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2CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
3Institut Universitaire de France (IUF), Paris, France

*Corresponding author: Email: schacherer@unistra.fr
†The first two authors contributed equally for this work.

Abstract

Dissecting the genetic basis of complex trait remains a real challenge. The budding yeast Saccharomyces cerevisiae has become a model
organism for studying quantitative traits, successfully increasing our knowledge in many aspects. However, the exploration of the geno-
type–phenotype relationship in non-model yeast species could provide a deeper insight into the genetic basis of complex traits. Here, we
have studied this relationship in the Lachancea waltii species which diverged from the S. cerevisiae lineage prior to the whole-genome du-
plication. By performing linkage mapping analyses in this species, we identified 86 quantitative trait loci (QTL) impacting the growth in a
large number of conditions. The distribution of these loci across the genome has revealed two major QTL hotspots. A first hotspot corre-
sponds to a general growth QTL, impacting a wide range of conditions. By contrast, the second hotspot highlighted a trade-off with a dis-
advantageous allele for drug-free conditions which proved to be advantageous in the presence of several drugs. Finally, a comparison of
the detected QTL in L. waltii with those which had been previously identified for the same trait in a closely related species, Lachancea kluy-
veri was performed. This analysis clearly showed the absence of shared QTL across these species. Altogether, our results represent a first
step toward the exploration of the genetic architecture of quantitative trait across different yeast species.
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Introduction
Understanding how the genetic diversity generates the impres-

sive phenotypic variation observed at the species level is one of

the greatest challenges in biology. A better view of the genotype–

phenotype relationship also provides helpful information in

health research (Minikel et al. 2020), the food industry (McCouch

2004; Marullo et al. 2006; Sharmaa et al. 2015), as well as on evolu-

tion and adaptation mechanisms (Olson-Manning et al. 2012).

Exploring the genetic basis of quantitative traits is not a trivial

task as it may involve a large number of alleles with different ef-

fect size and interacting with each other as well as with the envi-

ronment (Lynch and Walsh 1998). Two main strategies make it

possible to link phenotypic variation to specific loci: genome-

wide association studies which use large samples of individuals,

and linkage analyses that increase statistical power by generating

recombinant offspring (Lynch and Walsh 1998).
The Saccharomyces cerevisiae yeast appeared very early to be an

excellent model to perform linkage analyses (Brem et al. 2002;

Steinmetz et al. 2002). Since then, a large number of quantitative

trait loci (QTL) mapping studies have been conducted to better

understand epistasis (Sinha et al. 2006), missing heritability

(Bloom et al. 2013), gene–environment interactions (Smith and

Kruglyak 2008; Bhatia et al. 2014; Yadav et al. 2016; Peltier et al.
2018), the impact of rare variants (Bloom et al. 2019; Fournier et al.
2019), and to identify hundreds of single-nucleotide polymor-
phisms (SNPs) of technological interest (Peltier et al. 2019).
However, comprehensive understanding of phenotypic diversity
would benefit from studying the genotype-phenotype relation-
ship in various species. Only a few QTL mapping studies have
been performed on other yeast species (Clément-Ziza et al. 2014;
Sigwalt et al. 2016; Brion et al. 2020). Saccharomycotina yeasts
span a broad evolutionary scale shaped by different forces as
they have different environmental niches, life cycle, mating type
system, ploidy level, and not all have been subjected to artificial
selection through domestication such as S. cerevisiae (Dujon 2006;
Peter and Schacherer 2016). Exploring phenotype–genotype rela-
tionship in additional yeast species is therefore of great interest.

In this context, we explored the phenotype–genotype relation-
ship in another yeast species, Lachancea waltii. This yeast has a
�11 Mb genome distributed in eight chromosomes and diverged
from the S. cerevisiae lineage prior to the whole-genome duplica-
tion event, estimated to have occurred more than 100 Ma (Kellis
et al. 2004). The ecological niche of L. waltii is poorly documented
and some strains have been isolated from tree exudates, insects,
or lake water. Unlike other species such as Lachancea thermotolerans,
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L. waltii has never been found associated with human activities
(Porter et al. 2019). In the laboratory, L. waltii grows in standard S.
cerevisiae rich media and is sensitive to drugs commonly used for
S. cerevisiae (Di Rienzi et al. 2011). Mating type and silent cassettes
are present on the left arm of chromosome C, while neither HO
gene nor HO recognition sequences are found (Fabre et al. 2005).
Although rare HO-independent mating type switches are sus-
pected, L. waltii appears to be a stable, vegetatively growing hap-
loid (Di Rienzi et al. 2011). Mating is suspected to be rare on rich
media due to the absence of pheromone response and crosses are
successfully generated using selective markers leading to stable
diploids (Di Rienzi et al. 2011). These life cycle properties therefore
offer the opportunity to perform quantitative genetic studies on
this species with a classical QTL mapping design by generating a
large recombinant offspring from a parental cross.

To dissect the genetic basis of growth variation under a broad
set of environmental conditions in L. waltii, we performed linkage
mapping on a large population of segregants. To this end, two
natural isolates were crossed to generate a set of 421 segregants,
which were phenotyped for their ability to grow under a total of
48 environmental conditions. The phenotypic variation within
this population is highly heritable and displays mainly a normal
distribution, characteristic of polygenic traits. The genomes of
this set of segregants were completely sequenced and the paren-
tal segregating alleles were used as markers to perform linkage
analysis. We found a total of 86 QTL, mostly grouped into two
major hotspots. Their impact on the phenotypic diversity was ex-
amined and revealed a general growth as well as a multidrug re-
sistance QTL. Comparison of the detected QTL in this L. waltii
cross with those we previously determined in a cross from a
closely related species, L. kluyveri, clearly showed the absence of
overlap between their QTL distributions. Unlike the L. waltii spe-
cies, L. kluyveri is characterized by a major QTL hotspot showing
an association between a large number of traits and the mating-
type locus due to the absence of recombination in this specific
region. And this situation leads to the presence of a sexual dimor-
phism which is absent in L. waltii and consequently highlighting a
divergent evolutionary trajectory in the Lachancea genus. Overall,
our results provide a first glimpse into the evolution of the archi-
tecture of quantitative traits across non-model yeast species.

Materials and methods
Yeast strains and media
Yeast strains used in this study are described in Supplementary
Table S1. Strains were grown in standard YPD medium (yeast ex-
tract 1% peptone 2% glucose 2%) supplemented with G418
(200 mg/mL) or nourseothricin (100 mg/mL) and agar 20 g/L for solid
medium at 30�C. The HIS3::KanMX phenotype was verified on
SC-His-Trp-Ura medium (yeast nitrogen base with ammonium sul-
fate 6.7 g/L, SC-His-Trp-Ura amino acid mixture 1.74 g/L, dextrose
20 g/L, and agar 20 g/L). Mating and sporulation were performed on
DYM medium (yeast extract 0.3 g/L, malt extract 0.3 g/L, peptones
0.5 g/L, dextrose 1 g/L, and agar 20g/L) at 22�C. Phenotyping experi-
ments were performed on synthetic complete (SC) medium (yeast
nitrogen base with ammonium sulfate 6.7 g/L, SC amino acid mix-
ture 2 g/L, sugar 20 g/L, agar 20g/L) supplemented with specific
compounds (Supplementary Table S4).

Generation of parental strains
Stable haploid parental strains were obtained by replacing the
HIS3 locus with G418 or nourseothricin resistance markers. The
HIS3::KanMX cassette was amplified from the strain 78 using

primer pairs HIS3-F/HIS3-R. The HIS3::NatMX locus was amplified
by a two-steps fusion PCR: the flanking regions of the HIS3 locus
were amplified from the strain LA128 using HIS3-F/HIS3-
fusionTermF and HIS3-R/HIS3-fusionProm-R while the NatMX cas-
sette was amplified from the plasmid pAG36 using HIS3Fusion
TEFProm-F/HIS3Fusion TERterm-R. pAG36 was a donation from
John McCusker (Addgene plasmid # 35126; http://n2t.net/addgene/
35126/ (last accessed 2021-07-16); RRID: Addgene_35126)
(Goldstein and McCusker, 1999).

The transformation of parental strains with the NatMX or
KanMX cassettes was performed by electroporation as described
by (Di Rienzi et al., 2011) using 1 mg of DNA and electroporation at
1.5 kV, 25 mF, and 200 X using a GenePulser (Biorad). To confirm
successful replacement of the HIS3 locus, colonies were patched
on SC-His-Ura-Thr medium and colony PCR were performed us-
ing primer pairs HIS3-F/Kan-R or HIS3-F/Nat-R. All primers used
are detailed in Supplementary Table S6.

Mating, sporulation, and spore isolation
For mating, LA128 HIS3::KanMX and LA136HIS3::NatMX were
mixed on DYM plates for 72 h at 22�C. Double resistant cells to
G418 and nourseothricin were selected on YPD-agar-G418-
Nourseo plates and single colonies were purified by striking on
YPD-agar-G418-Nourseo plates. The diploid state of the hybrids
LA128 HIS3::KanMX/LA136 HIS3::NatMX was verified by flow
cytometry.

After ploidy validation, one hybrid was selected and sporu-
lated for 2-3 days on DYM plates at 22�C. Tetrads dissections
were performed using the SporePlay (Singer Instrument) without
any pre-treatment. Dissection of about 1000 tetrads showed 2:2
segregation of the KanMX and NatMX markers.

Flow cytometry
The cell DNA content of LA128 HIS3::KanMX/LA136 HIS3::NatMX
hybrids was measured by flow cytometry after synchronization
with hydroxyurea as described by Di Rienzi et al. (2011) with mi-
nor modifications. Briefly, 0.2 mL of an overnight culture was di-
luted in 0.8 mL of YPD and incubated for 2 h at 30�C. Cells were
collected by centrifugation, resuspended in 1 mL of YPD containing
7.6 mg/mL of hydroxyurea and incubated for 2 h at 30�C. Cells
were pelleted, washed in 1 mL of water and resuspended in 1 mL
of ethanol 70%, pelleted again and resuspended in 1 mL of citrate
buffer (sodium citrate 50 mM pH 7.4). Then cells were centrifuged
and resuspended in 0.5 mL of citrate buffer containing 1 mg/mL of
RNAse A. After incubation for 1 h at 50�C, 50mL of proteinase K at
20 mg/mL were added and the cells were incubated for an addi-
tional hour at 50�C. Cells were then sonicated for 10 sec at 20%
power and 0.5 mL of citrate buffer containing 2mM of SYTOX green
(Invitrogen) was added to the suspension. Cell content was ana-
lyzed with a BD Accuri C6 plus flow cytometer (BD Biosciences).

Phenotyping
High-throughput phenotyping was realized as described in
Fournier et al. (2019) with minor modifications. Strains were
pinned onto a solid YPD matrix plate to a 1536-density format us-
ing the replicating ROTOR robot (Singer Instruments) and grown
overnight at 30�C. Then the matrix plate was replicated onto phe-
notyping media. For each condition, all the 421 segregants are
replicated three times, the hybrid384 times and the two parents
192 times. Therefore, two 1536-density plates per media was
used for phenotyping, with at least one replicate per strain on
each plate. The plates were incubated for 24 h at 30�C (except for
14�C condition) and were scanned with a resolution of 600 dpi at
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16-bit grayscale. Colony size was quantified in number of pixels
within colony area at 0 h and 24 h using the R package Gitter
(Wagih and Parts 2014). Growth of each replicate was calculated
by subtracting colony size at t¼ 0 h by colony size at t¼ 24 h.
Within each media, Plate effect was evaluated with hybrid
replicates equally distributed on the two plates and corrected.
Average of the three replicates was used for final segregants phe-
notypic value.

DNA extraction
Total genomic DNA of 421 segregants was extracted using the 96-
well E-Z 96 Tissue DNA kit (Omega) following a modified bacterial
protocol. Cells were grown overnight at 30�C with agitation at
200 rpm in 1 mL of YPD in 2-mL 96 deep square well plates, sealed
with Breath-Easy gas-permeable membranes (Sigma-Aldrich).
Cells were centrifuged for 5 min at 3700 rpm and the cell wall was
digested for 2 h at 37�C in 800 mL of buffer Y1 (182.2 g of sorbitol,
200 mL of EDTA 0.5 M pH 8, 1 mL of b-mercaptoethanol, qsp 1 L of
H2O) containing 0.5 mg of Zymolase 20 T. Next, cells were pel-
leted, resuspended in 225 mL of TL buffer containing OB protease
and incubated overnight at 56�C. Then DNA extraction was con-
tinued according to the manufacturer’s instructions.

Total genomic DNA of hybrids was extracted using a modified
MasterPure Yeast DNA purification protocol (Lucigen). DNA con-
centration was measured using the Qubit dsDNA HS assay
(ThermoFischer) and the fluorescent plate-reader TECAN Infinite
Pro200 and DNA quality was evaluated using a NanoDrop 1000
Spectrophotometer (ThermoFischer) and by agarose gel analysis.

Genotyping sequencing
DNA libraries were prepared from 5 ng of total genomic DNA us-
ing the NEBNext Ultra II FS DNA Library kit for Illumina (New
England Biolabs). All volumes specified in the manufacturer’s
protocol were divided by four. The adaptor-ligated DNA frag-
ments of about 300-bp were amplified with 8 cycles of PCR using
indexed primers. A combination of 48 i7 oligos (NEBNext
Multiplex Oligos for Illumina, NEB) and 24 i5 oligos (Microsynth)
were designed enabling multiplexing up to 1152-samples. After
quality check using a Bioanalyzer 2100 (Agilent Technologies)
and quantification using the Qubit dsDNA HS assay, 4 nM of each
of the libraries were pooled and run on a NextSeq 500 sequencer
with paired-end 75 bp reads by the EMBL’s Genomics Core Facility
(Heidelberg, Germany).

Mapping and single-nucleotide polymorphisms
calling
Sequencing reads from Fastq files were mapped to the L. waltii
reference genome obtained from the GRYC website (http://gryc.
inra.fr/index.php?page¼download, last accessed 2021-07-16) us-
ing bwa mem (v0.7.17). Resulting bam files were sorted and
indexed using SAMtools (v1.9). Duplicated reads were marked
and sample names were assigned using Picard (v2.18.14). GATK
(v3.7.0) was used to realign remaining reads. Candidate variants
were then called using GATK UnifiedGenotyper.

Segregation analysis
After variant calling, SNPs called in the LA128 and LA136 parents
were first filtered (bcftools view, v1.9) to define a set of confident
markers. Positions with a single alternate allele, supported by at
least 10 sequencing reads in each parent and with >90% of the
sequencing reads covering either the reference or alternate allele.
For each strain resulting from the LA128/136 hybrid, SNPs located
at aforementioned marker positions were extracted, and parental

origin was assigned based on SNP correspondence between
parents and spores at those positions.

In order to validate these SNPs as markers for QTL mapping,
their segregation among the progeny was investigated. If most of

the markers (67%) follow the expected 2:2 mendelian segregation,
a significant amount displays other patterns. Indeed, 20% of the
markers show 0:4/4:0 segregation illustrating loss of heterozygos-

ity (LOH) events in the LA128/136 hybrid. Distribution of these
0:4/4:0 SNPs along the genome shows that at least 13 LOH events
occurred encompassing 6 of the 8 chromosomes. In total, LOH

events represent 1.965 Mb of the 10.9 Mb total genome size.
Without any segregation these LOH segments cannot be mapped
in linkage analysis and therefore have been discarded for the fol-
lowing analysis.

Another significant amount group of SNPs encompassing all

chromosomes B and D are deviating from 2:2 segregation with a
more complex pattern. By looking coverage along the genome in
LA128/136 parental hybrid, an aneuploidy with a supplemental

copy of chromosome B and D was identified, explaining deviation
from 2:2 segregation. Therefore, this aneuploidy was inherited in
some of the segregants showing heterozygosity for theses chro-

mosomes. In order to keep only euploid strains for QTL mapping
analysis, segregants heterozygous for these chromosomes were
discarded from the initial pool of F1 offspring. Therefore, 421 F1

offspring were used for linkage analysis. At the end, a subset of
5542 SNPs mapped in more than 94% of the progeny and homo-
geneously distributed along the genome were selected to be used
as genetic marker for linkage analysis.

Linkage analysis
The QTL mapping analysis was performed with the R/qtl package
(Broman et al. 2003) by using the Haley-Knott regression model

that provides a fast approximation of standard interval mapping
(Haley and Knott 1992). For each phenotype, a permutation test
of 1000 permutations tested the significance of the LOD score

obtained, and a 1% FDR threshold was fixed for determining the
presence of QTL (Churchill and Doerge 1994). The QTL position
was estimated as the marker position with the highest LOD score
among all markers above the threshold in a 30 kb window.

Data analysis
Except synteny analysis, all the statistical and graphical analyses
were carried out using R software (R Core Team 2018).

Estimation of heritability
The lato sensu heritability H2 was estimated for each phenotype
according as follows:

H2 ¼ rP2 � rE2

rP2

where rP2 is the variance of progeny population in each media,
explaining both the genetic and environmental variance of the
phenotype measured, whereas rE2 is the median of the variance

of LA128 HIS3::KanMX/LA136 HIS3::NatMX hybrid (384 replicates
per media), explaining only the environmental fraction of pheno-
typic variance.

Estimation of QTL, environment, and QxE effect
For each QTL mapped, the effects of QTL (Q), of environment (E)
and their interactions (QxE) were estimated according to the fol-
lowing linear model:
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yij ¼ mþQi þ Ej þ ðQxEÞij þ eij

where yij is the value of the trait for allele i (i ¼ LA128, LA136) in
environment j (j ¼ concentration level 0, . . ., 3), m is the overall
mean, Qi is the QTL effect, Ej the environment effect, ðQxEÞij is the
interaction effect between QTL and environment, and eijk the re-
sidual error. The part of variance explained between Qi, Ej, and
ðQxEÞij was estimated by an analysis of variance after verification
of its applicability (homoscedasticity and normal distribution of
model’s residues).

Synteny analysis
Synteny analysis was performed with the multiple genome align-
ment software mauve using progressiveMauve algorithm with
default parameters. L. waltii (CBS6430, Genome Resources for
Yeast Chromosomes website) and L. kluyveri (CBS3082, NCBI ac-
cession number: AACE00000000) genomes were used as input
data.

Results and discussion
Lachancea waltii mapping population and growth
diversity
To identify the genetic basis underlying the phenotypic diversity in
L. waltii species, we selected two isolates, LA128 and LA136, as pa-
rental strains (Supplementary Table S1). While LA128 was isolated
from the gall of a red oak tree, LA136 was isolated from the black
knot of Prunus virginiana but both strains were isolated in Canada.
After whole-genome sequencing, a total of 64,628 confident SNPs
discriminating LA128 and LA136 were identified, leading to a ge-
netic divergence of 0.59%. The LA128 and LA136 stable haploid
strains were mated to generate a LA128/LA136 hybrid
(Supplementary Figure S1). This diploid was sporulated and a total
of 421 haploid F1 offspring were isolated. At each step, the ploidy
level was checked by flow cytometry. This classical cross design
allows to study an F1 offspring that have inherited recombined
genomes from the two parental strains and therefore to link phe-
notypic variations to genetic factors. For this purpose, these segre-
gants were genotyped by whole-genome sequencing attributing
for each individual their SNP parental inheritance. A subset of
5542 SNPs assigned with confidence in over 94% of the progeny
and distributed homogeneously along the genome were selected
for use as genetic markers for linkage analysis (Supplementary
Table S2). The correct 2: 2 segregation of these markers shows that
this mapping population is suitable for performing QTL mapping.

Then, we sought to capture the phenotypic diversity of this
population by measuring colony growth in different conditions
(Supplementary Table S3). The impact of 48 media on growth was
tested, including 16 drugs/compounds with multiple concentration
levels, two non-glucose carbon sources (galactose and glycerol) and
two temperatures (14�C vs. 24�C) (Supplementary Table S4). Briefly,
the compounds tested are antifungal compounds, ions, metals, sol-
vents, or toxic compounds described in the literature to have an im-
pact on yeast growth. We first studied the phenotypic distribution
and variance of the offspring. While most conditions display a
complex distribution, some specific media highlight bimodal distri-
butions in at least one concentration level (benomyl 50–100mg/mL,
fluconazole 1mg/mL, glucose 10%, CuSO4 0.1 mM, formamide 1.5%,
6-azauracil 100mg/mL, bafilomycin 0.375 mg/mL, and caffeine
10 mM). Representative distributions are shown in Figure 1A with
growth on hydroxyurea displaying a normal distribution and
growth on fluconazole displaying a bimodal distribution at 20mg/
mL that shifts to a normal distribution at 200mg/mL. For all

conditions, parental strains show significant growth differences for
at least one concentration level. The most striking differences are
observed for 4-nitroquinoline 1-oxide (1mg/mL) and galactose (2%)
conditions in which almost no growth is observed in LA128 while
LA136 is able to grow. Overall, LA128 has a significative higher
growth in 18 conditions compared to 21 conditions for LA136, show-
ing that the genetic basis underlying this growth discrepancy is dif-
ferent according to the conditions tested and that favorable alleles
are distributed in both parents. The rank of the parents can change
depending on the concentration level (see example of fluconazole
in Figure 1A) illustrating the presence of genotype–environment in-
teraction (GxE). To have a view of the phenotypic diversity in this
offspring, the phenotypic variance according to the condition was
estimated. As expected, we observed a large phenotypic variance
under most conditions. While some conditions show high pheno-
typic variance (e.g., glucose 10%, 6-azauracil 100mg/mL and caffeine
10 mM), others exhibit very low variance, mainly because the drug
concentration level was too high and allowed only low growth (e.g.,
sodium dodecyl sulfate 0.025–0.05%, and 4-nitroquinoline 1-oxide
3mg/mL). The broad-sense heritability (H2) was computed to assess
the fraction of the phenotypic variance caused by genetic factors
(Figure 1, B and C). The heritability is 0.69 on average, with 80% of
the conditions leading to a heritability greater than 0.5. The condi-
tions with low heritability are basically the ones leading to a growth
close to zero and therefore displaying no variance as for sodium
dodecyl sulfate or methyl methanesulfonate conditions (Figure 1B).
Taken together, these results indicate that the phenotypic variance
observed in the offspring is primarily caused by heritable genetic
factors and could be mapped with our experimental design.

Two major QTL hotspots shape the Lachancea
waltii growth variability
In order to identify the genetic factors explaining the phenotypic
diversity observed, the genotypic and phenotypic data obtained
for the offspring were used to perform linkage mapping analysis.
For the multiple conditions tested with different concentrations
of the same compound, the different concentrations were consid-
ered as environmental variables of one condition. We then identi-
fied QTL controlling growth for a specific compound and
evaluated the variation of their effect according to the concentra-
tion (gene–environment interaction). This linkage analysis led to
the identification of 86 QTL with a false discovery rate of 1%
(Figure 2A and Supplementary Table S5). An average of 4 QTL per
condition was found with at least one QTL per condition and a
maximum of 7 QTL identified for benomyl, cycloheximide, and
methyl viologen growth (Figure 2A). We then looked at the distri-
bution of the QTL across the genome. Since many QTL signifi-
cantly span multiple markers and several kb, their position has
been assigned to the marker with the highest significance. Using
a 50 kb window, the number of QTL per window was determined.
This analysis revealed a total of 86 QTL distributed across 16 dif-
ferent loci, with 6 of them impacting at least 6 different condi-
tions (Figure 2B). Strikingly, two of these pleiotropic loci are QTL
hotspots that affect almost every condition. These two hotspots
are mapped in the chromosome E, at positions 87402 and 810257
(hereafter named E_87 and E_810) and have an effect on 19 and
20 conditions, respectively.

To assess the extent to which phenotypic diversity is explained
by the identified QTL, the variance explained by each QTL was de-
termined with analysis of variance (ANOVA). A QTL explains 8% of
the variance on average. The distribution of the variance explained
displays a typical L-shape distribution often found in QTL mapping
analysis, with most of the QTL explaining low percentage of
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variation and few major QTL explaining high part of the variation
(Supplementary Figure S2). Indeed, 85% of the QTL explain less
than 15% of the variance. The major QTL explaining a significant
proportion of the variance are the two hotspots E_87 and E_810
mapped in almost all of the conditions (19 and 20, respectively)
(Figure 2B). To assess the phenotypic impact of these two major
QTL, a principal component analysis with the phenotypic dataset
was performed (Figure 3A). The correlations between the original
dataset phenotypes and the two first principal components are
shown in Supplementary Figure S3. The first two axes account for
48% of the variance and clearly discriminate 4 groups according to
E_87 and E_810 allele inheritance. The segregants that inherited the
parental genotypes are located in two groups with their correspond-
ing parent while the other two groups which inherited recombined
genotypes are clearly segregating separately. This is explained by
significant phenotypic transgression for most conditions, with the
lowest growth segregants being those that inherited the deleterious
E_87LA128 and E_810LA136 combination and the highest growth segre-
gants being those that inherited the favorable E_87LA136 and
E_810LA128 combination. A representative example of the transgres-
sion found is shown in the copper sulfate condition (0.5 mM) (Figure
3B). Another ANOVA was performed to identify potential interac-
tions between these two major QTL and no significant interaction
was found, showing strong additivity between E_810 and E_87

(Figure 3C). The high individual effect of these major QTL and their
additivity explain their drastic impact on the phenotypic diversity.
Moreover, the fact that parental strains have alleles of opposite ef-
fect explains the level of transgression observed in the offspring.
Overall, this analysis showed that the phenotypic diversity of this
cross is mainly shaped by two major additive QTL whose effect is
revealed by meiosis leading to transgressive individuals.

Identification of a general growth QTL with high
level of interaction according to media complexity
We next studied in more detail the effect of the two main QTL, i.e.
E_810 and E_87. The E_810 hotspot reaches the significance
threshold in 20 out of the 22 conditions. It explains 27% of the
variation on average, with a maximum of 76% in glucose 10%.
The effect is exacerbated in less stringent media with almost no
effect in the 18 more stringent media (6% of variance explained
on average) (Figure 4A). Indeed, the percentage of variance
explained is significantly correlated with the average condition
growth (spearman test P-value < 0.5) (Figure 4B). Therefore, its ef-
fect is amplified in any condition without drugs (i.e., 2% and 10%
glucose) or with a low concentration. For these conditions,
E_810 explains perfectly the bimodal distributions identified.
Interestingly, this QTL has only a small effect on the non-glucose
carbon sources such as glycerol and galactose (Figure 4C). While

Figure 1 Distribution, genetic variance, and heritability of the media. (A) Distribution of growth for F1 offspring. Red and blue vertical lines represent the
parental value of LA128 and LA136, respectively. Facets Low, Medium, and High represent an increase in the concentration level with 1–5–10 mg/mL of
fluconazole and 20–100–200 mg/mL for hydroxyurea. (B) Variance in the F1 offspring per media. The total variance is composed of the genetic variance
and residual variance. (C) Distribution of the H2 estimated for the 48 media.
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the low effect in galactose can be attributed to the general low
growth for this carbon source, this is not the case for glycerol.
This shows an important GxE interaction between E_810 and the
carbon source, the E_810 impact being greater with glucose. The
interaction is more complex when compared with YPD in which
E_810 clearly has no significant effect (Figure 4C). The environ-
mental factor which generates this striking GxE effect cannot be
clearly determined because the synthetic complete and YPD me-
dia composition differs in many aspects. The variation in the ex-
pression of phenotypes according to complex yeast media and
synthetic complete media has already been reported in the litera-
ture (Janitor and �Subı́k 1993; Supek et al. 1996; Kucejova et al.
2005; Abelovska et al. 2007). Therefore, this important GxE inter-
action can be generated by a substantial difference in the concen-
tration of key elements involved in the E_810 effect. We
concluded that E_810 hotspot is a general growth QTL whose
drastic impact is revealed in synthetic complete media.

Identification of a multidrug resistance QTL
highlighting an evolutionary trade-off
We then investigated in more detail the effect of E_87 in the F1
offspring. This QTL is detected for 19 out of the 22 conditions. It
has a lower effect than E_810, explaining 12% of the variation on
average, with a maximum of 45% in hydroxyurea (100 mg/mL).
Interestingly, while the E_87LA136 allele confers better growth un-
der most conditions (n¼ 43), its effect is deleterious under certain
specific conditions (n¼ 9) (Figure 5A). In fact, we can see that
E_87LA128 appears as a beneficial allele when the drug concentra-
tion increases in media with hydroxyurea, 5-fluorouracile, sodium
meta-arsenite, and caffeine (Figure 5B). Therefore, this QTL repre-
sents a trade-off with an allele conferring drug resistance but a

lower growth in drug-free media. The fitness cost of drug resis-
tance variants is frequently described in literature and therefore
not surprising (Melnyk et al. 2015; Maharjan and Ferenci 2017).

The targets of the drugs for which E_87 has been detected are
multiple, including DNA synthesis and repair, oxidative stress,
and signal transduction. The genetic basis underlying this QTL
can be linked either to different independent genetic factors each
having an impact on a specific drug, or to a pleiotropic genetic
factor giving resistance against several drugs. Interestingly, we
have identified LAWA0E00386g as a good candidate gene in this
locus, which is an ortholog of the well characterized PDR15 S. cere-
visiae gene encoding for a multidrug transporter and general
stress response factor implicated in cellular detoxification
(Wolfgert et al. 2004). In this gene, 8 non-synonymous SNPs dis-
criminating parental sequences were found and may impact its
function. To conclude, we hypothesize that E_87 is related to a
multidrug-resistant allelic variant resulting in a growth defect in
drug-free condition.

The effect of the E_87 locus is not limited to drug-containing
media and also has an effect in galactose 2% (Figure 5C) and 10%
(data not shown). Under these conditions, this QTL has a strong
effect, clearly discriminating growing from non-growing strains
(41% of the variance is explained in galactose 2%). All of the seg-
regants that inherited the E_87LA136 allele are able to grow with
galactose as the sole carbon source while almost half of the
E_87LA128 show no growth. As the E_87 locus has a pleiotropic ef-
fect on drug resistance and galactose assimilation, we can as-
sume that different genetic factors may explain these unrelated
conditions. Looking at this QTL, we identified the presence of
LAWA0E00342g which is annotated as similar to S. cerevisiae GAL2
gene. In S. cerevisiae, this gene encodes for a galactose permease
(Boles, De Jong-Gubbels, and Pronk 1998) and can therefore be a
good candidate gene to explain this difference regarding the as-
similation of galactose. Although no non-synonymous SNPs were
identified between parental strains, the differences found in the
promoter region could explain this phenotypic variation.
Surprisingly, the L. waltii species was previously reported as un-
able to assimilate galactose (Porter et al. 2019). In our study, two
other QTL with a smaller impact (2–4% of the variance explained)
were also identified for their effect on galactose. This illustrates
the presence of natural allelic variants in the L. waltii species
allowing the assimilation of galactose.

Absence of common QTL across related species
To explore whether any of the QTL identified could be shared
with another species, we compared the QTL detected here in L.
waltii with the ones detected in a related species, L. kluyveri. We
took advantage of our previous work which identified QTL with
the same experimental design and similar conditions in L. kluyveri
(Brion et al. 2020). In this study, 196 F1 segregants were used to
perform linkage analysis for the same trait under 64 conditions,
25 of them being similar or identical to the conditions measured
in the present work on L. waltii (conditions using galactose, glyc-
erol, glucose, sodium chloride, copper sulfate, sodium dodecyl
sulfate, formamide, sodium meta-arsenite, methyl viologen, caf-
feine, 6-azauracil, hydroxyurea, fluconazole, benomyl, and cyclo-
heximide). With the exception of the 560 first kb of the left arm of
the chromosome C (C-left), the synteny between L. waltii and L.
kluyveri is poorly conserved (Vakirlis et al. 2016). To properly com-
pare the QTL distribution and see any possible common QTL, ge-
nomic alignment was performed and 203 syntenic blocks of 55 kb
on average were identified (Figure 6). In total, five syntenic blocks
containing at least one QTL in each species were identified. This

Figure 2 Overview of the identified QTL. (A) Number of QTL identified per
condition. (B) Genomic location of the QTL identified for all conditions.
Each dot indicates the presence of at least one QTL. If more than one
QTL is found in the same 50 kb window, the dot indicates the QTL with
the best P-value and the red line show the boundary of the other QTL
location. The number of QTL associated to each spot is indicated below
each dot. Grey shadow represents the left arm of chromosome C.
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number is expected by chance under random distribution, show-
ing the absence of conservation of the overall QTL distribution
(Pearson’s Chi-squared test, P-value > 0.1).

We further investigated the QTL located on shared syntenic
blocks to identify the potential presence of any interspecies QTL
conservation. We examined a first QTL identified in L. kluyveri on
the chromosome A and controlling growth on benomyl (0.2 g/L).
This QTL is located in the same block of synteny as two QTL iden-
tified in L. waltii controlling growth in glycerol (2%) and galactose
(2%). These QTL are located in the same syntenic block but they
are separated by at least 80 kb and control different growth under
different conditions. It is therefore unlikely that the genetic fac-
tors behind these QTL are the same. In addition, the two E_87
and E_810 QTL hotspots detected in L. waltii are also located in
shared syntenic blocks located on the D and H chromosomes of
the L. kluyveri species. Nevertheless, the L. kluyveri QTL has an im-
pact on a limited number of conditions (one and two, respec-
tively) and therefore it is again unlikely that the same genetic

factors are involved. Overall, no interspecific QTL were identified,
confirming the lack of conservation of the QTL distribution across
species.

Finally, a striking feature of the L. kluyveri QTL distribution
previously highlighted is the linkage of the whole C-left region
with a QTL hotspot impacting 23 conditions (Brion et al. 2020).
The unusual size of this QTL, which covers a region of a 1 Mb, is
explained by the absence of meiotic recombination of the L. kluyveri
C-left, maintaining the whole arm in genetic linkage (Brion et al.
2017). Interestingly, the C-left region contains the MAT locus and
therefore this lack of recombination plus the presence of a QTL hot-
spot impacting growth on a broad range of conditions revealed a
unique case of sexual dimorphism in budding yeast. The C-left syn-
teny is well conserved between the L. kluyveri and L. waltii species,
including the MAT locus and the two silent loci HML/HMR. However,
the C-left region in L. kluyveri also corresponds to a large GC-rich
introgressed region and this is not the case for L. waltii (Payen et al.
2009). A total of 16 QTL distributed across 3 distinct loci were

Figure 3 Overall effect of the two QTL hotspots detected. (A) PCA performed with the growth measured from all conditions for the F1 population,
parental strains and hybrid. The color by genotype for E_87 and E_810 QTL is the same for all panels. (B) Growth distribution of the segregants in copper
sulfate 0.5 mM according to their genotype. Vertical dashed lines represent the parental strains and the hybrid. (C) Additive effect of E_87 and E_810.
The boxplot represents the segregant growth in all media according to their genotype. A different letter indicates a significant difference (Tukey honest
significant differences, confidence level ¼ 0.95).
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detected and no QTL hotspot was found on the C-left in the L. waltii
species (Figure 2B). This comparison shows that the sexual dimor-
phism present in L. kluyveri is not a general characteristic of the
whole Lachancea genus which rather diverged in different evolution-
ary strategies.

Conclusion
This work presents the first linkage analysis carried out in the
L. waltii species, demonstrating its suitability to experimental de-
sign of classic QTL mapping and extending our knowledge on ge-
netic architecture of quantitative traits to a new yeast species.
This analysis led to the identification of 86 QTL, most of them be-
ing distributed in two major hotspots. Identification of QTL hot-
spots is quite common in many species (Mozhui et al. 2008; Rae
et al. 2009; Ambroset et al. 2011; Larson et al. 2016; Sukumaran
et al. 2018). Their identification is almost ubiquitous for eQTL
where major regulators or transcription factors may impact

several transcripts (Breitling et al. 2008). This high number of QTL
identified within the same locus is explained by the
non-exclusive combination of two parameters: genetic factors
with a pleiotropic effect and multiple genetic factors genetically
linked. As all the phenotypes measured in this work correspond
to colony growth in different media, they are not completely
unrelated. Therefore, a pleiotropic genetic factor impacting
growth under a wide range of growing conditions would be multi-
mapped and this is more likely the case for E_810. This is sup-
ported by the fact that the advantageous allele of the multiple
QTL associated with this hotspot systematically comes from the
same parent. Such hotspots have already been described in S. cer-
evisiae for traits involving the production of related compounds
or fermentation traits in an oenological context (Ambroset et al.
2011; Eder et al. 2018). In contrast, the second hotspot, E_87,
affects fewer related traits by controlling multiple drug resistance
and galactose uptake, so the presence of distinct genetic factors
in linkage disequilibrium is more likely.

Figure 4 Effect of the E_810 QTL hotspot. (A) Each line represents average growth of the F1 offspring across the 48 conditions according to the E_810
genotype. Conditions are sorted according to the average growth of the F1 offspring. (B) Average growth per medium according to the variance explained
by E_810. Each dot represents a condition for which E_810 is identified as QTL. (C) Growth of F1 offspring according to E_810 inheritance and carbon
source glucose 2% (GLU), glycerol 2% (GLY), galactose 2% (GAL), or media base SC vs YPD. Wilcoxon–Mann–Whitney test was applied to assess the
significance of the phenotypic difference between the relevant pairs. The level of significance is indicated as follows: ns: not significant, *P � 0.1, **P �
0.05, ***P � 0.01. Linkage analysis, which is more stringent than Wilcoxon–Mann–Whitney test due to multiple tests correction by permutations does not
link significantly E_810 to galactose.
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Figure 5 Effect of the E_87 QTL hotspot. (A) Each line represents average growth of the F1 offspring across the 48 conditions according to the E_87
genotype. Line media are sorted according to the average growth of F1 offspring. (B) Reaction norm of F1 offspring for some specific conditions. (C)
Growth of F1 offspring according to E_810 inheritance in galactose 2%.

Figure 6 QTL distribution comparison. The genomes of L. waltii (LAWA) and L. kluyveri (LAKLU) are shown. The vertical red lines represent the
boundaries of the chromosomes and letters represents the names of the chromosome. The number of QTL identified per 1 kb window is indicated and
identified by a triangle at the best marker position. All shared synteny blocks that contain at least one best QTL marker in each species are represented
by the purple lines and linked to their corresponding position in the other genome by dash lines.
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Our study also allowed us to compare the QTL detected in L.

waltii and L. kluyveri species, showing the lack of conservation of

the QTL landscape across species. Certainly, this comparison is

not extensive because it is limited to two species with a cross

each. However, some important changes in genetic architecture

of quantitative traits, such as sexual dimorphism, can be identi-

fied and extended to the whole species. Indeed, a hotspot identi-

fied in L. kluyveri was linked to an important sexual dimorphism,

being the mark of a particular evolutionary strategy, never de-

scribed in budding yeast before (Brion et al. 2020). The lack of con-

servation of such a hotspot in L. waltii showed an adaptive

divergence within the Lachancea genus. It would obviously be in-

teresting to extent such linkage analyses to a larger number of

yeast species in order to have a broader view of the evolution of

the architecture of quantitative traits. Indeed, yeast covers a

wide evolutionary range shaped by different forces such as envi-

ronmental niches, life cycle, mating type system, ploidy level

which could impact the architecture of quantitative traits.
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