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ABSTRACT 17 

As the mechanistic basis of adaptive cellular antigen recognition, T cell receptors (TCRs) encode 18 

clinically valuable information that reflects prior antigen exposure and potential future response. However, 19 

despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR 20 

clonotypes as clinical biomarkers. We propose a new framework that leverages antigen-enriched 21 

repertoires to form meta-clonotypes – groups of biochemically similar TCRs – that can be used to robustly 22 

identify and quantify functionally similar TCRs in bulk repertoires. We apply the framework to TCR data 23 

from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the 17 SARS-CoV-2 antigen-24 

enriched repertoires with the strongest evidence of HLA-restriction. Applied to independent cohorts, meta-25 

clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared 26 

to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients 27 

that expressed the putative restricting HLA allele (FDR < 0.01), demonstrating the potential utility of meta-28 

clonotypes as antigen-specific features for biomarker development. To enable further applications, we 29 

developed an open-source software package, tcrdist3, that implements this framework and facilitates 30 

flexible workflows for distance-based TCR repertoire analysis. 31 
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INTRODUCTION 32 

An individual’s unique repertoire of T cell receptors (TCRs) is shaped by antigen exposure and is 33 

a critical component of immunological memory, contributing to recall responses against future infectious 34 

challenges (Emerson et al., 2017; Welsh and Selin, 2002). With the advancement of immune repertoire 35 

profiling, TCR repertoires are a largely untapped source of biomarkers that could potentially be used to 36 

predict immune responses to a wide range of exposures including viral infections (Wolf et al., 2018), 37 

tumor neoantigens (Ahmadzadeh et al., 2019; Chiou et al., 2021; Kato et al., 2018), or environmental 38 

allergens (Cao et al., 2020). The TCR repertoire is characterized by its extreme diversity, originating from 39 

the genomic V(D)J gene recombination of receptors in development. Between 109-1010 unique clonotypes 40 

- T cells with distinct nucleotide-encoded receptors - are maintained in an adult human TCR repertoire41 

(Lythe et al., 2016). The diversity, both within and between individuals, presents major hurdles to42 

biomarker development. Researchers have used antigen-enrichment of T cell repertoires (e.g. peptide- 43 

major histocompatibility complex (MHC) tetramer sorting) to focus on TCR diversity of relevant targets,44 

however this experimental strategy, which depends on knowing the peptide antigen and it’s MHC45 

restriction reveals the breadth of potential TCRs able to recognize even a single antigen (Coles et al.,46 

2020; Meysman et al., 2019), which complicates detection of population-wide signatures of antigen47 

exposure. Indeed, mathematical modeling suggests that only 10-15% of single chain TCRs are public or48 

shared frequently by multiple individuals (Elhanati et al., 2018), which is consistent with observations from49 

extremely deeply sequenced human repertoires (Soto et al., 2019). Despite advances in high-throughput50 

next-generation TCR amplicon sequencing, only a fraction of the repertoire can be assayed, making it51 

difficult to reproducibly sample many relevant TCR clonotypes from an individual, let alone reliably detect52 

public clonotypes in a population. In practice, the problem is exacerbated by unequal sampling depth.53 

Thus, individual T cell clonotypes are currently sub-optimal and under-powered for population-level54 

investigations of TCR specificity, which limits their application in the development of TCR-based clinical55 

biomarkers.56 
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In this study we used antigen enriched TCR repertoires to form “meta-clonotypes”: groups of 
TCRs with biochemically similar complementarity determining regions (CDRs) that likely share antigen 
recognition. Meta-clonotypes were implemented using a centroid TCR sequence and a biochemical 
radius that determines whether other TCRs are sufficiently similar to be grouped together; the appropriate 
radius was determined by comparing the proportion of similar TCRs in antigen-enriched and unenriched 
data. A CDR3 “motif” is also constructed from the TCRs within the radius, which further refines the 
specificity of meta-clonotype definition. Together the radius and the motif can be used to search for 
conformant TCRs in large bulk-sequenced repertoires and quantify their abundance (Figure 1). We find 
that TCR centroids, which are often private, gain publicity as meta-clonotypes.

The expanded publicity of meta-clonotypes provides an opportunity to develop population-level 
biomarkers of clinical outcomes that depend on antigen-specific features of the TCR repertoire, such as 
disease severity in natural infection or the level of vaccine-induced protection. Shifting the focus of 
repertoire analysis from clonotypes to meta-clonotypes increases statistical power by reducing the 
inherent sparsity of finite repertoire samples and increasing the precision with which antigen-specific cell 
abundance can be estimated. A number of existing tools enable grouping of TCRs by sequence similarity 
(Table S1); for example, VDJtools (TCRNET) and ALICE evaluate networks of similar TCR β- or TCR α-
chain CDR3s based on a maximum edit-distance of one amino acid substitution, insertion or deletion,73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.12.24.424260doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424260
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

while GLIPH2 groups similar TCRs based on shared amino acid k-mers in identical length CDR3s 74 

(Glanville et al., 2017; Huang et al., 2020; Pogorelyy et al., 2019; Pogorelyy and Shugay, 2019; Ritvo et 75 

al., 2018; Shugay et al., 2015). Previously, we introduced TCRdist, a weighted multi-CDR, biochemically 76 

informed distance metric that enabled grouping of paired αβ TCRs by antigen specificity, based on their 77 

sequence similarity (Dash et al., 2017). Here, we describe a new application of TCRdist that guides 78 

formation of meta-clonotypes optimized for biomarker development. This application is made possible by 79 

a new open-source Python3 software package tcrdist3 that brings new flexibility to distance-based 80 

repertoire analysis, allowing customization of the distance metric, analysis of γδ TCRs, and at-scale 81 

computation with sparse data representations and parallelized, byte-compiled code.  82 

Here we first describe a novel analytical framework for identifying meta-clonotypes in antigen-83 

enriched repertoires. The framework is then applied to a large publicly available dataset of putative 84 

SARS-CoV-2 antigen-associated TCRs with the objective of identifying meta-clonotypes that could be 85 

used as features in further developing SARS-CoV-2 related biomarkers (Figure 1). One of the 86 

distinguishing characteristics of SARS-CoV-2 infection is the wide range of potential exposure outcomes, 87 

from transient, asymptomatic infection to severe disease requiring hospitalization and intensive care. 88 

While there are high quality biomarkers for detecting active SARS-CoV-2 infection via viral RNA qPCR 89 

(Nalla et al., 2020) and prior exposure via antibody ELISA (Espejo et al., 2020), additional biomarkers 90 

capable of predicting susceptibility to symptomatic infection or severe disease could help guide clinical 91 

care and public health policy. Several studies have begun to describe the cellular adaptive immune 92 

responses that are elicited by SARS-CoV-2 infection and how they correlate with disease severity (Grifoni 93 

et al., 2020; Le Bert et al., 2020; McMahan et al., 2020; Tan et al., 2021; Wang et al., 2020; Weiskopf et 94 

al., 2020). These and other studies have also established that 20-50% of unexposed individuals have T 95 

cell responses to SARS-CoV-2, raising the hypothesis that prior exposure to “common-cold” 96 

coronaviruses or other viral antigens may shape the response to SARS-CoV-2 infection (Sette and Crotty, 97 

2020; Welsh and Selin, 2002). T cells likely play an integral role in SARS-CoV-2 pathogenesis and may 98 

be an important target for biomarker development. For instance, a TCR biomarker of pre-existing SARS-99 

CoV-2 responses could help predict the course of infection. A T cell-based biomarker might also play a 100 

role in vaccine development, for which immunological surrogates of vaccine-induced protection or 101 

response durability are highly valued. Most published studies have had limited ability to determine 102 

quantitative immunodominance hierarchies, relying on pooled peptide assays, due to the large size of the 103 

SARS-CoV-2 proteome and HLA diversity; direct repertoire measurement tied to identified epitopes is a 104 

complementary approach to resolve the associated magnitude and specificity of the total T cell response. 105 

One recent study to elucidate the role of cellular immune responses in acute SARS-CoV-2 106 

infection examined the T cell receptor repertoires of patients diagnosed with COVID-19 disease. 107 

Researchers used an assay based on antigen stimulation and flow cytometric sorting of activated CD8+ T 108 

cells to sequence SARS-CoV-2 peptide-associated TCR β-chains; the assay is called “multiplex 109 

identification of T-cell receptor antigen specificity” or MIRA (Klinger et al., 2015). Data from these 110 

experiments were released publicly in July 2020 by Adaptive Biotechnologies and Microsoft as part of 111 

“immuneRACE” and their efforts to stimulate science on COVID-19 (Nolan et al., 2020; Snyder et al., 112 

2020). The MIRA antigen enrichment assays identified 269 sets of TCR β-chains associated with CD8+ T 113 

cells activated by exposure to SARS-CoV-2 peptides, with TCR sets ranging in size from 1 - 16,607 TCRs 114 

(Table S1). The deposited immuneRACE datasets also included bulk TCR β-chain repertoires from 694 115 

patients within 0-30 days of COVID-19 diagnosis. To demonstrate potential uses of our new analytical 116 
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tools for TCR repertoire analysis and to accelerate understanding of the cellular responses to SARS-CoV-117 

2 infection, we present analyses of these data with a focus on an integration of the peptide-associated 118 

MIRA TCR repertoires with bulk repertoires from four COVID-19 observational studies that enrolled 119 

patients with diversity in age and geography (Alabama, USA n = 374; Madrid, Spain, n=117; Pavia, Italy, 120 

n=125; Washington, USA, n=78).  121 

 122 

FRAMEWORK 123 

 124 

Experimental antigen-enrichment allows discovery of TCRs with biochemically similar neighbors 125 

 126 

Searching for identical TCRs within a repertoire - arising either from clonal expansion or 127 

convergent nucleotide encoding of amino acids in the CDR3 - is a common strategy for identifying 128 

functionally important receptors. However, in the absence of experimental enrichment procedures, 129 

observing T cells with the same amino acid TCR sequence in a bulk sample is rare. For example, in 130 

10,000 β-chain TCRs from an umbilical cord blood sample, less than 1% of TCR amino acid sequences 131 

were observed more than once, inclusive of possible clonal expansions (Figure 2A). By contrast, a 132 

valuable feature of antigen-enriched repertoires is the presence of multiple T cells with identical or highly 133 

similar TCR amino acid sequences (Figure 2A). For instance, 45% of amino acid TCR sequences were 134 

observed more than once (excluding clonal expansions) in a set of influenza M1(GILGFVFTL)-A*02:01 135 

peptide-MHC tetramer sorted sub-repertoires from 15 subjects (Dash et al., 2017). Enrichment was 136 

evident compared to cord blood for additional peptide-MHC tetramer sorted sub-repertoires obtained from 137 

VDJdb (Shugay et al., 2018), though the proportion of TCRs with an identical or similar TCR in each set 138 

was heterogeneous. 139 

We investigated the degree to which the MIRA enrichment strategy employed by Nolan et al. 140 

(2020) identified TCRs with identical or similar amino acid sequences. In general, across multiple MIRA 141 

TCR β-chain antigen-enriched repertoires, the proportion of amino acid TCR sequences observed more 142 

than once was generally lower than in the tetramer-enriched repertoires and varied considerably across 143 

the sets; some MIRA sets resembled tetramer-sorted sub-repertoires (Figure 2B; see MIRA133), while 144 

others were more similar to unenriched repertoires (Figure 2B; see MIRA90). The increased diversity in 145 

MIRA-enriched TCR sets versus tetramer-enriched TCR sets may, in part, be explained by: (i) peptides 146 

being presented by the full complement of the native host’s MHC molecules compared to a single defined 147 

peptide-MHC complex, (ii) recruitment of lower affinity receptors, or (iii) non-specific “bystander” activation 148 

in the MIRA stimulation assay. 149 

 150 

TCR biochemical neighborhood density is heterogeneous in antigen-enriched repertoires 151 

 152 

We next investigated the proportion of unique TCRs with at least one biochemically similar 153 

neighbor among TCRs with the same putative antigen specificity. We and others have shown that a 154 

single peptide-MHC epitope is often recognized by many distinct TCRs with closely related amino acid 155 

sequences (Dash et al., 2017); in fact, detection of such clusters in bulk-sequenced repertoires is the 156 

basis of several existing tools: GLIPH (Glanville et al., 2017; Huang et al., 2020), ALICE (Pogorelyy et al., 157 

2019) and TCRNET (Ritvo et al., 2018). Therefore, to better understand new large-scale antigen-enriched 158 

datasets, like the SARS-CoV-2 MIRA data, we evaluated the TCR biochemical neighborhoods, defined 159 
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for each TCR as the set of similar TCRs whose sequence divergence is within a specified radius. The 160 

radius was measured using a position weighted, multi-CDR TCR distance metric. Briefly, differences in 161 

the amino-acid sequences of the CDRs are totaled based on number of gaps (-4) and their BLOSUM62 162 

substitution penalties (ranging from 0 to -4) with 3-fold weighting on CDR3 substitutions (see Methods for 163 

details of tcrdist3 re-implementation of TCRdist); a one amino-acid mismatch in the CDR3 results in a 164 

maximal distance of 12 TCRdist units (tdus). As the radius about a TCR centroid expands, the number of 165 

TCRs it encompasses naturally increases; the rate of increase is more rapid in the antigen-enriched 166 

repertoires compared to the unenriched repertoires (Figure 2). 167 

To better understand the relationship between the TCR distance radius and the density of 168 

proximal TCRs, we constructed empirical cumulative distribution functions (ECDFs) for each unique TCR 169 

found within a repertoire (Figure 3). The ECDF for each unique TCR (one line in Figure 3) shows the 170 

proportion of all TCRs within the indicated radius; those with sparse neighborhoods appear as lines that 171 

remain flat and do not increase along the y-axis even as the search radius expands. Moreover, the 172 

proportion of TCRs with sparse or empty neighborhoods (ECDF proportion < 0.001) is indicated by the 173 

height of the gray area plotted below the ECDF (Figure 3). We observed the highest density 174 

neighborhoods within repertoires that were sorted based on peptide-MHC tetramer binding. For instance, 175 

with the influenza M1(GILGFVFTL)-A*02:01 tetramer-enriched repertoire from 15 subjects, we observed 176 

that many TCRs were concentrated in dense neighborhoods, which included as much as 30% of the 177 

other influenza M1-recognizing TCRs within a radius of 12 tdus (Figure 3A). Notably there were also 178 

many TCRs with empty or sparse neighborhoods using a radius of 12 tdus (111/247, 44%) or 24 tdus 179 

(83/247, 34%). Based on previous work (Dash et al., 2017), we assume that the majority of these 180 

tetramer-sorted CD8+ T cells without many close proximity neighbors do indeed bind the influenza 181 

M1:A*02:01 tetramer. This suggests that TCRs within sparse neighborhoods represent less common 182 

modes of antigen recognition and highlights the broad heterogeneity of neighborhood densities even 183 

among TCRs recognizing a single pMHC.  184 

Neighbor densities for individual TCRs within MIRA identified antigen-enriched repertoires were 185 

highly heterogeneous. Densities for an illustrative MIRA set are shown in Figure 4 (MIRA55:ORF1ab; 186 

1316:1330 (amino acid); peptide ALRKVPTDNYITTY). Within this antigen-enriched repertoire, at 24 tdus 187 

8.9% (44/497) of TCR neighborhoods included >10% of the other antigen-activated CD8+ TCRs (Figure 188 

4A). As expected, TCR neighborhoods in the umbilical cord blood repertoire were sparser (Figure 4B); 189 

the densest neighborhood included only 0.13% of the repertoire at 24 tdus. We also noted that TCRs with 190 

empty neighborhoods tended to have longer CDR3 loops (Figure 4C). This is consistent with 191 

mathematical modeling approaches that show that TCRs with longer CDR3 loops have a lower 192 

generation probability (Pgen) during genomic recombination of the TCR locus (Marcou et al., 2018; 193 

Murugan et al., 2012; Sethna et al., 2019). Absent strong selection for antigen recognition, TCRs with a 194 

low generation probability are thus likely to have a less dense biochemical neighborhood. Together, these 195 

observations suggest that biochemical neighborhood density is highly heterogeneous among TCRs and 196 

that it may depend on mechanisms of antigen-recognition as well as receptor V(D)J recombination biases 197 

(Thomas and Crawford, 2019). 198 

 199 

  200 
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Meta-clonotype radius can be tuned to balance a biomarker’s sensitivity and specificity 201 

 202 

The utility of a TCR-based biomarker depends on the antigen-specificity of the TCRs. Therefore, 203 

a key constraint on distance-based clustering is the presence of similar TCR sequences that may lack the 204 

ability to recognize the target antigen. To be useful, a meta-clonotype definition should be broad enough 205 

to capture multiple biochemically similar TCRs with shared antigen-recognition, but not excessively broad 206 

as to include a high proportion of non-specific TCRs, which might be found in unenriched background 207 

repertoires that are largely antigen-naïve. Because the density of neighborhoods around TCRs are 208 

heterogeneous, we hypothesize that the optimal radius defining a meta-clonotype may differ for each 209 

TCR. To find the ideal radius we proposed comparing the relative density of a radius-defined 210 

neighborhood in an antigen-enriched sub-repertoire (Figure 4A) to the density of the radius-defined 211 

neighborhood in an unenriched background repertoire (Figure 4B, 4C). This is similar to previous 212 

approaches taken by tools like ALICE and TCRNET, except that we employ a biochemically informed 213 

distance measure (TCRdist) and adjust the radius around each TCR to balance the antigen-enriched and 214 

unenriched neighborhood densities. The radius around each TCR defines a meta-clonotype that can be 215 

used to search for and quantify the abundance of conformant sequences in bulk repertoires (Figure 1A, 216 

1B). For each TCR, its radius-defined meta-clonotype is more abundant within a repertoire and more 217 

prevalent in a population than the exact clonotype; for example, TCR meta-clonotypes formed from the 218 

MIRA55:ORF1ab TCR set were detected in 3 to 12 (median 6) of 15 HLA-A*01 participants in the MIRA 219 

cohort, despite 34 of the 46 centroid clonotype TCRs being private (i.e., found in only 1 of 15 HLA-A*01 220 

participants). (Figure S1). 221 

An ideal radius-defined meta-clonotype would include a high density of TCRs in antigen-222 

experienced individuals indicative of shared antigen specificity, yet a low density of TCRs among an 223 

antigen-naïve background. We demonstrate this approach for selecting an optimal radius for TCRs in the 224 

MIRA55:ORF1ab dataset, which includes TCRs from 15 COVID-19 diagnosed subjects (see Methods for 225 

details about MIRA and the immuneRACE dataset). First, an ECDF is constructed for each centroid TCR 226 

showing the relationship between the meta-clonotype radius and its “sensitivity”: its inclusion of similar 227 

antigen-recognizing TCRs, approximated by the proportion of TCRs in the antigen-enriched MIRA set that 228 

are within the centroid’s radius (Figure 4A). Next, an ECDF is constructed for each TCR showing the 229 

relationship between the meta-clonotype radius and its “specificity”: its exclusion of TCRs with divergent 230 

antigen-recognition; this is assessed by computing the false-positive rate (one minus specificity) which is 231 

approximated by the proportion of TCRs in an unenriched background repertoire within the centroid’s 232 

radius (Figure 4B). Generating an appropriate set of unenriched background TCRs is important; for each 233 

set of antigen associated TCRs discovered by MIRA, we created a two part background. One part 234 

consisted of 100,000 synthetic TCRs whose TRBV- and TRBJ-gene frequencies matched those in the 235 

antigen-enriched repertoire; TCRs were generated using the software OLGA (Marcou et al., 2018; Sethna 236 

et al., 2019). The other part consisted of 100,000 umbilical cord blood TCRs sampled from 8 subjects 237 

(Britanova et al., 2017). This composition balanced denser sampling of sequences near the candidate 238 

meta-clonotype centroids with broad sampling of TCRs from an antigen-naïve repertoire. Importantly, we 239 

adjusted for the biased sampling by using the TRBV- and TRBJ-gene frequencies observed in the cord 240 

blood data (see Methods for details about inverse probability weighting adjustment). Using this approach, 241 

we are able to estimate the abundance of TCRs similar to a centroid TCR in an unenriched background 242 

repertoire of effectively ~1,000,000 TCRs, using a comparatively modest background dataset of 200,000 243 
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TCRs. While this may underestimate the true specificity since some of the neighborhood TCRs in the 244 

unenriched background repertoire may in fact recognize the antigen of interest, this measure is useful for 245 

prioritizing neighborhoods and selecting a radius for each neighborhood that balances sensitivity and 246 

specificity. 247 

We find that the neighborhoods around TCR centroids with higher probabilities of generation 248 

consistently span a larger proportion of unenriched background TCRs across a range of radii, suggesting 249 

that a smaller radius may be desirable for forming meta-clonotypes from high Pgen TCRs. With a large 250 

radius, most TCR centroids had high sensitivity and low specificity, indicated by the meta-clonotypes 251 

including both a high proportion of TCRs from the antigen-enriched and unenriched repertoires. Some 252 

TCRs had low sensitivity and specificity even at a radius of 24 tdus, indicative of a low Pgen or “snowflake” 253 

TCR: a seemingly unique TCR in both the antigen-enriched and unenriched repertoires. However, radius-254 

defined neighborhoods around many TCRs in the MIRA55:ORF1ab repertoire included 1 - 10% of the 255 

antigen-enriched repertoire (5-50 clonotypes) with a radius that included fewer than 0.0001% of TCRs 256 

(equivalent to 1 out of 106) in the unenriched background repertoire, demonstrating a level of sensitivity 257 

and specificity that would be favorable for development of a TCR biomarker (Figure 4C, one example 258 

meta-clonotype). 259 

 260 

RESULTS 261 

 262 

Engineering meta-clonotype features for SARS-CoV-2 263 

 264 

The MIRA antigen enrichment assays identified 269 sets of TCR β-chains associated with 265 

recognition of a SARS-CoV-2 antigen using CD8+ T cell enriched PBMC samples from 62 COVID-19 266 

diagnosed patients. Of these, 252 included at least 6 unique TCRs from ≥ 2 individuals, which we refer to 267 

as MIRA1 - MIRA252 based on the number of sequences observed, in descending order (Table S2). 268 

From the MIRA enriched repertoires, all TCR clonotypes (defined by identical TRBV gene and CDR3 at 269 

the amino acid level) were initially considered as candidate centroids; only 2.7% of the clonotypes were 270 

found in more than one MIRA participant. For each candidate TCR, a meta-clonotype was engineered by 271 

selecting the maximum radius that limited the estimated number of neighboring TCRs in a bulk 272 

unenriched repertoire to less than 1 in 106, estimated using an inverse probability weighted antigen-naïve 273 

background repertoire (see Methods). We then ranked the meta-clonotypes by their sensitivity 274 

approximated as the proportion of a centroid’s MIRA-enriched repertoire spanned by the search radius 275 

(diagrammed in Figure 1). Lower-ranked meta-clonotypes were eliminated if all included sequences were 276 

completely encompassed by a higher-ranked meta-clonotype; while this reduced redundancy, some 277 

overlap remained among meta-clonotypes. We further required that meta-clonotypes be public, including 278 

sequences from at least two subjects in the MIRA cohort. We found that 97 of the 252 MIRA sets (Table 279 

S6) had sufficiently similar TCRs observed in multiple subjects allowing formation of public meta-280 

clonotypes. From 91,122 TCR β-clonotypes across these 97 MIRA sets -- targeting antigens in ORF1ab 281 

(n=35), S (n=27), N (n=10), M (n=7), ORF3a (n=7), ORF7a (n=4), E (n=2), ORF8 (n=2), ORF6 (n=1), 282 

ORF7b (n=1), and ORF10 (n=1) -- we engineered 4548 public meta-clonotypes, which spanned 15% 283 

(13,949/91,122) of the original TCR sequences (Table S6). The proportion of MIRA-enriched TCRs 284 

spanned by the meta-clonotypes ranged widely from <1% in MIRA25 to 63% in MIRA7, reflecting broad 285 

heterogeneity in the diversity of TCRs inferred as activated by each peptide in the assay. 286 
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As an example, the MIRA repertoire MIRA55 ORF1ab (TCRs associated with stimulation 287 

peptides ALRKVPTDNYITTY or KVPTDNYITTY) included 449 TCR clonotypes from 15 individuals. From 288 

the 449 potential centroids, we defined 40 public meta-clonotypes. Among these features, the radii 289 

ranged from 10-36 tdus (median 22 tdus), and the publicity - the number of unique subjects spanned by 290 

the meta-clonotype - ranged from 3 to 12 individuals (median 6). Meta-clonotype summary statistics for 291 

other enriched repertoires are provided in the Supplemental Materials (Table S6). The result was a set of 292 

non-redundant, public meta-clonotypes (Table S7, S8) that could be used to search for and quantify 293 

putative SARS-CoV-2-specific TCRs in bulk repertoires. In addition to the radius-defined meta-clonotypes 294 

(RADIUS), we also developed a modified approach that additionally enforced a sequence motif-constraint 295 

(RADIUS + MOTIF). The constraint further limited sequence divergence in highly conserved positions of 296 

the CDR3, requiring that candidate bulk TCRs match specific amino acids found in the meta-clonotype 297 

CDR3s to be counted as part of the neighborhood (see Figure 1 and Methods).  298 

 299 

Evidence of HLA-restriction in SARS-CoV-2 antigen-enriched sub repertoires 300 

 301 

Given the integral role of HLA class I molecules in antigen presentation and TCR repertoire 302 

selection (DeWitt, 2018), we further focused on the 17 of the 269 MIRA sets that showed strong evidence 303 

of HLA-A or HLA-B restriction based on two criteria: (i) computational prediction of HLA binding to the 304 

SARS-CoV-2 stimulation peptides, and (ii) enrichment of an HLA among participants contributing MIRA 305 

TCRs. With each set of the MIRA TCRs and the associated SARS-CoV-2 peptides we used HLA binding 306 

predictions (NetMHCpan4.0) to identify the class I HLA alleles that were predicted to bind with strong 307 

(IC50<50 nM) or weak (50 nm< IC50 <500 nM) affinity to any of the 8, 9, 10, or 11-mers derived from the 308 

stimulation peptides (Tables S2, S3). For instance, the peptides associated with MIRA55 TCRs (ORF1ab 309 

amino acid positions 1316:1330) are predicted to preferentially bind A*01 (IC50 21 nM), B*15 (IC50 120 310 

nM), and B*35 (IC50 32 nM), and peptides associated with MIRA51 TCRs (nucleocapsid amino acid 311 

positions 359:370) are predicted to bind A*03 (IC50 19 nM), A*11 (IC50 8 nM), and A*68 (IC50 9 nM).  312 

Of the COVID-19 patient samples screened using the MIRA assay, HLA genotypes were 313 

available for 47 of 62 patients and only a subset of patients contributed TCRs to each of the MIRA sets. 314 

As a second indicator of HLA restriction, we tested whether the subgroup of patients contributing TCRs to 315 

each MIRA set was enriched with individuals expressing specific HLA class I alleles (2-digit resolution) 316 

(Table S5). We found that for 17 of the MIRA sets, the patients contributing TCRs were significantly 317 

enriched for at least one HLA-A or HLA-B allele (Fisher’s exact test p<0.001). In one case, all 13 A*01-318 

positive, and only 2 of 34 A*01-negative, patients contributed to the MIRA55 TCR set (p=1e-7); as noted 319 

above, A*01 was also strongly predicted by NetMHCpan4.0 to bind the MIRA55 ORF1ab peptides. 320 

Similar patterns of enrichment and predicted binding were seen with A*01 expressing individuals and 321 

recognition of MIRA1:ORF1ab (HTTDPSFLGRY, p=1.9e-7) and MIRA45:ORF3a (SYFTSDYYQ, p=1.9e-322 

7). Similarly, for the other 16 MIRA sets examined, we found consistent evidence between peptide 323 

binding prediction (IC50 < 500 nM) and MIRA participant genotype enrichment (fisher’s exact test p < 324 

0.001) to support HLA-restriction (Table S5). 325 

 326 

  327 
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HLA-associated abundance of SARS-CoV-2 meta-clonotypes in bulk repertoires of COVID-19 patients 328 

 329 

We focused confirmatory analyses on TCR meta-clonotypes derived from the 17 SARS-CoV-2 330 

MIRA-identified TCR sets that showed strongest evidence of HLA restriction by HLA-A or HLA-B alleles. 331 

We hypothesized that in an independent cohort of COVID-19 patients, the abundance of TCRs matching 332 

each meta-clonotype would be greater in patients expressing the restricting HLA allele. To test this 333 

hypothesis, we compared three TCR-based feature sets: (i) radius-defined meta-clonotypes, (RADIUS), 334 

(ii) radius and motif-defined meta-clonotypes (RADIUS+MOTIF) and (iii) centroid clonotypes alone, using 335 

TRBV-CDR3 amino acid matching (EXACT). Using the features in each set we screened TCRs from the 336 

bulk TCR β-chain repertoires of 694 COVID-19 patients whose repertoires were publicly released as part 337 

of the immuneRACE datasets (see Methods for details); these patients were not part of the smaller cohort 338 

that contributed samples for TCR identification in MIRA experiments. Testing the HLA restriction 339 

hypothesis required having the HLA genotype of each individual, which was not provided in the dataset. 340 

To overcome this, we inferred each participant’s HLA genotype with a classifier that was based on 341 

previously published HLA-associated TCR β-chain sequences (DeWitt et al., 2018) and their abundance 342 

in each patient’s repertoire (see Methods for details). MIRA TCRs were not used to assign HLA-types to 343 

the 694 COVID-19 patients. We then used a beta-binomial counts regression model (Rytlewski et al., 344 

2019) with each TCR feature to test for an association of feature abundance with presence of the 345 

restricting allele in the participant’s HLA genotype, controlling for participant age, sex, and days since 346 

COVID-19 diagnosis. 347 

The models revealed that there were radius-defined meta-clonotypes with a strong positive and 348 

statistically significant association (FDR < 0.01) for 11 of the 17 HLA-restricted-MIRA sets that were 349 

evaluated (Figure 5A, Table S7); the significant HLA regression odds ratios ranged from 1.4 to 40 350 

(median 4.9), indicating log-fold differences in meta-clonotype frequency between patients with and 351 

without the HLA genotype. Across all MIRA sets, an HLA-association (FDR < 0.01) was detected for 352 

51.5% (943/1831) and 59.7% (830/1831) of the meta-clonotypes using the RADIUS or RADIUS+MOTIF 353 

definitions, respectively. In comparison, an HLA-association (FDR < 0.01) was detected for fewer than 354 

3.7% (69/1831) of EXACT centroid features, largely because the specific TRBV gene and CDR3 355 

sequences discovered in the MIRA experiments were infrequently observed in unenriched bulk samples 356 

(Figure 5B). When detectable, the abundance of centroid TCRs in bulk repertoires tended to be positively 357 

associated with expression of the restricting HLA allele, as hypothesized. However, in most cases, the 358 

associated false discovery rate-adjusted q-value of these associations were orders of magnitude larger 359 

(i.e., less statistically significant) than those obtained from using the engineered RADIUS or 360 

RADIUS+MOTIF feature with the same clonotype as a centroid (Figure 6B). The improved performance 361 

of meta-clonotypes as query features is particularly evident when testing for HLA-associated enrichment 362 

of TCRs recognizing immunodominant MIRA1 A*01, MIRA48 A*02, MIRA51 A*03, MIRA53 A*24, and 363 

MIRA55 A*01 (Figure 6). Moreover, the regression models with meta-clonotypes also revealed possible 364 

negative associations between TCR abundance and participant age and positive associations with 365 

sample collection more than two days post COVID-19 diagnosis (Figure 6A). 366 

 367 
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Comparison to k-mer based CDR3 features 368 

   369 

Alternative methods exist for generating public TCR features from clustered clonotypes. One 370 

strategy is to identify clusters of TCRs that are each uniquely enriched with a short CDR3 k-mer, as 371 

implemented in GLIPH2 (Huang et al., 2020); this approach is well suited for identifying CDR3 k-mers 372 

associated with antigenic selection across bulk repertoires when knowledge of the specific antigens is 373 

unavailable (Chiou et al., 2021). To evaluate the similarities and differences of using this approach to 374 

generate public TCR features, compared with TCR distance-based meta-clonotypes, we applied tcrdist3 375 

and GLIPH2 to 16 HLA-restricted MIRA sets (Figure 7; see Methods for details). Both methods identified 376 

public molecular patterns from MIRA TCRs (Figure S2) that were strongly HLA-associated in the large 377 

independent cohort of COVID-19 diagnosed patients (Figure 7). For this non-standard application of 378 

GLIPH2, we found that specificity groups based on global CDR3 k-mers (e.g., 'SFRTD.YE') tended to be 379 

more consistently HLA-associated than specificity groups based on local k-mers (e.g., 'FRTD'). Compared 380 

to the GLIPH2 specificity groups based on global CDR3 kmers, meta-clonotypes tended to show similar 381 

or more evidence of HLA-association (i.e., smaller FDR values) (Figure 7). MIRA55:ORF1ab is an 382 

illustrative example; both the tcrdist3 meta-clonotypes GLIPH2 TCR groups were more strongly 383 

associated with the predicted A*01:01 HLA-restriction than exact clonotypes, supporting the general 384 

applicability of using antigen-enriched repertoires to create public features from otherwise private antigen-385 

recognizing TCRs. Inspection of the meta-clonotypes and GLIPH2 groups showed that they were often 386 

overlapping, with meta-clonotypes subsuming multiple GLIPH2 groups. For example, A*01-associated 387 

meta-clonotype TRBV5-5*01+S.G[QE]G[AS]F[ST]DTQ (p-value 1E-12) fully overlaps several A*01-388 

associated GLIPH2 patterns including S.GQGAFTDT (p-value 1E-12), QGAF (p-value 1E-11), and 389 

SLG.GAFTDT (p-value 1E-6). Similarly, the A*01-associated meta-clonotype 390 

TRBV28*01+S[RLMF][RK][ST][ND].YEQ (p-value 1E-13) covers 21 global GLIPH motifs including 391 

SFRTD.YE (p-value 1E-10), SLRTD.YE (p-value 1E-7), and SF.TDSYE (p-value 1E-4) (Table S9). These 392 

observations suggest that the motif-constraints of the meta-clonotypes were able to match a broader set 393 

of antigen-specific CDR3s compared to any one GLIPH2 specificity pattern, which may have helped 394 

boost detection sensitivity in the COVID-19 repertoires.  395 

 396 

DISCUSSION 397 
 398 
Given the extent of TCR diversity, only antigen-specific TCRs with high probability of generation 399 

(Pgen) are likely to be detected reliably across individuals (Figure S3). While public, high-Pgen TCRs may 400 

sometimes be available for detecting a prior antigen-exposure, to more fully understand the population-401 

level dynamics of complex polyclonal T-cell responses across a gradient of generation probabilities, it is 402 

critical to develop methods for finding public meta-clonotypes that capture otherwise private TCRs (Figure 403 

S3). We developed a novel framework, integrating antigen-enriched repertoires with efficiently sampled 404 

unenriched background repertoires, to engineer meta-clonotypes that balance the need for sufficiently 405 

public features with the need to maintain antigen specificity. The output of the analysis framework (Figure 406 

1A) is a set of meta-clonotypes, each represented by a (i) centroid, (ii) radius, and (iii) optionally, a CDR3 407 

motif-pattern, that can be used to rapidly search bulk repertoires for similar TCRs that likely share a 408 

cognate antigen. To demonstrate this analytical framework, we analyzed publicly available sets of 409 

antigen-enriched TCR β-chain sequences that putatively recognize SARS-CoV-2 peptides (Nolan et al., 410 
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2020). From these, we generated 4548 TCR radius-defined public meta-clonotypes that could be used to 411 

further investigate CD8+ T cell response to SARS-CoV-2 (Tables S7, S8). 412 

To evaluate the potential relevance of radius-defined meta-clonotypes we focused on those with 413 

the strongest evidence of HLA restriction (Table S7, n=1831). We reasoned that we could compare the 414 

abundance of these meta-clonotypes in COVID-19 patients with and without the restricting HLA allele, 415 

where a significant positive association of abundance with expression of the restricting allele would 416 

provide confirmatory evidence both of the SARS-CoV-2 specificity of the meta-clonotype and its HLA 417 

restriction (Figure 1B). Overall, we found confirmation of HLA-restriction of meta-clonotype abundance for 418 

a majority of the MIRA sets we analyzed (11/17) and for 59% of meta-clonotypes tested using the 419 

RADIUS+MOTIF approach. There are several plausible explanations for the remaining meta-clonotypes 420 

that were not significantly HLA-restricted in this study. One possibility is that meta-clonotype definitions 421 

are not sufficiently specific for the target antigen; the radius is optimized for specificity, but not all amino 422 

acid substitutions accommodated within the radius are guaranteed to preserve antigen recognition, and 423 

while the motif constraint increases specificity, it’s likely that meta-clonotype definitions could be further 424 

refined with more antigen enriched TCR data and enhanced motif refinement methods. Also, sub-425 

dominant SARS-CoV-2 epitopes may not be uniformly recognized, even among participants that share 426 

the required HLA genotype, which weakens the signal of HLA restriction detectable by regression 427 

analysis. A subset of GLIPH2 k-mer patterns were similar in their success at identifying groups of TCRs 428 

that confirmed the HLA restriction; it appeared that meta-clonotypes were generally more sensitive at the 429 

task, possibly afforded by non-conserved and multiple degenerate positions in the motif and lack of a 430 

constraint on the length of the CDR3, both of which enabled single meta-clonotypes to cover multiple 431 

GLIPH2 groups. 432 

Recently, Snyder et al. (2020) analyzed 1521 bulk TCR β-chain repertoires from COVID-19 433 

patients in the immuneRACE dataset and an additional 3500 (not yet publicly available) repertoires from 434 

healthy controls to identify public TCR β-chains that could be used to identify SARS-COV-2 infected 435 

individuals with high sensitivity and specificity. Their results show that with sufficient data it is possible to 436 

engineer highly performant TCR biomarkers of antigen exposure from exact clonotypes. We show that by 437 

leveraging antigen-enriched TCR repertoires it is possible to engineer radius-defined TCR meta-438 

clonotypes from a relatively small group of COVID-19 diagnosed individuals (n=62; HLA-typed n=47) that 439 

are frequently detected in much larger independent cohorts. We propose that meta-clonotypes constitute 440 

a set of potential features that could be leveraged in developing TCR-based clinical biomarkers that go 441 

beyond detection of infection or exposure. For example, biomarkers predictive of infection, disease 442 

severity or vaccine protection may all require different TCR features. Statistical and machine learning 443 

tools could be employed to identify the meta-clonotypes and meta-clonotype combinations that carry the 444 

relevant clinical signal. Much like any biomarker study, to establish a TCR-based predictor of a particular 445 

outcome, the features must be measured among a sufficiently large cohort of individuals, with a sufficient 446 

mix of outcomes. 447 

Though demonstrating HLA restriction of the SARS-CoV-2 meta-clonotypes establish their 448 

potential utility, it also highlighted how HLA diversity could be a major hurdle to biomarker development. 449 

The sensitivity of a TCR-based biomarker in a diverse population may depend on combining meta-450 

clonotypes with diverse HLA restrictions since individuals with different HLA genotypes often target 451 

different epitopes using divergent TCRs. Our analysis shows that having HLA genotype information for 452 

TCR repertoire analysis can be critical to interpreting results. The simple HLA classifier we developed 453 
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suggests that in the near future it may be possible to infer high-resolution HLA genotype from bulk TCR 454 

repertoires, but until then it is valuable to have sequenced-based HLA genotyping. In the absence of HLA 455 

genotype information, it may still be feasible to generate informative TCR meta-clonotypes. For example, 456 

a poly-antigenic TCR-enrichment strategy (i.e., peptide pools or whole-proteins) could help generate 457 

meta-clonotypes that broadly cover HLA diversity if the sample donors are racially, ethnically and 458 

geographically representative of the ultimate target population. For these reasons, donor unrestricted T 459 

cells and their receptors (e.g., MAITs, γδ T cells) may also be good targets for TCR biomarker 460 

development. 461 

To enable TCR biomarker development and innovative extensions of distance-based immune 462 

repertoire analysis, we developed tcrdist3, which provides open-source 463 

(https://github.com/kmayerb/tcrdist3), documented (https://tcrdist3.readthedocs.io) computational building 464 

blocks for a wide array of TCR repertoire workflows in Python3. The software is highly flexible, allowing 465 

for: (i) customization of the distance metric with position and CDR-specific weights and amino acid 466 

substitution matrices, (ii) inclusion of CDRs beyond the CDR3, (iii) clustering based on single-chain or 467 

paired-chain data for α/β or γ/δ TCRs, and (iv) use of default as well as user-provided TCR repertoires as 468 

background for controlling meta-clonotype specificity (e.g., users may want to use HLA genotype-469 

matched, or age-matched backgrounds). tcrdist3 makes efficient use of available CPU and memory 470 

resources; as a reference, identification of meta-clonotypes from the MIRA55:ORF1ab dataset (n=479 471 

TCRs) was completed in less than 5 minutes using 2 CPU and < 4 GB of memory including distance 472 

computation and radius optimization. Quantification of the identified meta-clonotypes (n=40) in 694 bulk 473 

TCR β-chain repertoires, ranging in size from 10,395 to 1,038,012 in-frame clones (~5 billion total 474 

pairwise comparisons) could be completed in less than 2 hours using 2 CPU and < 6 GB memory. The 475 

package also can generate multiple types of publication-ready figures (e.g., background-adjusted CDR3 476 

sequence logos, V/J-gene usage chord diagrams, and annotated TCR dendrograms). The continued 477 

maturation of multiple adaptive immune receptor repertoire sequencing technologies will open 478 

possibilities for basic immunology and clinical applications, and tcrdist3 provides a flexible tool that 479 

researchers can use to integrate the data sources needed to detect and quantify antigen-specific TCR 480 

features. 481 

 482 

METHODS 483 
 484 

TCR Data: immuneRACE datasets and MIRA assay 485 

 486 

The study utilized two primary sources of TCR data (Nolan et al. 2020; Snyder et al. 2020). The 487 

first data source was a table of TCR β-chains amplified from CD8+ T cells activated after exposure to a 488 

pool of SARS-CoV-2 peptides, using a Multiplex Identification of Receptor Antigen (MIRA) (Klinger et al. 489 

2015); data was accessed Jul 21, 2020 and labeled “ImmuneCODE-MIRA-Release002”. The samples 490 

used for the MIRA analysis included samples from 62 individuals diagnosed (3 acute, 1 non-acute, 58 491 

convalescent) with COVID-19, of whom 47 (3 acute, 44 convalescent) were HLA-genotyped in the 492 

ImmuneCODE-MIRA-Release002 subject-metadata.csv file. We also used TCRs evaluated by MIRA from 493 

26 COVID-19-negative control subjects that were part of ImmuneCODE-MIRA-Release002. We analyzed 494 

the 252 MIRA sets with at least 6 unique TCRs, referred to as MIRA1-MIRA252 in rank order by their size 495 

(Table S2); each “MIRA set” included antigen-associated TCRs across all assayed individuals. Adaptive 496 
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Biotechnologies also made publicly available bulk unenriched TCR β-chain repertoires from COVID-19 497 

patients participating in a collaborative immuneRACE network of international clinical trials. We selected 498 

repertoires from 694 individuals where meta-data was available indicating that the sample was collected 499 

from 0 to 30 days from the time of diagnosis. (COVID-19-DLS (Alabama, USA n = 374); COVID-19-500 

HUniv12Oct (Madrid, Spain n = 117); COVID-19-NIH/NIAID (Pavia, Italy n=125) + COVID-19-ISB 501 

(Washington, USA n = 78). The sampling depth of these repertoires varied from 15,626-1,220,991 502 

productive templates (median 208,709) and 10,395-1,038,012 productive rearrangements (median 503 

113,716). We did not use bulk samples from the COVID-19-ADAPTIVE dataset as the average age was 504 

substantially lower than other immuneRACE populations and to avoid possible overlap with individuals 505 

that contributed samples to the MIRA experiments. 506 

 507 

HLA genotype inferences 508 

 509 

No publicly available HLA genotyping was available for the 694 bulk unenriched immuneRACE T 510 

cell repertoires (Nolan et al. 2020). Before considering SARS-CoV-2 specific features, we inferred the 511 

HLA genotypes of these participants based on their TCR repertoires. Predictions were based on 512 

previously published HLA-associated TCR β-chain sequences (DeWitt et al., 2018) and their detection in 513 

each repertoire. Briefly, a weight-of-evidence classifier for each HLA loci was computed as follows: For 514 

each sample and for each common allele, the number of detected HLA-diagnostic TCR β-chains was 515 

divided by the total possible number of HLA-diagnostic TCR β-chains. The weights were normalized as a 516 

probability vector and the two highest HLA-allele probabilities (if the probability was larger than 0.2) were 517 

assigned to each repertoire; homozygosity was inferred if only one allele had probability > 0.2. The 518 

sensitivity and specificity of this simple classifier for each allele prediction were assessed using 550 HLA-519 

typed bulk repertoires (Emerson et al., 2017). Sensitivities for common HLA-A alleles A*01:01, A*02:01, 520 

A*03:01, A*24:02, and A*11:01 were 0.96, 0.91, 0.90. 0.84, 0.94, respectively. Specificity for major HLA-A 521 

alleles was between 0.97-1.0. Inference of the HLA genotype of most participants was deemed sufficient 522 

in the absence of direct HLA genotyping. 523 

 524 

Peptide-HLA binding prediction 525 
 526 
HLA binding affinities of peptides used in the MIRA stimulation assay were computationally 527 

predicted using NetMHCpan4.0 (Jurtz et al., 2017). Specifically, the affinities of all 8, 9, 10 and 11mer 528 

peptides derived from the stimulation peptides were computed with each of the class I HLA alleles 529 

expressed by participants in the MIRA cohort (n=47). From this data we derived 2-digit HLA binding 530 

predictions (e.g., A*02) for each MIRA set by pooling the predictions for all the 4-digit HLA variants (e.g. 531 

A*02:01, A*02:02) across all the derivative peptides and selecting the lowest IC50 (strongest affinity). 532 

Predictions with IC50 < 50 nM were considered strong binders and IC50 < 500 nM were considered weak 533 

binders (Table S3, Table S4). 534 

 535 

TCR distances 536 

 537 

Weighted multi-CDR distances between TCRs were computed using tcrdist3, an open-source 538 

Python3 package for TCR repertoire analysis and visualization, using the procedure first described in 539 
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(Dash et al., 2017). The package has been expanded to accommodate γδ TCRs; it has also been re-540 

coded to increase CPU efficiency using numba, a high-performance just-in-time compiler. A numba-541 

coded edit/Levenshtein distance is also included for comparison, with the flexibility to accommodate novel 542 

TCR metrics as they are developed.  543 

Briefly, the distance metric in this study is based on comparing TCR β-chain sequences. The 544 

tcrdist3 default settings compare TCRs at the CDR1, CDR2, and CDR2.5 and CDR3 positions. By default, 545 

IMGT aligned CDR1, CDR2, and CDR2.5 amino acids are inferred from TRVB gene names, using the *01 546 

allele sequences when allele level information is not available. The CDR3 junction sequences are 547 

trimmed 3 amino acids on the N-terminal side and 2 amino acids on the C-terminus, positions that are 548 

highly conserved and less crucial for mediation of antigen recognition. For two CDR3s with different 549 

lengths, a set of consecutive gaps are inserted at a position in the shorter sequence that minimizes the 550 

summed substitution penalties based on a BLOSUM62 substitution matrix. Distances are then the 551 

weighted sum of substitution penalties across all CDRs, with the CDR3 penalty weighted three times that 552 

of the other CDRs.  553 

 554 

Optimized TCR-specific radius  555 

 556 

To find biochemically similar TCRs while maintaining a high level of specificity, we used the 557 

packages tcrdist3 and tcrsampler to generate an appropriate set of unenriched antigen-naïve background 558 

TCRs. A background repertoire was created for each MIRA set, with each consisting of two parts. First, 559 

we combined a set of 100,000 synthetic TCRs generated using the software OLGA (Marcou et al., 2018; 560 

Sethna et al., 2019), whose TRBV- and TRBJ-gene frequencies match those in the antigen-enriched 561 

repertoire. Second we used 100,000 umbilical cord blood TCRs sampled evenly from 8 subjects 562 

(Britanova et al., 2016). This mix balances dense sampling of background sequences near the 563 

biochemical neighborhoods of interest with broad sampling of common TCR representative of antigen-564 

naive repertoire. We then adjust for the biased sampling by using the TRBV- and TRBJ-gene frequencies 565 

observed in the cord-blood data. The adjustment is a weighting based on the inverse of each TCR’s 566 

sampling probability. Because we oversampled regions of the “TCR space” near the candidate centroids 567 

we were able to estimate the density of the meta-clonotype neighborhoods well below 1 in 200,000.  This 568 

is important because ideal meta-clonotypes would be highly specific even in repertoires larger than 569 

200,000 sequences. With each candidate centroid, a meta-clonotype was engineered by selecting the 570 

maximum distance radius that still controlled the number of neighboring TCRs in the weighted unenriched 571 

background to 1 in 106. Candidate centroids that used a TRBV gene that was not in the cord-blood 572 

repertoires were excluded from further analysis, since an estimate of gene frequency is required to apply 573 

the inverse weighting described above. 574 

 575 

TCR meta-clonotype MOTIF constraint 576 

 577 

Radius-optimized meta-clonotypes from antigen-enriched TCRs- provided an opportunity to 578 

discover key conserved residues most likely mediating antigen specificity. We developed a “motif” 579 

constraint as an optional part of each meta-clonotype definition that limited allowable amino-acid 580 

substitutions in highly conserved positions of the CDR3 to those observed in the antigen-enriched TCRs. 581 

The motif constraint for each radius-defined meta-clonotype was defined by aligning each of the 582 
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conformant CDR3 amino-acid sequences to the centroid CDR3. Alignment positions with five or fewer 583 

distinct amino acids were considered conserved and added to the motif as a set of possible residues. 584 

Thus, the motif constraint is permissive of only specific substitutions in select positions relative to the 585 

centroid, however these substitutions are still penalized by the radius constraint. The motif constraint was 586 

encoded as a regular expression, with the “.” character indicating non-conserved positions and bracketed 587 

residues indicating a degenerate position with a set of allowable residues (e.g., “SL[RK][ND]YEQ”). 588 

Position with gaps, where some sequences are missing a residue, are accommodated by making that 589 

position optional (e.g., “SL[RK]?[ND]YEQ”).  Since the motif constraints form regular expressions, they 590 

can be used to rapidly scan large repertoires for conformant CRs and easily be combined with a radius 591 

constraint. When applied to bulk repertoires, the motif constraint eliminates CDR3s that did not match key 592 

conserved residues. 593 

 594 

TCR abundance regression modeling  595 
 596 
Similar to bulk RNA sequencing data, TCR frequencies are count data drawn from samples of 597 

heterogeneous size. Thus we initially attempted to fit a negative binomial model to the data (e.g., 598 

DESEQ2 (Love et al., 2013)). We found that the negative binomial model did not adequately fit TCR 599 

counts, which – compared to transcriptomic data – were characterized by (i) more technical zeros due to 600 

inevitable under sampling and (ii) even greater biological over-dispersion, which could be due to clonal 601 

expansions and HLA genotype diversity. Instead we found that the beta-binomial distribution, which was 602 

recently used for TCR abundance modeling (Rytlewski et al., 2019), provided the flexibility needed to 603 

adequately fit the TCR data. We used an R package, corncob, which provides maximum likelihood 604 

methods for inference and hypothesis testing with beta-binomial regression models (Martin et al., 2020). 605 

Due to the sparsity of some meta-clonotypes, seven percent of coefficient estimates in regression models 606 

had p-values larger than 0.99 (i.e., non-significant) and unreliable high magnitude coefficient estimates. 607 

These values are not shown in the horizontal range of the volcano plots. From the p-values for each 608 

regression coefficient we computed false-discovery rate (FDR) adjusted q-values and accepted q-values 609 

< 0.01 (1%) as statistically significant; adjustment was performed across meta-clonotypes within each 610 

MIRA set and within each variable class (e.g., HLA, age, sex, or days since diagnosis). The HLA 611 

regression coefficients from the beta-binomial models indicate log-fold differences in meta-clonotype 612 

abundance between patients with and without the HLA genotype. 613 

 614 

Comparison with k-mer based CDR3 features  615 

 616 

GLIPH2 (Huang et al., 2020) software irtools.osx was applied to 16 antigen-enriched sub-617 

repertoire of TCRs with epitopes with strong prior evidence of restriction to an HLA-A or HLA-B allele to 618 

demonstrate how a k-mer based tool might also be used to cluster biochemically similar antigen-specific 619 

TCRs to discover potential TCR biomarker features. GLIPH2 generates “global” TCR specificity groups of 620 

CDR3s of identical length with a single optional non-conserved position based on enrichment frequency 621 

of ‘local’ continuous 2-mer, 3-mers, and 4-mers. We used the GLIPH2-provided 'ref_CD8_v2.0.txt' 622 

background file as a background to identify enriched features. Across epitope-specific MIRA sets, we 623 

tested HLA-associations of 812 GLIPH2 pattern ranging from 3 to 11 amino acids in length. The 624 

MIRA55:ORF1ab set was chosen for detailed analysis because, among the MIRA sets, it is comprised of 625 
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CD8+ TCR β-chains activated by a peptide with the strongest evidence of HLA-restriction, primarily HLA-626 

A*01. The MIRA55 set of TCRs, GLIPH2 returned 121 testable public clusters (based on 67 local k-mers, 627 

54 global k-mers) associated with CDR3 patterns enriched relative the program’s default CD8+ TCR 628 

background (GLIPH2 default Fisher’s exact test, p-value < 0.001). The GLIPH2 patterns and their 629 

associated “specifity group” TRBV gene usages and sequence length were then used to search for 630 

conforming TCRs in the 694 bulk unenriched COVID-19 repertoires, allowing comparison to exact and 631 

meta-clonotype features. GLIPH2 represents degenerate positions using the “%” character, which we 632 

represent throughout this study by the “.” character. 633 

 634 

tcrdist3: Software for TCR repertoire analysis 635 
 636 
tcrdist3 is an open-source Python3 package for TCR repertoire analysis and visualization. The 637 

core of the package is the TCRdist, a distance metric for relating two TCRs, which has been expanded 638 

beyond what was previously published (Dash et al., 2017) to include γδ-TCRs. It has also been re-coded 639 

to increase CPU efficiency using numba, a high-performance just-in-time compiler. A numba-coded 640 

edit/Levenshtein distance is also included for comparison, with the flexibility to accommodate novel TCR 641 

metrics as they are developed. The package can accommodate data in standardized format including 642 

AIRR, vdjdb exports, MIXCR output, 10x Cell Ranger output or Adaptive Biotechnologies immunoSeq 643 

output. The package is well documented including examples and tutorials, with source code available on 644 

github.com under an MIT license (http://github.com/kmayerbl/tcrdist3). tcrdist3 imports modules from 645 

several other open-source, pip installable packages by the same authors that support the functionality of 646 

tcrdist3, while also providing more general utility. Briefly, the novel features of these packages and their 647 

relevance for TCR repertoire analysis is described here: 648 

pwseqdist enables fast and flexible computation of pairwise sequence-based distances using 649 

either numba-enabled tcrdist and edit distances or any user-coded Python3 metric to relate TCRs; it can 650 

also accommodate computation of “rectangular” pairwise matrices: distances between a relatively small 651 

set of TCRs with all TCRs in a much larger set (e.g., bulk repertoire). On a modern laptop distances can 652 

be computed at a rate of ~70M per minute, per CPU. 653 

tcrsampler is a tool for sub-sampling large bulk datasets to estimate the frequency of TCRs and 654 

TCR neighborhoods in non-antigen-enriched background repertoires. The module comes with large, bulk 655 

sequenced, default databases for human TCR α, β, γ and δ and mouse TCR β (Britanova et al., 2016; 656 

Ravens et al., 2018; Wirasinha et al., 2018). Datasets were selected because they represented the 657 

largest pre-antigen exposure TCR repertoires available; users can optionally supply their own background 658 

repertoires when applicable. An important feature of tcrsampler is the ability to specify sampling strata; for 659 

example, sampling is stratified on individual by default so that results are not biased by on individual with 660 

deeper sequencing. Sampling can also be stratified on V and/or J-gene usage to over-sample TCRs that 661 

are somewhat similar to the TCR neighborhood of interest. This greatly improves sampling efficiency, 662 

since comparing a TCR neighborhood to a background set of completely unrelated TCRs is 663 

computationally inefficient; however, we note that it is important to adjust for biased sampling approaches 664 

via inverse probability weighting to estimate the frequency of oversampled TCRs in a bulk-sequenced 665 

repertoire.  666 

palmotif is a collection of functions for computing symbol heights for sequence logo plots and 667 

rendering them as SVG graphics for integration with interactive HTML visualizations or print publication. 668 
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Much of the computation is based on existing methods that use either KL-divergence/entropy or odds-669 

ratio based approaches to calculate symbol heights. We contribute a novel method for creating a logo 670 

from CDR3s with varying lengths. The target sequences are first globally aligned (parasail C++ 671 

implementation of Needleman-Wunsch) to a pre-selected centroid sequence (Daily, 2016). For logos 672 

expressing relative symbol frequency, background sequences are also aligned to the centroid. Logo 673 

computation then proceeds as usual, estimating the relative entropy between target and background 674 

sequences at each position in the alignment and the contribution of each symbol. Gaps introduced in the 675 

centroid sequence are ignored, while gap symbols in the aligned sequences are treated as an additional 676 

symbol. 677 

 678 

SUPPLEMENTAL TABLES 679 

Table S1  Comparison of selected software tools for clustering TCRs 680 

Table S2  MIRA enriched repertoires MIRA0 - MIRA252 681 

Table S3  HLA class I alleles capable of presenting the SARS-CoV-2 associated peptides in MIRA 682 

screen 683 

Table S4  NetMHCpan4.0 peptide MHC class I binding affinity prediction 684 

Table S5  Statistical associations between common HLA genotypes of COVID-19 exposed MIRA 685 

participants and SARS-CoV-2 peptide-enriched TCR repertoires 686 

Table S6  SARS-CoV-2 CD8+ meta clonotypes summarized by MIRA enriched repertoire 687 

Table S7  SARS-CoV-2 CD8+ meta clonotypes with strong evidence of HLA restriction (n = 1831) 688 

Table S8  SARS-CoV-2 CD8+ meta clonotypes with less evidence of HLA restriction (n = 2717) 689 

Table S9  HLA associations of GLIPH2 k-mers and tcrdist3 meta-clonotypes 690 

 691 

SUPPLEMENTAL FIGURES 692 

 693 

Figure S1  Publicity analysis in MIRA participants of CD8+ TCR β-chain features activated by SARS-694 

CoV-2 peptide ORF1ab (MIRA55) predicted to bind HLA-A*01.  695 

Figure S2  Publicity and breadth analysis of CD8+ TCR β-chain features activated by 696 

SARS-CoV-2 peptide ORF1ab (MIRA55) using tcrdist3 and GLIPH2.  697 

Figure S3 Detectable HLA-association and CDR3 probability of generation. 698 

DATA AVAILABILITY 699 
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FIGURE CAPTIONS 875 
 876 

Figure 1. TCR meta-clonotype framework and application. (A) Framework: antigen-enriched 877 

repertoires were used together with antigen-unenriched background repertoires to engineer TCR meta-878 

clonotypes that define biochemically similar TCRs based on a centroid TCR and a TCRdist radius. 879 

Antigen-enriched TCRs came from CD8+ T cells activated by SARS-CoV-2 peptides that were previously 880 

discovered (Nolan et al., 2020) in 62 individuals diagnosed with COVID-19 using MIRA (Multiplex 881 

Identification of Antigen-Specific T Cell Receptors Assay, Klinger et al., 2015). With each clonotype from 882 

the antigen-enriched TCRs, we used tcrdist3 to evaluate the repertoire fraction spanned at different 883 

TCRdist radii within (i) its antigen-enriched repertoire (black) and (ii) a control V- and J-gene matched, 884 

inverse probability weighted background repertoire (purple). The set of antigen-enriched TCRs spanned 885 

by the optimal radius were then used to develop an additional meta-clonotype motif constraint based on 886 

conserved residues in the CDR3 (see Methods for details). An example logo plots shows the CDR3 β-887 

chain motif formed from TCRs – activated by a SARS-CoV-2 peptide (MIRA55 ORF1ab amino acids 888 

1316:1330, ALRKVPTDNYITTY) – within a TCRdist radius 16 of this meta-clonotype’s centroid. (B) 889 

Application: TCR meta-clonotypes were used to quantify the frequency of putative SARS-CoV-2 antigen-890 

specific TCRs in a large diverse cohort, from whom bulk TCR repertoires were collected 0-30 days after 891 

COVID-19 diagnosis (n=694). Meta-clonotypes were evaluated based on their association with a 892 

restricting HLA allele. In most cases, evidence of HLA-restriction was stronger for meta-clonotypes 893 

(RADIUS or RADIUS+MOTIF) compared to using exact matches to the centroid TCR (EXACT), 894 

demonstrated by lower false-discovery rate (FDR) adjusted q-values and larger HLA regression 895 

coefficients in beta-binomial count regression models that account for sequencing depth and control for 896 

patient age, sex, and days from diagnosis. 897 

 898 

Figure 2. Experimental enrichment of antigen-specific TCRs. (A) TCR repertoire subsets obtained by 899 

single-cell sorting with peptide-MHC tetramers (data from Dash et al. and Sewell et al. via VDJdb; 900 

greens), MIRA peptide stimulation enrichment (MIRA55, MIRA48; purples), or random sub-sampling of 901 

umbilical cord blood (1,000 or 10,000 TCRs; blues). Biochemical distances were computed among all 902 

pairs of TCRs in each subset using the TCRdist metric. Neighborhoods were formed around each TCR 903 

using a variable radius (x-axis) and the percent of TCRs in the set with at least one other TCR within its 904 

neighborhood was computed. A radius of zero indicates the proportion of TCRs that have at least one 905 

TCR with an identical amino acid sequence (solid square). (B) Analysis of MIRA-enriched repertoires for 906 

which the participants contributing the TCRs were significantly enriched with a specific class I HLA allele 907 

(Table S5). 908 

 909 
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Figure 3. Heterogeneous TCR neighborhoods within experimentally antigen-enriched and 911 

unenriched repertoire subsets. TCR β-chains from (A) a peptide-MHC tetramer-enriched sub-912 

repertoire, (B) a MIRA peptide stimulation-enriched sub-repertoire, or (C) an umbilical cord blood 913 

unenriched repertoire. Within each sub-repertoire, an empirical cumulative distribution function (ECDF) 914 

was estimated for each TCR (one line) acting as the centroid of a neighborhood over a range of distance 915 

radii (x-axis). Each ECDF shows the proportion of TCRs within the MIRA set with a distance to the 916 

centroid less than the indicated radius. ECDF color corresponds to the length of the CDR3-β loop. ECDF 917 

curves were randomly shifted by <1 unit along the x-axis to reduce overplotting. Vertical ECDF lines 918 

starting at 10-4 indicate no similar TCRs at or below that radius. Percentage of TCRs with an ECDF 919 

proportion < 10-3 (bottom panels), indicates the percentage of TCRs without, or with very few 920 

biochemically similar neighbors at the given radius. 921 

 922 

Figure 4. Radius-defined neighborhood densities within an antigen-enriched and a synthetic 923 

background repertoire. (A) Each TCR in the MIRA55 antigen-enriched sub-repertoire (one line) acts as 924 

the centroid of a neighborhood and an empirical cumulative distribution function (ECDF) is estimated over 925 

a range of distance radii (x-axis). Each ECDF shows the proportion of TCRs within the MIRA set having a 926 

distance to the centroid less than the indicated radius. The ECDF line color corresponds to the TCR 927 

generation probability (Pgen) estimated using OLGA (Sethna et al., 2019). The ECDF curves are randomly 928 

shifted by <1 unit along the x-axis to reduce overplotting. The bottom panel shows the percentage of 929 

TCRs with an ECDF proportion < 10-3. (B) Estimated ECDF for each MIRA55 TCR based on the 930 

proportion of TCRs in a synthetic background repertoire that are within the indicated radius (x-axis). The 931 

synthetic background was generated using 100,000 OLGA-generated TCRs and 100,000 TCRs sub-932 

sampled from umbilical cord blood; sampling was matched to the VJ-gene frequency in the MIRA55 sub-933 

repertoire, with inverse probability weighting to account for the sampling bias (see Methods for details). 934 

(C) Antigen-enriched ECDF (y-axis) of one example TCR’s neighborhood (red line) plotted against ECDF 935 

within the synthetic background (x-axis). Example TCR neighborhood is the same indicated by the red 936 

line in (A) and (B). The dashed line indicates neighborhoods that are equally dense with TCRs from the 937 

antigen-enriched and unenriched background sub-repertoires. 938 

 939 

Figure 5.  HLA restriction of TCR clonotypes and meta-clonotypes in bulk sequenced TCRβ 940 

repertoires of COVID-19 patients. (A) Percentage of TCR features with a statistically significant (FDR < 941 

0.01) association with a restricting HLA allele. We tested for associations between patients’ inferred 942 

genotype and TCR feature abundance using beta-binomial regression controlling for age, sex, and days 943 

since COVID-19 diagnosis. (B) For each clonotype/meta-clonotype, the percent of bulk repertoires from 944 

COVID-19 patients (n=694) containing TCRs meeting the criteria defined by (1) EXACT (TCRs matching 945 

the centroid TRBV gene and amino acid sequence of the CDR3), (2) RADIUS (TCR centroid with 946 

inclusion criteria defined by an optimized TCRdist radius), or (3) RADIUS + MOTIF (inclusion criteria 947 

defined by TCR centroid, optimized radius, and the CDR3 motif constraint). See Figure 1 and Methods for 948 

details. 949 
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Figure 6. Associations of TCR features with participant age, days post diagnosis, HLA-genotype, 952 

and sex in TCR β-chain repertoires of COVID-19 patients (n=694). (A) Beta-binomial regression 953 

coefficient estimates (x-axis) and negative log10 false discovery rates (y-axis) for features developed from 954 

CD8+ TCRs activated by SARS-CoV-2 MIRA55 ORF1ab amino acids 1636:1647, HTTDPSFLGRY. The 955 

abundances of TCR meta-clonotypes are more robustly associated with predicted HLA type than exact 956 

clonotypes. (B) Signal strength of enrichment by participant HLA-type (2-digit) of TCR β-chain clonotypes 957 

(EXACT) and meta-clonotypes (RADIUS or RADIUS+MOTIF) predicted to recognize additional HLA-958 

restricted SARS-CoV-2 peptides: (i) MIRA48 (ii) MIRA51 (iii) MIRA53 (iv) MIRA55 (v) MIRA110, and (vi) 959 

MIRA11 (See Table S6). Models were estimated with counts of productive TCRs matching clonotypes 960 

(EXACT) or meta-clonotypes (RADIUS or RADIUS+MOTIF) with the following definitions: (1) EXACT 961 

(inclusion of TCRs matching the centroid TRBV gene and amino acid sequence of the CDR3), (2) 962 

RADIUS (inclusion criteria defined by a TCR centroid and optimized TCRdist radius), (3) RADIUS + 963 

MOTIF (inclusion criteria defined by TCR centroid, optimized radius, and CDR3 motif constraint). See 964 

Methods for details. 965 

 966 

Figure 7. Associations between HLA-genotypes in COVID-19 patients and abundance of epitope 967 

specific CDR3 k-mers or meta-clonotypes. (A) Beta-binomial regression coefficient estimates (x-axis) 968 

for participant genotype matching a hypothesized restricting HLA allele and negative log10 false discovery 969 

rates (y-axis) for features developed from CD8+ TCRs activated by one of 16 HLA-restricted SARS-CoV-970 

2 epitopes found in ORF1ab, ORF3a, nucleocapsid (N), and surface glycoprotein (S). Regression models 971 

included age, sex, and days post diagnosis as covariates (not shown). Positive HLA coefficient estimates 972 

correspond with greater abundance of the TCR feature in those patients expressing the restricting allele. 973 

(B) Distribution of false discovery rates by feature identification method (k-mer local, k-mer global, or 974 

meta-clonotype). Larger negative log10-tranformed FDR values (y-axis) indicate more statistically 975 

significant associations. Local k-mer (e.g., FRTD) and global k-mer (e.g., SFRTD.YE) were identified 976 

using GLIPH2 (Huang et al., 2020) and were used to quantify counts of conforming TCRs in each bulk 977 

sequenced COVID-19 repertoire (see Method for details).   978 

 979 

Figure S1: Publicity analysis in MIRA participants of CD8+ TCR β-chain features activated by 980 

SARS-CoV-2 peptide ORF1ab (MIRA55) predicted to bind HLA-A*01. The grid shows all features that 981 

were present in 2 or more MIRA participants. TCR feature publicity across individuals was assessed 982 

using two methods: (i) tcrdist3 meta-clonotypes (rectangles) – inclusion criteria defined by a centroid TCR 983 

and all TCRs within an optimized TCRdist radius selected to span < 10-6 TCRs in a bulk unenriched 984 

background repertoire, and (ii) exact public clonotypes (circles) are defined by matching TRBV gene 985 

usage and identical CDR3 amino acid sequence. Per subject, the color-scale shows the meta-clonotype 986 

conformant clone with the highest probability of generation (Pgen). All TCRs captured by a “redundant” 987 

meta-clonotypes were completely captured by a higher ranked meta-clonotype. Redundant meta-988 

clonotypes were not subsequently evaluated. 989 
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Figure S2: Publicity and breadth analysis of CD8+ TCR β-chain features activated by 992 

SARS-CoV-2 peptide ORF1ab (MIRA55) using tcrdist3 and GLIPH2. TCR feature publicity was 993 

determined using two methods for clustering similar TCR sequences: (A) tcrdist3-identified meta-994 

clonotypes and (B) GLIPH2 specificity-groups, sets of TCRs with a shared CDR3 k-mer pattern 995 

uncommon in the program’s default background CD8+ receptor data. Grid fill color shows the breadth – or 996 

number of conformant clones – withing each patient’s repertoire. 997 

 998 

Figure S3. Detectable HLA-association and CDR3 probability of generation. We evaluated meta-999 

clonotypes from 17 MIRA sets in a cohort of 694 COVID-19 patients for their association with predicted 1000 

HLA-restricting alleles. Statistical evidence of the HLA association for each meta-clonotype (RADIUS or 1001 

RADIUS+MOTIF) and the centroid alone (EXACT) is indicated by the associated false discovery rate 1002 

(FDR; y-axis) in beta-binomial regressions (see Methods for model details). The probability of generation 1003 

(Pgen) of each centroid’s CDR3-β was estimated using the software OLGA (x-axis). Using exact matching, 1004 

only associations with high probability of generation (Pgen) antigen-specific TCRs are likely to be detected 1005 

reliably. However, using meta-clonotypes, tcrdist3 revealed strong evidence of HLA-restriction for TCRs 1006 

with both high and low probability of generation. 1007 
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Figure 1. TCR meta-clonotype framework and application. (A) Framework: antigen-enriched repertoires were used 
together with antigen-unenriched background repertoires to engineer TCR meta-clonotypes that define biochemically 
similar TCRs based on a centroid TCR and a TCRdist radius. Antigen-enriched TCRs came from CD8+ T cells activated 
by SARS-CoV-2 peptides that were previously discovered (Nolan et al., 2020) in 62 individuals diagnosed with 
COVID-19 using MIRA (Multiplex Identification of Antigen-Specific T Cell Receptors Assay, Klinger et al., 2015). With 
each clonotype from the antigen-enriched TCRs, we used tcrdist3 to evaluate the repertoire fraction spanned at differ-
ent TCRdist radii within (i) its antigen-enriched repertoire (black) and (ii) a control V- and J-gene matched, inverse 
probability weighted background repertoire (purple). The set of antigen-enriched TCRs spanned by the optimal radius 
were then used to develop an additional meta-clonotype motif constraint based on conserved residues in the CDR3 
(see Methods for details). An example logo plots shows the CDR3 β-chain motif formed from TCRs – activated by a 
SARS-CoV-2 peptide (MIRA55 ORF1ab amino acids 1316:1330, ALRKVPTDNYITTY) – within a TCRdist radius 16 of 
this meta-clonotype’s centroid. (B) Application: TCR meta-clonotypes were used to quantify the frequency of putative 
SARS-CoV-2 antigen-specific TCRs in a large diverse cohort, from whom bulk TCR repertoires were collected 0-30 
days after COVID-19 diagnosis (n=694). Meta-clonotypes were evaluated based on their association with a restricting 
HLA allele. In most cases, evidence of HLA-restriction was stronger for meta-clonotypes (RADIUS or RADIUS+MOTIF) 
compared to using exact matches to the centroid TCR (EXACT), demonstrated by lower false-discovery rate (FDR) 
adjusted q-values and larger HLA regression coefficients in beta-binomial count regression models that account for 
sequencing depth and control for patient age, sex, and days from diagnosis.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2020.12.24.424260doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424260
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

A B C

Figure 2. Experimental enrichment of antigen-specific TCRs. (A) TCR repertoire subsets obtained by 
single-cell sorting with peptide-MHC tetramers (data from Dash et al. and Sewell et al. via VDJdb; greens), MIRA 
peptide stimulation enrichment (MIRA55, MIRA48; purples), or random sub-sampling of umbilical cord blood 
(1,000 or 10,000 TCRs; blues). Biochemical distances were computed among all pairs of TCRs in each subset 
using the TCRdist metric. Neighborhoods were formed around each TCR using a variable radius (x-axis) and the 
percent of TCRs in the set with at least one other TCR within its neighborhood was computed. A radius of zero 
indicates the proportion of TCRs that have at least one TCR with an identical amino acid sequence (solid square). 
(B) Analysis of MIRA-enriched repertoires for which the participants contributing the TCRs were significantly
enriched with a specific class I HLA allele (Table S5).

Figure 3. Heterogeneous TCR neighborhoods within experimentally antigen-enriched and unenriched 
repertoire subsets. TCR β-chains from (A) a peptide-MHC tetramer-enriched sub-repertoire, (B) a MIRA peptide 
stimulation-enriched sub-repertoire, or (C) an umbilical cord blood unenriched repertoire. Within each sub-reper-
toire, an empirical cumulative distribution function (ECDF) was estimated for each TCR (one line) acting as the 
centroid of a neighborhood over a range of distance radii (x-axis). Each ECDF shows the proportion of TCRs within 
the MIRA set with a distance to the centroid less than the indicated radius. ECDF color corresponds to the length 
of the CDR3-β loop. ECDF curves were randomly shifted by <1 unit along the x-axis to reduce overplotting. Vertical 
ECDF lines starting at 10-4 indicate no similar TCRs at or below that radius. Percentage of TCRs with an ECDF 
proportion < 10-3 (bottom panels), indicates the percentage of TCRs without, or with very few biochemically similar 
neighbors at the given radius.
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Figure 4. Radius-defined neighborhood densi-
ties within an antigen-enriched and a synthetic 
background repertoire. (A) Each TCR in the 
MIRA55 antigen-enriched sub-repertoire (one line) 
acts as the centroid of a neighborhood and an 
empirical cumulative distribution function (ECDF) is 
estimated over a range of distance radii (x-axis). 
Each ECDF shows the proportion of TCRs within 
the MIRA set having a distance to the centroid less 
than the indicated radius. The ECDF line color 
corresponds to the TCR generation probability (Pgen) 
estimated using OLGA (Sethna et al., 2019). The 
ECDF curves are randomly shifted by <1 unit along 
the x-axis to reduce overplotting. The bottom panel 
shows the percentage of TCRs with an ECDF 
proportion < 10-3. (B) Estimated ECDF for each 
MIRA55 TCR based on the proportion of TCRs in a 
synthetic background repertoire that are within the 
indicated radius (x-axis). The synthetic background 
was generated using 100,000 OLGA-generated 
TCRs and 100,000 TCRs sub-sampled from umbili-
cal cord blood; sampling was matched to the 
VJ-gene frequency in the MIRA55 sub-repertoire, 
with inverse probability weighting to account for the 
sampling bias (see Methods for details). (C) 
Antigen-enriched ECDF (y-axis) of one example 
TCR’s neighborhood (red line) plotted against 
ECDF within the synthetic background (x-axis). 
Example TCR neighborhood is the same indicated 
by the red line in (A) and (B). The dashed line 
indicates neighborhoods that are equally dense with 
TCRs from the antigen-enriched and unenriched 
background sub-repertoires.
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Figure 5.  HLA restriction of TCR clonotypes and meta-clonotypes in bulk sequenced TCRβ 
repertoires of COVID-19 patients. (A) Percentage of TCR features with a statistically significant 
(FDR < 0.01) association with a restricting HLA allele. We tested for associations between patients’ 
inferred genotype and TCR feature abundance using beta-binomial regression controlling for age, 
sex, and days since COVID-19 diagnosis. (B) For each clonotype/meta-clonotype, the percent of bulk 
repertoires from COVID-19 patients (n=694) containing TCRs meeting the criteria defined by (1) 
EXACT (TCRs matching the centroid TRBV gene and amino acid sequence of the CDR3), (2) 
RADIUS (TCR centroid with inclusion criteria defined by an optimized TCRdist radius), or (3) RADIUS 
+ MOTIF (inclusion criteria defined by TCR centroid, optimized radius, and the CDR3 motif
constraint). See Figure 1 and Methods for details.
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A

Figure 6. Associations of TCR features with participant age, days post diagnosis, HLA-genotype, and 
sex in TCR β-chain repertoires of COVID-19 patients (n=694). (A) Beta-binomial regression coefficient 
estimates (x-axis) and negative log10 false discovery rates (y-axis) for features developed from CD8+ TCRs 
activated by SARS-CoV-2 MIRA55 ORF1ab amino acids 1636:1647, HTTDPSFLGRY. The abundances of 
TCR meta-clonotypes are more robustly associated with predicted HLA type than exact clonotypes. (B) Signal 
strength of enrichment by participant HLA-type (2-digit) of TCR β-chain clonotypes (EXACT) and meta-clono-
types (RADIUS or RADIUS+MOTIF) predicted to recognize additional HLA-restricted SARS-CoV-2 peptides: 
(i) MIRA48 (ii) MIRA51 (iii) MIRA53 (iv) MIRA55 (v) MIRA110, and (vi) MIRA11 (See Table S6). Models were
estimated with counts of productive TCRs matching clonotypes (EXACT) or meta-clonotypes (RADIUS or
RADIUS+MOTIF) with the following definitions: (1) EXACT (inclusion of TCRs matching the centroid TRBV
gene and amino acid sequence of the CDR3), (2) RADIUS (inclusion criteria defined by a TCR centroid and
optimized TCRdist radius), (3) RADIUS + MOTIF (inclusion criteria defined by TCR centroid, optimized radius,
and CDR3 motif constraint). See Methods for details.
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Figure 7. Associations between HLA-genotypes in COVID-19 patients and abundance of epitope specific CDR3 
k-mers or meta-clonotypes. (A) Beta-binomial regression coefficient estimates (x-axis) for participant genotype 
matching a hypothesized restricting HLA allele and negative log10 false discovery rates (y-axis) for features developed 
from CD8+ TCRs activated by one of 16 HLA-restricted SARS-CoV-2 epitopes found in ORF1ab, ORF3a, nucleocapsid 
(N), and surface glycoprotein (S). Regression models included age, sex, and days post diagnosis as covariates (not 
shown). Positive HLA coefficient estimates correspond with greater abundance of the TCR feature in those patients 
expressing the restricting allele. (B) Distribution of false discovery rates by feature identification method (k-mer local, 
k-mer global, or meta-clonotype (RADIUS+MOTIF)). Larger negative log10-tranformed FDR values (y-axis) indicate 
more statistically significant associations. Local k-mer (e.g., FRTD) and global k-mer (e.g., SFRTD.YE) were 
identified using GLIPH2 (Huang et al., 2020) and were used to quantify counts of conforming TCRs in each bulk 
sequenced COVID-19 reper-toire (see Method for details).
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Figure S1: Publicity analysis in MIRA partici-
pants of CD8+ TCR β-chain features activated 
by SARS-CoV-2 peptide ORF1ab (MIRA55) 
predicted to bind HLA-A*01. The grid shows all 
features that were present in 2 or more MIRA 
participants. TCR feature publicity across individu-
als was assessed using two methods: (i) tcrdist3 
meta-clonotypes (rectangles) – inclusion criteria 
defined by a centroid TCR and all TCRs within an 
optimized TCRdist radius selected to span < 10-6 
TCRs in a bulk unenriched background repertoire, 
and (ii) exact public clonotypes (circles) are defined 
by matching TRBV gene usage and identical CDR3 
amino acid sequence. Per subject, the color-scale 
shows the meta-clonotype conformant clone with 
the highest probability of generation (Pgen). All 
TCRs captured by a “redundant” meta-clonotypes 
were completely captured by a higher ranked 
meta-clonotype. Redundant meta-clonotypes were 
not subsequently evaluated.
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Figure S2: Publicity and breadth analysis of CD8+ TCR β-chain features activated by
SARS-CoV-2 peptide ORF1ab (MIRA55) using tcrdist3 and GLIPH2. TCR feature publicity was determined 
using two methods for clustering similar TCR sequences: (A) tcrdist3-identified meta-clonotypes and (B) GLIPH2 
specificity-groups, sets of TCRs with a shared CDR3 k-mer pattern uncommon in the program’s default back-
ground CD8+ receptor data. Grid fill color shows the breadth – or number of conformant clones – withing each 
patient’s repertoire.
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Figure S3. Detectable HLA-association and CDR3 probability of generation. We evaluated meta-clonotypes 
from 17 MIRA sets in a cohort of 694 COVID-19 patients for their association with predicted HLA-restricting alleles. 
Statistical evidence of the HLA association for each meta-clonotype (RADIUS or RADIUS+MOTIF) and the centroid 
alone (EXACT) is indicated by the associated false discovery rate (FDR; y-axis) in beta-binomial regressions (see 
Methods for model details). The probability of generation (Pgen) of each centroid’s CDR3-β was estimated using the 
software OLGA (x-axis). Using exact matching, only associations with high probability of generation (Pgen) 
antigen-specific TCRs are likely to be detected reliably. However, using meta-clonotypes, tcrdist3 revealed strong 
evidence of HLA-restriction for TCRs with both high and low probability of generation.
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