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OBJECTIVE—We examined whether the PPAR�2 Ala12 allele
influences growth in early life and whether this association is
modified by breast-feeding.

RESEARCH DESIGN AND METHODS—This study was em-
bedded in the Generation R Study, a prospective cohort study
from early fetal life onward. PPAR�2 was genotyped in DNA
obtained from cord blood samples in 3,432 children. Information
about breast-feeding was available from questionnaires. Weight,
head circumference, and femur length were repeatedly measured
in second and third trimesters of pregnancy, at birth, and at the
ages of 1.5, 6, 11, 14, and 18 months.

RESULTS—Genotype frequency distribution was 77.6%
(Pro12Pro), 20.7% (Pro12Ala), and 1.7% (Ala12Ala). Growth rates in
weight from second trimester of pregnancy to 18 months were
higher for Pro12Ala and Ala12Ala than for Pro12Pro carriers (dif-
ferences 1.11 g/week [95% CI 0.47–1.74] and 2.65 g/week [0.45–4.87],
respectively). We found an interaction between genotype and
breast-feeding duration (P value for interaction �0.0001). In infants
who were breast-fed for �4 months, PPAR�2 Pro12Ala was not
associated with growth rate. When breast-feeding duration was �2
months or 2–4 months, growth rate was higher in Ala12Ala than
Pro12Pro carriers (differences 9.80 g/week [3.97–15.63] and 6.32
g/week [�1.04 to 13.68], respectively).

CONCLUSIONS—The PPAR�2 Ala12 allele is associated with an
increased growth rate in early life. This effect may be influenced by
breast-feeding duration. Further studies should replicate these
findings, identify the underlying mechanisms, and assess whether
these effects persist into later life. Diabetes 58:992–999, 2009

P
revious studies have shown that common poly-
morphisms of peroxisome proliferator–activated
receptor �2 (PPAR�2) are associated with adipo-
cyte differentiation, lipid metabolism, and insulin

sensitivity (1). Recent genome-wide association (GWA)
studies found consistent and robust associations of the

PPAR�2 Pro12Ala polymorphism (rs1801282) with type 2
diabetes (2,3). Furthermore, several studies have reported
increased BMI in PPAR�2 Ala12 carriers (4–6). In a
meta-analysis, Masud et al. (4) found that in adults with a
BMI �27 kg/m2 carriers of the PPAR�2 Ala12 allele had an
increased BMI. Also, in subjects with normal BMI, they
found a significant increase in BMI in Ala12Ala carriers
versus Pro12Pro carriers. However, a recent GWA study
on BMI in more than 80,000 subjects did not identify the
PPAR�2 Ala12 allele as a variant associated with BMI in
the general adult population (7). Among children, it has
been suggested that the PPAR�2 Ala12 allele is associated
with BMI, although evidence for this is very limited. In a
small study, carriers of the PPAR�2 Ala12 allele were
shown to be heavier at age 7 years (5); in a cohort of
children aged 1–6 years, an association of PPAR�2 Ala12
allele with increased adiposity was only found in girls aged
3–4 years (6).

Common polymorphisms of PPAR�2 may also explain
previously suggested associations of growth in early fetal
life and infancy with obesity (8). This association may be
explained by early, modest alterations in insulin secretion
and sensitivity because insulin is the most important fetal
growth hormone (9). The effect of the Ala12 allele on
anthropometrics and growth patterns may already be
present in fetal life and infancy. In two large studies, no
association was found between PPAR�2 and birth weight,
although an association with preterm birth has been
suggested (10–12). Birth weight alone might be an inap-
propriate measure of individual growth potential because
different fetal growth rates may lead to the same birth weight
(13). Moreover, most growth-restricted infants catch up to
their own genetically determined growth curve during the
first postnatal years (14). The PPAR�2 Ala12 allele has been
found to interact with birth weight in determining further
growth patterns (15). Also, the effect of PPAR�2 genotype on
metabolic phenotype appears to depend on dietary intake
(16–18). No previous studies have examined the effect of
breast-feeding on the association of PPAR�2 genotype with
growth in early life, while breast-feeding is well known to
influence early growth and has a protective effect on the risk
of obesity in childhood (19–21).

Based on previous findings, we hypothesized that the
PPAR�2 Ala12 allele is associated with increased weight
gain during early life and that this association might be
influenced by breast-feeding duration. We examined in a
large prospective birth cohort study from fetal life onward
the association of the Pro12Ala polymorphism in the
PPAR�2 gene with growth in fetal life and infancy and
whether this association may be modified by breast-feeding.
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RESEARCH DESIGN AND METHODS

This study was embedded in the Generation R Study, a prospective cohort
study from early fetal life onward. This study is designed to identify early
environmental and genetic determinants of growth, development, and health
from fetal life until young adulthood and has been described previously in
detail (22,23). Fetal and postnatal growth and their main determinants were
repeatedly measured by physical examinations, fetal ultrasounds, biological
samples, and questionnaires. As previously reported, of all eligible children
born in the study area, 61% participated in the study (22). The study has been
approved by the medical ethics committee of the Erasmus Medical Center,
Rotterdam. Written informed consent was obtained from all parents.

Analyses were restricted to children from whom DNA was available for
PPAR�2 genotyping and with Dutch or other European Caucasian ethnicity as
defined by having both parents born in the Netherlands or another European
country (n � 3,432). Fetal growth measurements were available in 3,331 and
3,398 children in second and third trimesters, respectively. Of these children,
those living outside the study area postnatally (n � 341) were not followed up
in infancy, leading to 3,091 subjects for the postnatal growth measurements
(Fig. 1). Of all children followed postnatally, data on breast-feeding were
missing in 405 subjects, leaving 2,690 children with complete data on postnatal
growth and breast-feeding duration. Of all genotyped subjects at baseline, the
mean follow-up rate per visit was 77%.
Genotyping. DNA was collected from cord blood samples at birth. Cord
blood for DNA isolation was available in 59% of all live-born participating
children. Missing cord blood samples were mainly due to logistical constraints
at the delivery. Genotyping of the PPAR�2 gene Pro12Ala polymorphism
(rs1801282) was performed using a Taqman allelic discrimination assay
(Applied Biosystems, Foster City, CA) and Abgene QPCR ROX mix (Abgene,
Hamburg, Germany). The genotyping reaction was amplified using the Gene-
Amp PCR system 9600 (95°C [15 min], then 40 cycles of 94°C [15 s] and 60°C
[1 min]). Fluorescence was detected on the 7900HT Fast Real-Time PCR
System (Applied Biosystems), and individual genotypes were determined
using SDS software (version 2.3; Applied Biosystems). Genotyping was
successful in 99% of the samples. To confirm the accuracy of the genotyping
results, 276 randomly selected samples were genotyped for a second time with
the same method. The error rate was 0%.

The genotype distribution (Pro12Pro 77.6%, Pro12Ala 20.7%, Ala12Ala 1.7%;
minor allele frequency [Ala] of 22.4%) was similar to that found in previous
studies, and the frequency distribution did not deviate from Hardy-Weinberg
equilibrium (�2 � 1.82; P � 0.18) (4).
Fetal growth and birth characteristics. Fetal ultrasound examinations
were carried out during visits to one of the research centers. These fetal
ultrasounds were used for establishing gestational age in the first trimester
and for assessing fetal growth characteristics in second and third trimesters of
pregnancy (24). Fetal growth characteristic measurements used for the
present study included head circumference, abdominal circumference, and
femur length, measured in second and third trimesters to the nearest
millimeter using standardized ultrasound procedures (25). Estimated fetal
weight (EFW) was calculated using the formula by Hadlock using head
circumference (HC), abdominal circumference (AC), and femur length (FL)
(log10 EFW � 1.5662 � 0.0108 [HC] � 0.0468 [AC] � 0.171 [FL] � 0.00034
[HC]2 � 0.003685 [AC � FL]) (26). First trimester ultrasound measures were
not included as growth characteristics because these ultrasound examinations
were primarily performed to establish gestational age.
Postnatal growth. Birth weight, date of birth, and sex were obtained from
community midwife and hospital registries. Information on head circumfer-
ence or length at birth was not available. Well-trained staff in community
health centers obtained postnatal growth characteristics using standardized
procedures. Weight was measured using electronic scales (SECA, Hamburg,
Germany). Length was determined in supine position to the nearest millimeter
until the age of 6 months using a neonatometer, after which it was measured

in upright position (Holtain Limited, Dyfed, U.K.). Head circumference was
measured to the nearest millimeter using a standardized tape (SECA). Based
on the routine health care program, visits for measurements of these growth
characteristics were grouped into five age periods: 1.5 months (range 0–3.99),
6 months (4–9.99), 11 months (10–12.99), 14 months (13–16.99), and 18
months (17–20.99). Postnatally, head circumference was only measured at 1.5,
6, and 14 months.
Breast-feeding. Information about duration of breast-feeding was obtained
by postnatal questionnaires at the ages of 2, 6, and 12 months. This informa-
tion was combined to form the following categories: 1) breast-fed 0–2 months,
2) 2–4 months, and 3) �4 months.
Covariates. Information on maternal age, educational level, parity, and
weight before pregnancy was obtained by the first questionnaire at enrollment
in the study. Maternal height was measured without shoes at our research
center, and BMI was calculated as weight divided by the square of height in
meters. The occurrence of gestational diabetes was obtained from midwife or
obstetric records.
Data analysis. We explored the differences in gestational age (weeks) and
birth weight (SD) between the three genotypes with additive, dominant
(PPAR�2 Ala12Ala/Pro12Ala vs. Pro12Pro), and recessive (PPAR�2 Pro12Pro/
Pro12Ala vs. Ala12Ala) models using Mann-Whitney U tests and linear
regression. To assess longitudinally measured growth characteristics from
fetal life to infancy, we performed unbalanced repeated-measures regression
analysis with weight, length, and head circumference in fetal life and infancy as
outcomes. This regression technique takes the correlation of multiple measure-
ments within one subject into account, assesses both the time-independent and
time-dependent effect of PPAR�2 Pro12Ala genotype on growth, and allows for
incomplete outcome data (27). The best-fitting model as a function of (gesta-
tional) age was constructed using fractional polynomials (28).

To account for differences in growth curves for weight, length, and head
circumference in fetal life and infancy, growth models were constructed for
three age periods: second trimester to 18 months (overall), second trimester
to birth (fetal), and birth to 18 months (infancy). In the fetal and overall
models, age was defined as age in weeks after conception. For the infancy
model, age represented biological age in weeks, and these models were addition-
ally adjusted for gestational age at birth. In all models, genotype was included as
both intercept and interaction with age to account for differences at baseline and
in growth rates. The models used are shown in the supplemental material
available in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/
full/db08-1311/DC1.

Finally, we examined the interaction between genotype and breast-feeding
duration and the effect on growth rate. Trend tests were performed by adding
both genotype and breast-feeding duration in the model as ordinal variables
instead of categorical variables. All models were adjusted only for sex because
population genotype distribution is assumed to be unrelated to covariates, and
the effect estimates were not materially affected by adjusting for covariates
such as maternal age, educational level, prepregnancy, BMI, or parity (29). The
occurrence of gestational diabetes in the entire cohort was 0.6%, did not differ
between the genotypes, and was, therefore, not included in the analyses. All
effect estimates are presented with their 95% CI. Statistical analyses were
performed using the Statistical Analysis System, Version 8.2 (SAS, Stata,
College Station, TX), including the PROC MIXED module for unbalanced
repeated measurements and the Statistical Package of Social Sciences,
Version 15.0 for Windows (SPSS, Chicago, IL).

RESULTS

Tables 1 and 2 show the subjects characteristics. In the
whole study group, mean birth weight 	 SD was 3,512 	
510 g and median gestational age was 40.3 weeks (95%
range 36.7–42.4). The percentages of children born prema-
turely and with low birth weight were 2.9 and 2.4%,
respectively. The median number of measurements (visits)
per subject was seven (95% range 3–8 visits). Table 3
shows the differences in birth characteristics between the
PPAR�2 Pro12Ala genotypes. No significant differences
were found in gestational age and birth weight 	SD.
Pro12Ala and Ala12Ala carriers tended to have an in-
creased risk of preterm birth, although these differences
were not significant (odds ratios [95% CI] using the
Pro12Pro genotype as a reference: 1.51 [0.96–2.38] for
Pro12Ala and 2.08 [0.64–6.80] for Ala12Ala).

Table 4 shows the differences in growth rates between
the PPAR�2 genotypes using Pro12Pro as the reference

Live born singletons
of Caucasian ethnicity

n=3,432 

Postnatal follow-up
n=3,091 

No postnatal follow-up
n=341 

Breastfeeding data missing
n=405 

Postnatal follow-up
including breastfeeding data

n=2,690 

FIG. 1. Flow diagram indicating number of subjects for each analysis.
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group. In fetal life, PPAR�2 Ala12Ala carriers tended to
show an increased growth rate in weight compared with
the Pro12Pro carriers. Postnatally, both the Pro12Ala and
Ala12Ala carriers have an increased growth rate in weight
compared with Pro12Pro carriers, although this was not
significant in the latter. Furthermore, we observed an
allele dose effect for each additional Ala12 allele (P �
0.0092). For weight gain over the entire period from the
second trimester to 18 months, PPAR�2 Pro12Pro carriers
had a significantly lower growth rate for weight than the
other genotypes, and there was a significant trend for each
additional Ala12 allele (P � 0.0001). Figure 2 shows the
estimated weight differences in grams between the geno-
type groups. The estimated differences at 18 months
compared with the Pro12Pro group were 99 and 291 g for
the Pro12Ala and Ala12Ala carriers, respectively. Prenatal
head circumference growth rate was significantly lower in
Ala12Ala compared with Pro12Pro carriers. No other
significant differences were found in growth rate of head
circumference or length.

We found a significant interaction between genotype
and breast-feeding duration on growth rate in weight (P
for interaction �0.0001). Figure 3 shows the differences in
estimated growth rates between the genotypes in the three
breast-feeding groups. When breast-feeding duration was
�2 months or 2–4 months, growth rate was higher in
Ala12Ala than Pro12Pro carriers (differences 9.80 g/week
[95%CI 3.97–15.63] and 6.32 g/week [�1.04 to 13.68],
respectively). No associations of PPAR�2 with growth rate
were found in children who were breast-fed �4 months.
Table 5 shows the trends within each genotype and
breast-feeding group. The maximum difference in growth
rate was found between PPAR�2 Ala12Ala carriers who

were breast-fed �2 months and Pro12Pro carriers who
were breast-fed �4 months (difference 12.62 g/week
(6.80–18.44)). Similar effects were found in subjects who
were breast-fed for 2–4 months, and we found an allele
dose effect for each additional Ala12 allele in these sub-
jects (P � 0.0264). All effect estimates did not materially
change after restricting analyses to term-born subjects
(�37 weeks of gestation) or after adjusting for covariates,
such as maternal age, educational level, prepregnancy,
BMI, or parity (data not shown). No interactions between
genotype and breast-feeding on length or head circumfer-
ence growth rate were observed (data not shown).

DISCUSSION

In this study, we show that the Ala allele of the PPAR�2
Pro12Ala gene polymorphism (rs1801282) is associated
with an increased growth rate in early life. Between the
second trimester of pregnancy and 18 months, children
with Pro12Ala and Ala12Ala had higher growth rates in
weight than Pro12Pro subjects. Furthermore, our results
suggest that the effect of PPAR�2 gene polymorphism on
growth in infancy depends on breast-feeding duration.

To our knowledge, this study is the first prospective
cohort study that examines the association of this PPAR�2
Pro12Ala gene polymorphism with growth from fetal life
until infancy. DNA for genotyping was available in 59% of

TABLE 1
Maternal and birth characteristics of 3,432 children

Age (years) 30.8 	 4.8
Weight before pregnancy (kg) 66.9 	 11.8
Height (cm) 170 	 6.7
BMI before pregnancy (kg/m2) 22.9 	 3.7
Parity (% nulliparous) 60.1
Gestational diabetes (%) 0.6
Placental weight (g) 640 	 142
Educational level (%)

Primary school 4.5
Secondary school 39.1
Higher education 56.5

Birth characteristics
Sex (% male) 50.8
Gestational age (weeks) 40.3 (36.7–42.4)
Birth weight (g) 3512 	 510
Premature (gestational age �37 weeks)

(%) 2.9
Birth weight �2,500 g (%) 2.4
Small for gestational age (below �2 SD)

(%) 2.4
Breast-feeding duration (%)

0–2 months 31.3
2–4 months 26.4
�4 months 42.3

Number of visits 7 (3–8)

Data are means 	 SD, median (95% range), or percentages. Of the
total group, data were missing on weight before pregnancy (n �
468), height (n � 5), BMI before pregnancy (n � 470), parity (n � 3),
gestational diabetes (n � 39), placental weight (n � 792), educa-
tional level (n � 45), and breast-feeding duration (n � 742).

TABLE 2
Fetal and postnatal growth characteristics of 3,432 children

Second trimester
Gestational age at visit (weeks) 20.5 (18.6–23.0)
Head circumference (cm) 18.0 	 1.4
Femur length (mm) 33.3 	 3.4
Estimated fetal weight (g) 380 	 87

Third trimester
Gestational age at visit (weeks) 30.4 (28.5–32.7)
Head circumference (cm) 28.6 	 1.2
Femur length (mm) 57.4 	 2.8
Estimated fetal weight (g) 1,628 	 249

Birth
Gestational age (weeks) 40.3 (36.7–42.4)
Weight (g) 3,512 	 510

1.5 months
Age at visit (months) 1.3 (0.9–3.0)
Head circumference (cm) 38.3 	 1.5
Length (cm) 55.8 	 2.8
Weight (g) 4,788 	 728

6 months
Age at visit (months) 6.1 (4.5–7.7)
Head circumference (cm) 43.5 	 1.3
Length (cm) 67.7 	 2.6
Weight (g) 7,798 	 862

11 months
Age at visit (months) 11.0 (10.1–12.5)
Length (cm) 74.4 	 2.5
Weight (g) 9,644 	 999

14 months
Age at visit (months) 14.2 (13.5–15.7)
Head circumference (cm) 47.2 	 1.3
Length (cm) 78.4 	 2.7
Weight (g) 10,532 	 1,089

18 months
Age at visit (months) 18.3 (17.3–20.4)
Length (cm) 82.4 	 3.0
Weight (g) 11,556 	 1,214

Data are means 	 SD or median (95% range).
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all subjects. Missing cord blood and DNA was mainly
caused by logistical constraints at delivery. Children who
were not genotyped had a shorter gestational age (P �
0.001) and were lighter at birth (P � 0.001) than subjects
who were genotyped. Of all genotyped subjects at base-
line, the mean follow-up rate per visit was 77%. Response
rates were lowest at the age of 18 months. This is mainly
due to the general lower response rate at this age in the

routine child care system. In our data, no differences in
genotype frequency or birth characteristics were observed
between children with and without postnatal growth mea-
surements. Furthermore, similar results were observed
when analyses were restricted to children aged 11 or 14
months and when breast-feeding duration was dichoto-
mized into shorter or longer than 3 months (data not
shown). Our effect estimates would be biased if the

TABLE 3
Birth characteristics according to PPAR�2 Pro12Ala genotypes in 3,432 children

Pro12Pro
(n � 2,664)

Pro12Ala
(n � 710)

Ala12Ala
(n � 58)

P values
Additive Dominant Recessive

Gestational age (weeks) 40.3 (36.9–42.4) 40.3 (36.4–42.4) 40.4 (32.3–42.9) 0.35 0.69 0.91
�37 weeks 2.6 (68) 3.8 (27) 5.2 (3)
�37 weeks 97.4 (2,596) 96.2 (683) 94.8 (55)

Birth weight 0.04 	 0.98 0.04 	 1.03 0.28 	 0.97 0.37 0.66 0.07
��2 SD 2.2 (59) 3.4 (24) 0.0 (0)
��2 SD 97.8 (2,605) 96.6 (686) 100.0 (58)

Data are means 	 SD or median (95% range) for continuous variables and (%) n for dichotomous variables. Differences were tested using
Mann-Whitney U-test or linear regression. Dominant model: PPAR�2 Ala12Ala/Pro12Ala vs. Pro12Pro. Recessive model: PPAR�2
Pro12Pro/Pro12Ala vs. Ala12Ala.

TABLE 4
Differences in growth rate for weight by PPAR�2 Pro12Ala genotypes using repeated measures regression analysis

Difference in weight gain
from second trimester to

birth (g/week) (n � 3,432)

Difference in weight gain
from birth to 18 months

(g/week) (n � 3,091)

Difference in weight gain
from second trimester to

18 months (g/week)
(n � 3,091)

Pro12Pro Reference Reference Reference
Pro12Ala 0.50 (�0.96 to 1.98) 1.06 (0.02–2.10) 1.11 (0.47–1.74)

P 0.4988 0.0454 0.0007
Ala12Ala 4.02 (�0.59 to 8.63) 3.52 (�0.05 to 7.10) 2.65 (0.45–4.87)

P 0.0876 0.0535 0.0185
P for trend 0.1575 0.0092 �0.0001

Difference in head
circumference gain from
second trimester to 1.5

months (mm �
10�1/week) (n � 3,432)

Difference in head
circumference gain from
1.5 to 14 months (mm �
10�1/week) (n � 3,091)

Difference in head
circumference gain from
second trimester to 14

months (mm �
10�1/week) (n � 3,091)

Pro12Pro Reference Reference Reference
Pro12Ala �0.16 (�0.51 to 0.18) 0.01 (�0.01 to 0.03) 0.05 (�0.09 to 0.19)

P 0.3617 0.1587 0.4725
Ala12Ala �1.40 (�2.56, �0.23) 0.02 (�0.05, 0.10) �0.48 (�1.01, 0.02)

P 0.0186 0.5104 0.0643
P for trend 0.0566 0.1293 0.8368

Difference in length gain
from second trimester to

1.5 months (mm �
10�1/week) (n � N/A)

Difference in length gain from
1.5 to 18 months (mm �
10�1/week) (n � 3,091)

Difference in length gain
from second trimester to

14 months (mm �
10�1/week) (n � N/A)

Pro12Pro N/A Reference N/A
Pro12Ala N/A �0.11 (�0.37 to 0.14) N/A

P 0.3864
Ala12Ala N/A 0.43 (�0.44 to 1.31) N/A

P 0.3299
P for trend 0.4429

Data are regression coefficients (95% CI) and reflect the difference in growth rate. Models are adjusted for sex of the child. Analyses focused
on growth during infancy are additionally adjusted for gestational age at birth. Estimates based on repeated-measures regression analysis.
N � 3,432 for growth from second trimester to birth/1.5 months (Pro12Pro, n � 2664; Pro12Ala, n � 710; Ala12Ala, n � 58); N � 3,091 for
postnatal growth and growth over the entire period (Pro12Pro, n � 2440; Pro12Ala, n � 644; Ala12Ala, n � 47).
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associations between genotypes and growth characteris-
tics differed between those with and without postnatal
growth data available. This seems unlikely. Finally, similar
to other studies, the number of PPAR�2 Ala12Ala carriers
was small, especially after stratifying for breast-feeding
duration (4). Despite the low number of subjects in this
group, we found significant effects in Ala12Ala carriers.
Furthermore, we found effects in Pro12Ala carriers and
significant trend effects for each additional Ala12 allele.

Several studies have found associations between this
PPAR�2 Pro12Ala gene polymorphism and body composi-
tion (4,30,31). A meta-analysis demonstrated that the
Ala12Ala is associated with higher BMI in adulthood (4).
However, in a recent very large GWA study, the PPAR�2
Ala12 allele was not identified as a BMI variant in adult-

hood (7). A number of studies have suggested that the
PPAR�2 Ala12 allele may be associated with adiposity
during childhood, although evidence of this is limited
(5,6,15). In a small study, Pihlajamäki et al. (5) showed that
children with the Ala12 allele were heavier at age 7 years.
Also, in a cohort of children from 1–6 years of age, an
association of the PPAR�2 Ala12 allele with increased
adiposity was only found in girls aged 3–4 years (6). Two
large birth cohort studies found no association between
this PPAR�2 polymorphism and birth weight (10,11).
Eriksson et al. (32) described a gene–birth weight inter-
action in adults, where individuals with the Ala12 allele
and a lower birth weight were at risk of increased lipid levels.

No other studies have examined the effect of this
polymorphism on growth in fetal life and infancy in a large

FIG. 2. Differences in weight between fetal PPAR�2 Pro12Ala genotypes using Pro12Pro as the reference in 3,091 children. Values reflect the
difference in weight and are based on repeated-measures regression analysis, using the following model: Weight (g) � �0 � �1 � age � �2 � age2 �
�3 � genotype � �4 � genotype � age � �5 � sex.
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FIG. 3. Differences in postnatal weight between fetal PPAR�2 Pro12Ala genotypes stratified by duration of breast-feeding in 2,690 children.
Values are regression coefficients (95% CI) and reflect the difference in weight gain (g/week). Model is adjusted for gestational age at birth and
sex of the child. Estimates based on repeated-measures regression analysis.
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prospective cohort. Most studies on weight and body
composition were performed retrospectively on cross-
sectional data. We believe that if this PPAR�2 polymor-
phism is truly associated with growth in early life,
associations with longitudinally measured growth patterns
might be expected to be stronger than those with only one
or two growth measurements. Our study showed that
carriers of at least one PPAR�2 Ala12 allele had an
increased growth rate in weight until the age of 18 months.
The postnatal effect on growth rate appeared to be depen-
dent on duration of breast-feeding. No association was
found between genotype and growth rate in children who
had received at �4 months of breast-feeding. Among
children who were breast-fed for �4 months, a significant
positive effect on growth rate of up to almost 10 g/week
was found in the PPAR�2 Ala12 allele carriers. The size of
the effect was inversely related to breast-feeding duration.
These findings may indicate a possible gene-nutrition
interaction with regards to growth rate.

There have been a limited number of previous studies that
also have suggested a gene-nutrition interaction concerning
this PPAR�2 polymorphism. In a large cohort, Memisoglu
et al. (33) found that the relationship between dietary fat
intake and BMI was dependent on PPAR�2 genotype. In this
study, dietary fat intake was strongly associated with an
increased risk of obesity among Pro12Pro carriers, although
no association was reported among carriers of the Ala12
allele. Luan et al. (17) found that dietary fat intake (expressed
as polyunsaturated-to-saturated fat ratio) was not associated
with BMI or fasting insulin levels in Pro12Pro carriers but
was inversely related in these outcomes in Ala12 allele
carriers. Other studies, however, were not able to replicate
these results (18,33). Our results would be in line with the
findings of Luan et al. (34) based on the assumption that
breast milk contains more polyunsaturated fatty acids than
formula. Longer breast-feeding duration could lead to a
higher polyunsaturated fat intake and, subsequently, to a
relatively lower growth rate among Ala12Ala carriers who
were breast-fed compared with those who were formula fed.
Breast-feeding has also been indicated to have a protective
effect on the risk of obesity, although the effect appears to be
limited (19–21). Our results suggest that this protective effect
might be modified by PPAR�2, because we found the highest
growth rates in children who were never breast-fed or were

breast-fed for �4 months and were Ala12 allele carriers.
Furthermore, rapid weight gain in the first months of life is
associated with increased risk of obesity in childhood (35).
Based on the current study, it could be hypothesized that the
interaction between PPAR�2 and breast-feeding plays an
important role in this association.

From the current data, however, it remains unclear
whether breast-feeding reduces the risk of an increased
growth rate in PPAR�2 Ala12 allele carriers or formula
feeding increases that same risk. The associations may be
explained by either growth-stimulating or metabolism-
inhibiting activities among Ala12 allele carriers. A previous
study has shown that the PPAR�2 Ala12 allele is associ-
ated with a moderate reduction in PPAR�2 transcriptional
activity (36). However, this study also demonstrated de-
creased BMI in Ala12 allele carriers, a finding that has been
not confirmed by a large meta-analysis (4,36). Mouse
models showed that mice with reduced PPAR�2 activity
seem to be resistant to high-fat diet–induced obesity, but not
high-carbohydrate diet–induced obesity (37). The current
study did not allow us to measure calorie intake of breast-fed
or formula-fed children. Calorie intake in breast-feeding has
been shown to be dependent on maternal factors, such as
body composition and nutritional status (38). All these fac-
tors indicate that the underlying mechanism in which
PPAR�2 Pro12Ala interacts with early dietary intake is highly
complex and emphasizes the necessity for further genetic
association and functional studies.

In summary, our results suggest that this PPAR�2
polymorphism influences growth rate from early fetal life
to infancy. This effect on growth rate is restricted to
infants who were breast-fed for �4 months. Studies in
larger cohorts with a longer follow-up period will allow us
to examine whether these effects persist throughout child-
hood. Additionally, systematic searches for common ge-
netic variants by means of GWA studies may enable us to
obtain a more complete understanding of what genes are
involved in growth in fetal life and infancy and how they
interact with the environment.
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