followed the general simulation procedure used in many previous studies [8, 41–45]: each

phosphene had a circular Gaussian intensity profile, and brightness at the nearest-neighbour

image pixel to the electrode location was represented by a combination of size and centre-

brightness of the phosphene, quantized to 8 discrete values. Supporting Information S1 File

provides more details (also see [9]). Again, note our simulation procedure does not capture all

aspects of visual appearance reported by prosthetic vision patients (e.g., distortion; details in

[9]).

Procedure

The task procedure followed Irons et al [8,9]. Each trial showed a pair of faces to be compared

(Fig 2C), at a single resolution level and caricature value (e.g., if the face on the left was Blur20

and C68-p, then the face on the right was also Blur20 and C68-p). Male faces were compared

only to male faces, and female to female, to test observers’ perception of individual-level iden-

tity. Given it would take too many trials to compare 13 males with all others, we split each sex

into two subsets: one group of 7, and another of 6, and obtained dissimilarity ratings for each

face rated against all other faces within the subset. For each experiment, this resulted in 648

trials per participant, comprising 72 trials (21 trials for 7 males compared to rest of 7-face sub-

set + 15 trials for 6 males compared to rest of 6-face subset + repeat for females) in each of the

9 conditions (3 resolution levels x 3 caricature conditions).

Participants were encouraged to use the full 1–9 rating scale. In Experiment 1, trials were

blocked by sex (with order counterbalanced across participants) but trials for all 9 conditions

(3 blur x 3 caricature) were intermixed and shown in random order. In Experiment 2, trials

were additionally blocked by resolution levels (in the order 40x40ND, then 40x40DO, then

32x32DO, for all participants) and, at the beginning of each new resolution block, partici-

pants were explicitly instructed to discard their previous criteria for use of the scale, and to

start again to apply "most" and "least" similar within the set of faces for the new resolution.

This was necessary because pilot testing revealed that mixing all three resolutions resulted in

participants giving floor-level ratings for the lowest-resolution 32x32DO condition (i.e., rat-

ing all pairs as 1 or 2), meaning any differences between the caricature conditions (V, C-68,

C-147) would be falsely flattened out and so could not be evaluated. Testing resolutions indi-

vidually, and instructing participants to re-scale for each, lifted ratings off floor, and thus

allowed fair comparison across the caricature conditions. A side effect of the rescaling

instructions is that comparisons of overall ratings across resolutions are not valid in Experi-

ment 2. (Note that where rescaling is not used, lower resolutions produce less perceived dis-

similarity [9]).

Experiments were run in Superlab 4.5 on an iMac computer, with 27” flat screen (resolution

2560 x 1440).

Scoring and preliminary analysis

For each participant, we calculated an average rating across all trials for each resolution and

caricature condition. This was initially done separately for each sex of face, but preliminary 3

(resolution level) x 3 (caricature level) x 2 (sex of face) ANOVAs showed no main effects or

interactions for sex (ps> .099 in Experiment 1, ps> .095 in Experiment 2), so scores were col-

lapsed across male and female faces.
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Results

Fig 5 shows the results. Statistical analysis targeted our specific research questions, and was

thus a priori.
Concerning simple replication of our previous findings, in every resolution tested, for both

blur (Experiment 1) and phosphenisation (Experiment 2), the 147-point caricatures signifi-

cantly increased ratings of dissimilarity compared to the original veridical faces (i.e., C-
147p> V for all 6 plots in Fig 5; all ts>5.47, all ps< .001). This replicates our previous findings

[8,9] and confirms that our high precision caricatures, made from hand assignment of 147 land-

mark points, reliably increase the amount by which any two faces appear different in identity.

Fig 5. Results. Mean dissimilarity ratings in the simultaneous perception task, for A. Experiment 1 and B. Experiment 2, for the stimulus formats and

resolutions illustrated in Fig 1. Higher ratings indicate that observers perceive greater difference between pairs of faces (i.e., greater differentiation in identity).

The general pattern of findings is that: caricaturing improves identity differentiation relative to veridical; and caricatures based on auto-assigned 68 landmark

points are effective (i.e., C-68p> V) although less effective than caricatures based on hand-assigned 147 landmark points (i.e., C68-p< C47-p). In Experiment

2, ratings cannot validly be compared across resolutions, because bionic eye resolutions were blocked and observers instructed to rescale their responses for

each resolution (to avoid floor effects on caricature condition comparisons in lower-resolution conditions). Error bars are the equivalent of ±1SEM suitable for

comparison across the caricature conditions, which are varied within-subjects (calculated as: MSE from a one-way ANOVA on caricature level, divided by

square-root of N). ��� = p< .001; �� = p< .01, � = p< .05, ns = p> .05. All t-tests paired samples, two-tailed.

https://doi.org/10.1371/journal.pone.0204361.g005
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Our core issue then concerned the effectiveness of automatically assigned 68-point carica-

tures. Results showed, first, that the 68-point caricatures (C-68p) significantly improved iden-

tity differentiation, with higher dissimilarity ratings for C-68p than for veridical (V) for all

resolution levels in our blur experiment (3 plots in Fig 5A; all ts>4.74, all ps< .001), and for

the highest and lowest resolution levels in our bionic eye phosphenisation experiment (Fig 5B,

t(19) = 6.14, p< .001 and t(19) = 3.62, p = .002 respectively; although not for the intermediate

phosphenisation resolution, t(19) = 1.30, p = .208). Second, results showed that the 68-point

caricatures did not reach the full effectiveness of the 147-point caricatures. Comparisons of C-
68p with C-147p showed that, in all cases, dissimilarity ratings were significantly higher for C-
147p than for C-68p (all 6 plots in Fig 5; all ts> 2.73, all ps< .013 and with 3 plots showing

p< .001). Taken together, these two findings indicate that 68-point caricatures were signifi-

cantly effective (i.e., improved identity perception relative to uncaricatured images), yet also

significantly less effective than 147-point caricatures.

Concerning the question of whether the lower-precision caricatures might reduce in rela-

tive effectiveness at lower resolutions, there was no evidence of such a pattern. For blur (Exper-

iment 1), Fig 5A shows no suggestion the C-68 condition gets any closer to V than to C-147 as

resolution drops, and two-way ANOVA found no interaction between caricature condition

and resolution, F(4, 76) = 2.02, p = .100. For phosphenisation (Experiment 2), two-way

ANOVA did reveal a caricature condition x resolution interaction, F(4,76) = 13.18, p< .001,

but Fig 5B shows this reflects primarily a reduced overall caricature effect at the lower resolu-

tions (i.e., a reduced difference between V and 147-C; also see [9]), with the C-68 condition

remaining approximately half-way between V and C-147 for both the highest resolution

(40x40ND) and the lowest resolution (32x32DO).

We also computed a numerical estimate of the relative effectiveness of the 68-point carica-

tures compared to the 147-point caricatures, as Relative Effectiveness = [(C-147p − V) / (C-
68p − V)] � 100. Overall, averaged across all 6 plots in Fig 5, this was 52%: that is, the 68-point

caricatures were approximately half as effective at increasing identity differentiation as the

147-point caricatures. [Note: This calculation assumes observers’ use of the rating scale is lin-

ear with respect to their perception (e.g., that ratings of 4, 5, and 6 for V, C-68p and C-147p
respectively would indicate that an observer perceived the increase in identity difference

between face pairs to be half as strong for C-68p as for C-147p). While in general linearity

of perception in rating scales cannot be guaranteed, in this case we think it is a reasonable

assumption given ratings are well away from the compression expected at the ends of the scale

range (i.e., with scale range 1–9, all ratings in Fig 5 fall between 4 and 6).]

Examining our different stimulus formats separately, relative effectiveness of 68-point cari-

catures was 68% for high resolution colour images, 65% for blurred faces (averaged across

Blur20 and Blur30), and 39% for phosphenised faces (averaged across 40x40ND, 40x40DO

and 32x32DO). Note that, while there is some suggestion here that the caricature benefit was

stronger for blur (Experiment 1) than for phosphenisation (Experiment 2), the difference was

not statistically significant t(37) = 1.97, p = .056.

Discussion

Our results show that caricatures based on the auto-assigned 68-point landmarks of Yang et al

[35] are significantly effective at improving identity perception, but less so than more precise

147-point caricatures. This was found across a wide range of face image types including high

resolution faces, blurred faces simulating macular degeneration at two blur levels correspond-

ing to moderate vision loss, and phosphenised faces simulating prosthetic vision at bionic

eye resolutions ranging from values feasible in some current implants (32x32 grid with 30%
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random electrode dropout) up to values above the range of current technology (40x40 with all

electrodes functional). Overall, the auto-assigned 68-point caricatures were approximately

50% as effective as caricatures based on hand-assignment of 147-point landmarks [8,9].

Concerning the ecological validity of the rating task used in the present study, we note that

patients do not give explicit dissimilarity ratings to pairs of people they see in everyday life.

However, they do commonly see more than one person simultaneously, and need to tell them

apart. The more different they look—that is, the higher the dissimilarity rating the patient

would give the two faces if asked—the easier they are to tell apart. We used ratings rather than,

say, two-alternative-forced-choice same-different decision, because ratings provide a more

fine-scaled measure of differences in identity perception. Thus, where we have found higher

dissimilarity ratings, this directly implies that the caricatures being tested makes it easier to tell

apart two (or more) faces seen in the relevant low-resolution format.

The rating task does not provide a direct measure of the amount by which caricaturing

improves performance accuracy of face memory. However, there are strong reasons to believe

that where our caricatures produced a significant increase in dissimilarity ratings, they will

also produce a significant improvement in memory. First, it is well established that caricatur-

ing improves recognition memory and identification (e.g., face naming) tasks. This includes in

high resolution vision, with a variety of face caricature stimulus sets [8,17–23], and, most rele-

vantly, also for the identical low-vision simulations and identical 147-point caricature face sti-
muli as we use here [8,9,23]. Moreover, increased dissimilarity and improved recognition

memory are linked theoretically via the known properties of face-space: that is, shifting the

face along a vector outwards from the centre moves it into a region of lower exemplar density

with fewer confusable neighbours (thus improving old-new recognition, or face-naming accu-

racy, Fig 2), while also providing the best method of maintaining its perceived identity as the
same person (e.g., outward shifts along the vector appear most like the veridical person, com-

pared to morphs that produce sideways shifts within face-space, taking the face off the vector

[46]).

A more open question is what fraction of the dissimilarity improvement for 68-point cari-

catures will translate to memory. If we assumed a linear transfer, then we would expect the rel-

ative effectiveness of 68-point caricatures to remain at approximately 50% of that of 147-point

caricatures. Then, given that our 147-point caricatures produce an improvement in recogni-

tion accuracy of 6–14% [8,9,23] (e.g., if accuracy for veridical faces were 50% correct, accuracy

for C-147p faces would improve to ~60% correct), the expected accuracy improvement for

68-point caricatures would be 3–7%. However, it is also possible the transfer to memory could

be smaller or greater, for example if the rate at which the density of exemplars in face space

reduces with increasing distance from the centre (which is a key factor driving improved

memory for caricatures, Fig 2B) is not linear.

Concerning why 68-point caricatures are less effective, a key point is that this can be attrib-

uted only to the number/location of the landmark points and thus the precision of the result-

ing caricatures. This is because the 68-point caricatures and the 147-point caricatures were

matched on all other variables (i.e., same caricature strength, same average-face images, same

veridical face images, same caricaturing software and procedures; see Method). The 68-point

landmarks leave various aspects of the face’s structure undescribed, or not described in full

detail. When the caricaturing procedure is applied, some regions of the face then remain

uncaricatured, or are not fully or exactly caricatured. For example, in Fig 6 (see further exam-

ples in S1 Fig) the veridical nose width is wider than average, but only the 147-point-caricature

codes nose width and so correctly exaggerates this. In perceptual face-space, the fact that some

regions of the face are being fully caricatured, while others are not, means the face will not be

shifted directly away from the average on its original vector. Instead, the trajectory will be bent
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(with inflexion point at the veridical face) and, while the face will still be shifted further from

the centre than when veridical, it will not necessarily best maintain its original identity [46].

Theoretically, our results imply that coding in humans’ perceptual face-space is very pre-

cise, using fine detail of exact shape of all regions of the face.

Fig 6. Why 68-landmark-point caricatures are less effective at improving identity differentiation. A. The veridical male shown differs

from the average face in several regions that are not coded by the 68-point landmarks, resulting in a lack of precise caricaturing of the

eyebrows and nose (illustrated in expanded cutouts), and also the forehead and ears. B. These regions are precisely caricatured with the

147-point landmarks.

https://doi.org/10.1371/journal.pone.0204361.g006
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Practically, our results imply that the closer automatic landmark detection can get to repli-

cating our hand-assigned 147-point locations, the better it will be for improving face recogni-

tion in low vision patients. Technology for landmark detection is progressing rapidly in deep

learning approaches [47,48]; however, these generally require a large database of human-anno-

tated face data to achieve state-of-the-art performance. The Yang et al [35] approach tested

here operates without any human input, and extending that approach with more detailed land-

mark coding may be valuable, given its key abilities to locate faces and assign landmark points

in real time to video input, and to cope with multiple face viewpoints and with partial face

occlusion.

We also note there is potential for caricaturing to be applied more broadly than to face

identity alone. With hand-assigned landmark points, face expression recognition can also

be improved by caricaturing (exaggerating the expressive image of a particular person away

from a neutral-face version of the same person), at least in high resolution stimuli [49]. (Note

caricaturing is not suitable for improving object recognition in general, such as discriminating

bicycles from chairs from dogs, because there is no "average object").

In conclusion, our overall research program has demonstrated that caricaturing—using

high precision caricatures based on hand assignment of 147 landmark points—improves face

identity perception under a wide range of circumstances relevant to patients, including telling

apart two faces seen at once, recognising faces in memory tasks, two very different low-vision

simulations, multiple resolution levels, a wide range of observer ages, and own- and other-race

faces [8,9,23]. To translate caricaturing to everyday patient use, however, requires the ability to

make caricatures automatically. The key take home message from our present results is that,

although 68-point caricatures that can currently be created automatically do improve face

identity perception, producing maximum improvement requires higher precision in assigning

landmark points. Thus, an important direction for future research is to improve procedures in

computer science, to increase the precision of auto-assignment of landmark points.
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