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Functions of Aurora kinase C in
meiosis and cancer
Suzanne M. Quartuccio and Karen Schindler *

Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

The mammalian genome encodes three Aurora kinase protein family members: A, B, and

C. While Aurora kinase A (AURKA) and B (AURKB) are found in cells throughout the body,

significant protein levels of Aurora kinase C (AURKC) are limited to cells that undergo

meiosis (sperm and oocyte). Despite its discovery nearly 20 years ago, we know little

about the function of AURKC compared to that of the other 2 Aurora kinases. This lack

of understanding can be attributed to the high sequence homology between AURKB and

AURKC preventing the use of standard approaches to understand non-overlapping and

meiosis I (MI)-specific functions of the two kinases. Recent evidence has revealed distinct

functions of AURKC in meiosis and may aid in our understanding of why chromosome

segregation during MI often goes awry in oocytes. Many cancers aberrantly express

AURKC, but because we do not fully understand AURKC function in its normal cellular

context, it is difficult to predict the biological significance of this expression on the disease.

Here, we consolidate and update what is known about AURKC signaling in meiotic cells

to better understand why it has oncogenic potential.
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Discovery and Genomic Features

Three laboratories independently discovered AURKC and reported high transcript levels in testes
and oocytes (Gopalan et al., 1997; Bernard et al., 1998; Tseng et al., 1998). A subsequent study
reported low expression of AURKC in some normal somatic cells including skeletal muscle,
placenta, lung and bladder (Yan et al., 2005b) although germ cell expression is much higher (49
times) (Assou et al., 2006). In addition, Kimura et al. (1999) found elevated levels of AURKC in
breast, cervical, and liver cancer cells lines.

AURKC is a member of the conserved serine/threonine Aurora kinase family. These kinases are
related to Increase-in-ploidy1 in budding yeast and Aurora in Drosophila, both of which regulate
spindle formation and chromosome segregation (Francisco and Chan, 1994; Glover et al., 1995).
Yeast contains one Aurora kinase (Petersen et al., 2001), while Drosophila, C. elegans and Xenopus
express two (Roghi et al., 1998) generated from gene duplication in cold-blooded vertebrates
(Brown et al., 2004). The mammalian genome encodes three Aurora kinases. AURKC is located
on human Chromosome 19 [19q13.43 (Kimura et al., 1999)] and Aurkc on mouse Chromosome
7 A2-A3 (Gopalan et al., 1997). Human AURKC shares 82.1 and 68.8% amino acid identity with
mouse AURKC in the kinase and N-terminal domains, respectively however only 26.7% identity in
the C-terminal domain suggesting species-specific differences (Tseng et al., 1998).

Abbreviations:APC/C, Anaphase promoting complex/cyclosome; AURKA, Aurora kinase A; AURKB, Aurora kinase B; CPC,

Chromosomal passenger complex; ICA, Interchromatid axis; K-MT, Kinetochore microtubule; MI, Meiosis I; MII, Meiosis II;

SAC, Spindle assembly checkpoint; TACC1, Transforming acidic coiled-coil 1.
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Alternative splicing results in three protein variants of
AURKC (Bernard et al., 1998; Tseng et al., 1998; Yan et al., 2005b)
(Figure 1A). Variants 2 and 3 lack amino acid residues in the N-
terminus that do not appear to regulate localization (Fellmeth
et al., 2015). While all variants are catalytically active, variant 1
is better at phosphorylating targets in oocytes suggesting the N-
terminus positively regulates activity. Human oocytes contain all
three variants while only one or two variants are measured in
sperm (Fellmeth et al., 2015).

At the protein level, AURKC shares sequence homology
with AURKA (60% identical) and AURKB (75% identical)
in the kinase domain (Quintas-Cardama et al., 2007).
Autophosphorylation of a threonine contained within the
activation loop (T-loop) activates the kinases (Figure 1B)
(Goldenson and Crispino, 2015). AURKC lacks the N-terminal
domain found in AURKA and B (Gopalan et al., 1997; Kimura
et al., 1999) containing the KEN (KENXXX) and D-box
activating domain (DAD/A-box, QRVL) motifs suggesting
that it is differentially regulated. The anaphase promoting
complex/cyclosome (APC/C) recognizes these sequences and
marks the protein for degradation (Nguyen et al., 2005). AURKB
and AURKC do contain four D-box motifs (RXXL), which can be
recognized by the APC/C, however their regulatory function is
unknown (Nguyen et al., 2005; Stewart and Fang, 2005; Schindler
et al., 2012).

AURKC Signaling in Sperm

Spatiotemporal Regulation
Localization of AURKC in spermatocytes is dynamic and linked
to its function. Mouse spermatocytes express measurable levels of
AURKCprotein at centromeres in the diplotene stage of prophase
(Tang et al., 2006) followed by localization at centromeres
and along chromosome arms during diakinesis (Tang et al.,
2006). Next, AURKC translocates to the spindle midzone at
anaphase I and the midbody at telophase I. AURKC follows
the same distribution pattern through meiosis II (MII) (Tang
et al., 2006) then dissociates from centromeres (Tang et al.,
2006). Human spermatocytes exhibit the same localization
pattern of AURKC (Avo Santos et al., 2011). AURKC co-
localizes with AURKB and immunoprecipitates with INCENP
in spermatocytes suggesting that it is a member of the
meiotic chromosomal passenger complex (CPC) (Tang et al.,
2006) that regulates chromosome alignment and condensation,
kinetochore-microtubule attachments (K-MT) and cytokinesis
(Sharif et al., 2010; Yang et al., 2010; Balboula and Schindler,
2014).

Expression Levels
Aurkc expression is also regulated in a stage-specific manner
(Kimmins et al., 2007). In situ hybridization revealed positive
expression in some seminiferous tubules from mice with meiotic
cells in prophase (4C) having the highest levels (Tang et al., 2006).
Aurkc transcript first appears in the testes of mice 14 days after
birth (Hu et al., 2000). mRNA levels increase and plateau at day
21 before decreasing at day 28, but mRNA is still observed at day
42 (Hu et al., 2000).

Male Fertility
Male Aurkc−/− mice are viable with normal testis weight and
sperm counts but are subfertile (Kimmins et al., 2007). This
subfertility is attributed to blunted sperm heads, defects in
chromatin condensation and acrosome detachment (Kimmins
et al., 2007). In humans, AURKC is essential for male fertility.
Current studies indicate that mutations in AURKC are the
most frequent genetic cause of macrozoospermia (Ounis et al.,
2015), a condition where ∼100% of a patient’s sperm have large,
misshapen heads. These sperm have multiple flagella (Dieterich
et al., 2009) due to a meiotic arrest in MI (Dieterich et al., 2007)
suggesting AURKC is critical for cytokinesis.

A genome-wide microsatellite scan of 10 affected men from
the Rabat region of Morocco revealed cysteine deletion in exon
3 of AURKC (c.144delC, also called L49W) (Figure 1A). The
mutation induces a frameshift leading to premature termination
of translation and truncated protein (Dieterich et al., 2007). A
subsequent study found that the mutation, which also induces
non-sense mediated mRNA decay (Ben Khelifa et al., 2011),
occurs at a rate of 1 in 50 in the Maghrebian population
(Dieterich et al., 2009) suggesting a selective advantage for
harboring this allele. Heterozygous mutations of c.144delC
combined with C229Y, Y248X (Dieterich et al., 2009) or
c.436-2A>G required for proper slicing (Ben Khelifa et al.,
2011) produced a similar phenotype. Few morphologically
“normal” sperm can be isolated from these men and used for
intracytoplasmic injection into eggs. However, euploid embryos
were never generated indicating that sperm from men with
AURKC mutations cannot be used in the in vitro fertilization
clinic (Ben Khelifa et al., 2011; El Kerch et al., 2011).

Interestingly, women homozygous for c.144delC are not
sterile indicating a sexually dimorphic role of AURKC. But the
small sample size (n = 2) of the study limits the impact of this
finding (Dieterich et al., 2009).

AURKC Signaling in Oocytes

Spatiotemporal Regulation
Mammalian oocytes display dynamic localization of AURKC.
AURKC localizes to centromeres and along chromosome arms
during prometaphase and metaphase I before concentrating at
the midzone and midbody during anaphase I and telophase I,
respectively (Uzbekova et al., 2008; Avo Santos et al., 2011).
AURKC’s localization at the interchromatid axis (ICA) of
bivalents at metaphase of MI is regulated by haspin in mouse
oocytes (Nguyen et al., 2014) and distinguishes the kinase
from AURKB that is found on the spindle. Therefore AURKC
localization in sperm and oocytes is identical.

Expression Levels
In oocytes, Aurkc expression is also regulated temporally. The
relative mRNA level of Aurkc in prophase I-arrested mouse
oocytes is similar compared to mRNA levels of Aurkb but
9–20 fold less than Aurka (Shuda et al., 2009; Schindler
et al., 2012). Oocytes that are competent to complete meiosis
are transcriptionally silent. This silence persists until zygotic
genome activation. To ensure plentiful protein stores, oocytes
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FIGURE 1 | AURKC variants and Aurora kinase family members in mammals. Schematic of human AURKC variants (A) and Aurora kinase isoforms (B) with

key domains and residues identified.

recruit maternal messages for translation during MI through
a cytoplasmic polyadenylation element in the 3′ untranslated
region of genes. Aurkc contains this element and is recruited
(Schindler et al., 2012). Therefore although Aurkc mRNA levels
drop to undetectable levels in blastocysts, (Avo Santos et al.,
2011; Schindler et al., 2012) protein remains in the embryo
until AURKB becomes the predominant CPC kinase (Fernandez-
Miranda et al., 2011; Schindler et al., 2012).

Female Fertility
Female Aurkc−/− mice survive but are subfertile due to meiotic
abnormalities and compromised embryonic development
(Schindler et al., 2012). Oocytes from Aurkc−/− mice often
contain misaligned chromosomes and arrest at MI. Some oocytes
do undergo cytokinesis and extrude a polar body but are delayed.
In addition, fewer one-cell embryos from Aurkc−/− mice reach
the two-cell stage due to cytokinesis failure, and this phenotype
worsens during development (Schindler et al., 2012).

While overexpression of AURKB can rescue MI arrest
and cytokinesis failure (Schindler et al., 2012) endogenous

levels of AURKC are sufficient for preimplantation embryonic
development Aurkb−/− embryos (Fernandez-Miranda et al.,
2011). These phenotypic data combined with the instability
of AURKB and recruitment of Aurkc messages during MI
(Schindler et al., 2012) drove the conclusions that mouse oocytes
require AURKC because AURKB levels are insufficient to ensure
completion of meiosis and embryonic mitoses. Importantly,
wild-type mouse oocytes expressing a dominant-negative allele
of AURKC that does not inhibit AURKB (AURKC-LA) (L93A in
mouse [variant 2]; L120A in human [variant 1]) are aneuploid
(Balboula and Schindler, 2014). These data indicate that when a
non-functional AURKC protein is bound in the CPC, AURKB
cannot compete for binding to support meiosis. We anticipate
that as more genomes are sequenced, mutations in AURKC that
alter activity in the CPC will be correlated with female infertility.

Overlapping AURKB and AURKC Function

The CPC regulates the spindle assembly checkpoint (SAC),
cytokinesis and correction of K-MT attachments. AURKC
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specific inhibition (AURKC-LA) does not alter the localization of
SAC component BUB1 in oocytes suggesting that both AURKB
and AURKC regulate SAC activation in meiosis (Balboula and
Schindler, 2014). Only after microinjection of the dominant
negative form of Aurkc (Aurkc-DN) (T171A/T175A, variant 2),
which disrupts the function of both AURKs, is BUB1 localization
altered and SAC non-functional (Yang et al., 2010; Balboula
and Schindler, 2014). AURKB and C also share regulation
of cytokinesis. AURKC-LA-expressing oocytes that complete
MI extrude a polar body, while AURKC-DN oocytes retract
polar bodies (Kimura et al., 1999; Balboula and Schindler,
2014). In contrast, similar levels of incorrect K-MT attachments
(Balboula and Schindler, 2014) are observed in AURKC-LA and
AURKC-DN oocytes suggesting AURKC, particularly at the ICA
(Nguyen et al., 2014), is the primary CPC kinase to correct
attachments (Balboula and Schindler, 2014). In mitotic cells
the CPC preferentially binds AURKB (Sasai et al., 2004), but
increased translation of AURKC during MI is consistent with
AURKC being the preferred catalytic component of the CPC in
oocytes (Assou et al., 2006).

AURKB and AURKC share a consensus phosphorylation
motif (R-X-S/T-8, 8 represents any hydrophobic residue
except P)(Alexander et al., 2011) and therefore phosphorylate
many of the same substrates. These kinases can bind the “IN
box” of INCENP (Tang et al., 2006; Ben Khelifa et al., 2011)
leading to autophosphorylation and kinase activation (Li et al.,
2004). AURKC binds the other CPC components (Survivin
and Borealin) when overexpressed in mitotic cells (Sasai et al.,
2004; Chen et al., 2005; Yan et al., 2005a; Slattery et al., 2008,
2009) and phosphorylates histone H3 at S10 in meiotic and
mitotic cells (Li et al., 2004; Avo Santos et al., 2011), which
may play a role in chromosome condensation (Swain et al.,
2008). In addition both AURKB and AURKC phosphorylate
Centromere protein A in mitotic cells (Sasai et al., 2004; Slattery
et al., 2008), which is required for the recruitment of kinetochore
proteins, chromosome segregation and cell cycle progression.
Future investigations need to evaluate whether other known
downstream targets of AURKB, such as Hec1 (Zhu et al., 2013)
and the MAPK pathway (Xu et al., 2012), are also targeted by
AURKC.

Unique AURKC Functions

Although AURKB and AURKC often exhibit conserved function,
they cannot fully compensate for the loss of one another
(Kimmins et al., 2007; Fernandez-Miranda et al., 2011; Schindler
et al., 2012; Balboula and Schindler, 2014) indicating that
non-overlapping roles exist. Evidence of these differences
can be seen in the divergent phenotypes of knockout mice.
Aurkb−/− die at the blastocyst embryonic stage while Aurkc−/−

knockouts are viable (Kimmins et al., 2007; Schindler et al.,
2012). Transgenic mice expressing a dominant negative AURKB
driven by the male-specific β-4-galactosyltransferase promoter
exhibit severe disruption in spermatogenesis with reduced sperm
counts, reduced testis size and disorganized spermatogenic
staging. 48% of these mice are sterile and cytokinesis
failure is observed (Kimmins et al., 2007). This inability of

AURKC to physiologically compensate for AURKB absence in
sperm suggests that AURKB has specific functions in mouse
spermatogenesis (Kimmins et al., 2007) although the dominant
negative allele used may also affect the function of AURKC.

The non-overlapping functions of AURKB and C have also
been demonstrated in experiments with oocytes, consistent
with their spatial separation (Balboula and Schindler, 2014).
Overexpression of AURKC causes arrest in MI due to cytokinesis
failure (Sharif et al., 2010). Securin levels decrease (a sign of
APC/C activation) and activated separase triggers homologous
chromosome separation (Sharif et al., 2010). This phenotype
differs from AURKB-overexpressing oocytes, which fail to
activate the APC/C and stabilize securin and have unresolved
chiasmata (Sharif et al., 2010). These data indicate that AURKC
plays a role in cell cycle progression while AURKB acts
to maintain the SAC. Another indication of unique activity:
overexpression of AURKB, and not AURKC, can rescue the
misaligned and slowed progression phenotype of ZM447439-
treated oocytes (Shuda et al., 2009). These data suggest that
high levels of AURKB can displace AURKC from the CPC, that
AURKB has a non-CPC function, or that AURKB-CPC has a
chromosome-independent function. Future studies are critical to
decipher other AURKC specific functions.

Expression of Meiotic Genes in Cancer

Meiomitosis is the expression of meiosis-specific proteins in
mitotic cells (Grichnik, 2008) and can negatively impact genetic
stability. Meiotic proteins, or cancer testis antigens (CTA), are
used as diagnostic and prognostic indicators (Fratta et al., 2011;
Rosa et al., 2012) in skin, bladder, lung and ovarian tumors.
Upregulation of CPC components, including AURKC, occurs
in cancer cells (Yan et al., 2005a) and may correlate with clinical
characteristics in primary colorectal cancers (Takahashi et al.,
2000; Lin et al., 2014). It is unclear if CTA expression is the
initiating oncogenic event or a downstream consequence of
transformation (Rosa et al., 2012), but could indicate that cancer
cells use meiotic divisions (i.e. separating homologs) for growth
and survival advantages (Ianzini et al., 2009). These proteins
represent desirable diagnostic biomarkers for tumor subtype
and ideal candidates for targeted therapeutics because their
expression is limited to germ cells, thereby minimizing side
effects.

AURKC Signaling in Cancer Cells

AURKC is oncogenic because its overexpression transforms
NIH 3T3 cells into tumors (Khan et al., 2011). AURKC is
overexpressed in many cancer cell lines, including NB1RGB,
MDA-MB-453, HEPG2, HeLa, and HuH7 (Kimura et al., 1999),
and in cancer of the reproductive tract (Tsou et al., 2011).
Overexpression increases cellular proliferation and migration
and enhances xenograft tumor growth (Tsou et al., 2011).
Kinase-dead AURKC decreases proliferation of HeLa cells while
expression of the constitutively active AURKC (Spengler, 2007a;
Khan et al., 2012) leads to more aggressive tumors (Khan
et al., 2011; Tsou et al., 2011). Other carcinogenic genes are
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FIGURE 2 | Aberrations in AURKC levels results in altered cell phenotypes. Diagram summarizing cell phenotypes observed when AURKC expression is

disrupted in mitotic and meiotic cells.

also located in the telomeric region of human Chromosome 19
(Bernard et al., 1998), a genomic region susceptible to
translocations and deletions (Bernard et al., 1998; Kimura et al.,
1999). Although some plasticity exists between the Aurora kinase
family members allowing for functional compensation; some
roles are kinase specific and maintaining the correct balance is
necessary for genomic stability (Figure 2).

The functional significance of AURKC expression in cancer
cells is unknown but may relate to centrosome regulation.
Overexpression of AURKC in mitotic cells leads to centrosome
amplification and multinucleation (Khan et al., 2011), a hallmark
of cancer. Extra centrosomes are associated with the formation
of multipolar spindles. Multipolar spindle formation usually
leads to cell death however centrosome clustering appears to
support cancer cell survival and frequently leads to chromosome
segregation defects (Marthiens et al., 2012). AURKC localizes to
centrosomes with AURKA during interphase (Takahashi et al.,
2000; Dutertre et al., 2005) and may play a role in centrosome
clustering. Many new cancer therapies are aimed at declustering
centrosomes (Pannu et al., 2014) which forces cancer cells to form
a multipolar spindle and induces cell death. AURKC inhibition
may alter this clustering pathway.

AURKC interactions with other proteins linked to cancer
may also explain its oncogenic role. AURKC, as well as AURKA
and AURKB, phosphorylate the transforming acidic coiled-coil
1 protein (TACC1) (Gabillard et al., 2011). Overexpression of

TACC1 drives cell transformation (Cully et al., 2005) and serves
as a prognostic marker of endocrine therapy resistance in breast
cancer (Ghayad et al., 2009). AURKC also phosphorylates TRF2,
a protein involved in telomere length regulation (Spengler,
2007b). Decreased telomere length predisposes individuals
to cancer (Shammas, 2011) and negatively impacts fertility
(Spengler, 2007b). In addition, tumor necrosis factor alpha
induces increased AURKC expression through the inflammation
response factor CEBPD in HeLa cells (Wu et al., 2011). Ongoing
studies of normal AURKC functions in meiotic cells are critical to
improving our understanding of the role of aberrant expression
in cancer.

Small Molecule Inhibitors

More than 70 clinical trials have been conducted on Aurora
kinase inhibitors. First generation inhibitors failed due to low
efficacy and high toxicity (Goldenson and Crispino, 2015)
however second-generation inhibitors are more sub-type specific
which may alleviate side effects. SNS-314 is a pan-Aurora
kinase inhibitor (Oslob et al., 2008) with AURKA, B and C
IC50 values of 9, 31, and 3 nM, respectively (Kollareddy et al.,
2012). This ATP-competitive inhibitor can inhibit proliferation
of anaplastic thyroid cancer cells in vitro (Baldini et al., 2012)
and inhibit tumor growth of colon cancer xenografts (Arbitrario
et al., 2010). A phase I clinical trial on advanced solid tumors
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showed modest results of SNS-314 treatment alone (Robert
et al., 2008), however sequential administration of SNS-314 and
chemotherapy docetaxel exhibited synergistic anti-proliferative
effects (VanderPorten et al., 2009). AMG-900 inhibits AURKC
with a 1nM IC50 (Payton et al., 2010). The compound induces
apoptosis in a diverse set of cancer cell lines in vitro and
inhibits tumor growth in vivo (Payton et al., 2010) AMG-900
inhibits colony formation ofmultidrug resistant cell lines (Payton
et al., 2010; Bush et al., 2013) and shows additive effects when
combined with histone deacetylase inhibitors (Paller et al., 2014).
Two Phase I clinical trials are being conducted on advanced solid
tumors and acute leukemias (Kollareddy et al., 2012).

Conclusion

Many advances have been made regarding our knowledge
of AURKC as a regulator of chromosome segregation, but

many questions remain. Does AURKC have unique, MI-specific
substrates and do they differ between sperm and oocyte? What
cofactors are needed for full AURKC activation? Does AURKC
function outside of the CPC? Does AURKC drive meiotic events
when expressed in mitotic cells giving rise to tumors? Not until
we have a complete understanding of the function and substrates
of AURKC in meiotic cells can we begin to understand the
significance of its expression in cancer cells. However, once these
and other meiomitotic protein studies are complete, this class of
proteins represent a promising diagnostic and therapeutic cancer
target.
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