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Abstract: This paper proposes a novel hardware implementation of a dense recovery of 

stereovision 3D measurements. Traditionally 3D stereo systems have imposed the 

maximum number of stereo correspondences, introducing a large restriction on artificial 

vision algorithms. The proposed system-on-chip (SoC) provides great performance and 

efficiency, with a scalable architecture available for many different situations, addressing 

real time processing of stereo image flow. Using double buffering techniques properly 

combined with pipelined processing, the use of reconfigurable hardware achieves a 

parametrisable SoC which gives the designer the opportunity to decide its right dimension 

and features. The proposed architecture does not need any external memory because the 

processing is done as image flow arrives. Our SoC provides 3D data directly without the 

storage of whole stereo images. Our goal is to obtain high processing speed while 

maintaining the accuracy of 3D data using minimum resources. Configurable parameters 

may be controlled by later/parallel stages of the vision algorithm executed on an embedded 

processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames 

per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained 

considering 2 Mpix images, with a minimum initial latency. The implementation of 

computer vision algorithms on reconfigurable hardware, explicitly low level processing, 

opens up the prospect of its use in autonomous systems, and they can act as a coprocessor 

to reconstruct 3D images with high density information in real time.  
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1. Introduction 

In recent years, stereovision has become a very attractive sensing technique for obtaining 3D 

information [1–3]. Recovering depth via triangulation is present in many computer vision systems. 

Several authors have attempted to imitate the human vision in different electronic systems devoted to 

stereo vision [2]. Stereovision systems can provide accurate real-time data in different applications. A 

rough division may be done to differentiate the recovery of 3D measurements using triangulation from 

different points of view.  

The arrangement of the cameras imposes some restrictions on any stereovision algorithm. Typical 

setups include two or three cameras (ideally coplanar) not too far apart to facilitate the overlap of their 

images to provide an accurate 3D measurement. Other systems try to obtain a broader 3D 

measurement from a large covered area, so the cameras are placed throughout a room with a large field 

of view (for example, for object location in sports video sequences). In our case, the SoC 

implementation is more suitable to coplanar (compact) stereovision systems. In other stereovision 

systems in which optical axes intersect, a previous rectification process is needed.  

This type of stereovision systems are ruled by the epipolar geometry which is the intrinsic 

projective geometry existing between two views from the camera arrangement. A widely used 

configuration of that geometry is shown in Figure 1 [4], where the cameras with centers (c, c )́ share 

the same image plane (parallel optics axes), with the epipoles (e, e )́ located at infinity [5,6]. Parameter 

  denotes the distance between optical centers. 

Figure 1. Epipolar geometry.  

 

 

In order to obtain 3D measurements is necessary to know the intrinsic parameters of each camera 

and the extrinsic parameters of the overall stereo system. Typically, these parameters are obtained 

through a calibration process. The calculation of a 3D measurement involves obtaining the inverse 

process of image formation expressed in Equation (1):  
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  are the 3D coordinates for a considered scene point.  

   is the rotation matrix and the translation vector.  

   is the equivalent focal length of the system.  

   is an scale factor, considering that     .  

          is the optical center (expressed in pixels).  

        are pixel coordinates of the point captured by the camera sensor.  

So given a point in an image, possible location correspondence in the other image is limited to a 

single line. Ideally for two identical aligned cameras it is the same horizontal line. In addition, inside 

that line only a range of pixels correspond to the overlap between the two cameras field of view. 

Therefore, to get the depth,    
  

  
 

  

    , it is only necessary to obtain the disparity    between 

corresponding image points, the other parameters remain constant, as shown in Figure 2.  

Figure 2. Disparity measurement.  

 

 

A stereovision system has to solve two problems point selection and correspondences, as not all 

points of the scene are suitable to find its correspondence. Reliable 3D points are scene points which 

have features that uniquely identify it in the different images. The other points should be discarded as 

they would produce mismatches.  

Obtained the 3D point correspondences, a whole reconstruction of the 3D data should be done, 

imposing different rules to give robustness to the image depth of the scene, as described in [7]. The 

latter is beyond the scope of our paper, restricting the SoC processing to obtain 3D data to later stages 

of an algorithm.  

Many point selection and correspondence methods are used in the scientific literature. A ranking of 

different stereoscopic algorithms is given in [1]. For the selection of image points, many articles 

suggest methods for detection of lines and corners in stereo images [7]. This method provides reliable 

3D data by finding correspondences for a small area in the stereo images considering the image 

gradient as a feature of matching. To consider other textured objects, several authors have introduced, 

in the point selection, the entropy feature of the neighborhood area. Thus, pixels characterized by a 

high entropy value are more likely to be effective to achieve the correspondence between the images as 

it is shown in [8]. In our case, the latter method is preferred for point selection so dense 3D data can be 

recovered, without further exploration about subpixellic location.  
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For this reduced number of points, a correspondence between images should be obtained thus 

providing a disparity and also a depth measurement. There are different algorithms and techniques for 

matching corresponding areas as shown in [9]. Considering a coplanar stereovision system, there is 

small change of perspective between cameras, so it could be assumed that the object (if not occluded) 

is captured very similarly by the camera set. To calculate the similarity of two image areas, the most 

commonly used method is the sum of squared differences (SSD), which in the ideal case of complete 

correspondence between two areas, SSD is zero. In this case, the algorithm considers there is a 

correspondence if a minimum SSD exists. Coplanar geometry facilitates the correspondence because 

matching areas are searched on a line. Computation of SSD is done on selected points around that line. 

To consider a zone as a correspondence area, that SSD value must be the minimum value of SSD on 

the line and always below a maximum value threshold. If there are other possible matching areas on 

the line, an ambiguity arises, and different approaches may be taken into account. In our case, areas 

with ambiguity in the correspondence are discarded. 

Other authors prefer to use the sum of absolute differences (SAD) [1–3,5–8]. The SAD method is 

hardware efficient, given its regular structure and large parallelism [10]. In contrast, this method 

introduces some errors if there is any occlusion or light is not uniform [11]. There are other studies that 

seek to increase the accuracy and reliability of stereovision, using hierarchical Gaussian basis 

functions and wavelet transform to obtain correspondences [7].  

The approach followed in this work is to obtain an autonomous stereovision system, which provides 

a 3D image of the scene, without limiting the number of correspondences, a common issue of many 

embedded algorithms that use stereovision. Besides, vision sensors have an increasing number of pixels, 

thus a SoC for stereovision is more needed than ever. The use of large images is important because the 

reliability of the depth estimation is highly dependent on the resolution of the input images [2].  

Most real time vision systems are expensive, inflexible, with few possibilities for reuse in the 

design and parameterization. The use of FPGAs can improve these aspects as it is shown in [11] by 

leveraging the parallelism inherent in many vision algorithms. Many authors have used reconfigurable 

hardware to accelerate certain computer vision algorithms as in [12].  

The paper is organized as follows: Section 2 presents different related works. Section 3 describes 

the overall architecture; In Section 4, the entropy measurement and entropy block are presented. 

Section 5 explain data arbitration used in the proposed architecture. In Section 6, it is presented the 

correlation block with special interest in the efficient control implemented. Finally, results and possible 

configurable implementations are given in Section 7. 

2. Related Work 

Different authors have proposed architectures to accelerate the computation of dense disparity maps 

in real-time applications, trying to maintain the accuracy of the results. In [13], a stereovision system 

using semi-global matching (SGM) implement different steps for 3D recovery, from image rectification, 

to obtaining an estimated disparity map. It achieves a processing framerate of 30 fps for VGA images. 

It is stated there in that local stereo matching methods are more suitable for hardware implementations.  

The most common implementations that can be found in the field of dense disparity maps 

architectures are based on SAD [14–18]. In [16–18] only the SAD process is implemented. In [16] 
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three different configurations are presented, based on the number of resources used. In [14] a 

stereovision system using three cameras resolves more reliably ambiguous points, making the system 

more robust, since for each 3D scene point two different correspondences are obtained. However the 

setup and cost of this stereovision system is greater. In [15], an architecture for stereo matching is 

based on adaptive ROI in SAD process. The requirement of storage of a sub-image in memory does 

not allow on-the-fly processing.  

Other authors [19,20] propose the use of census transform to calculate the disparity image. The 

census transform reduces size memory and accesses to that memory. Thus, only binary operations are 

performed, reducing the processing time, but accuracy is also reduced. 

We propose a novel architecture that selects the most appropriate points by an entropy 

measurement. The configuration allows for different number of candidates, thus there will be a large 

number of distributed points throughout the image. Image processing is performed on-the-fly, so data 

storage is reduced at minimum. The main goal is to increase processing speed using minimum 

hardware; the improvement in accuracy of the stereovision algorithm is out of the scope of our paper, 

without performing any 3D scene reconstruction, thus high level algorithms will be responsible for 

improving and interpreting the 3D data results similar to the approach given in [21].  

3. SoC Architecture for 3D Dense Stereovision 

The algorithm proposed herein is divided into the following main blocks: 

(a) Entropy block to select suitable points: This block indicates if a point is suitable for use in a 

matching process. Corresponding region of interest (ROI) is written in a FIFO memory. In this 

step, the entropy function is used, as it provides general information without loss of relevant 

information to obtain scene 3D points.  

(b) ROI correlation matching: In this block it is evaluated a number of areas to look for 

correspondence, using SSD or SAD. Subsequently, the depth calculation is performed, 

discarding possible ambiguities.  

There is one important pre-requisite for the architecture of the system that is not to store the whole 

image in memory, to process the image flow on-the-fly and at the full rate of the camera. The 

producer-consumer architecture should overlap the operation with minimal resources using a double 

buffer strategy, as will be described later. The architecture uses the same kernel size for the calculation 

of entropy and correlation matching, thus disparity is calculated for the ROI center.  

The flowchart shown in Figure 3 presents the overall SoC architecture designed. The procedure 

starts with the computation of image entropy from both video-camera flows. Using these entropy 

values, suitable candidate areas of each image are selected, in order to do a ROI matching by the 

correlator block. From the N possible set of cameras of the stereoscopic system, the herein described 

algorithm process two image flows. A higher threshold for the entropy values is applied to camera 1, 

selecting ROIs with high entropy values. The threshold is dynamically adjusted in order to maintain a 

certain percentage of candidate points in the video flow. The neighborhood of candidate points (ROI 

values) is stored in a local memory to later processing. On the other side, the entropy threshold for the 

camera 2 image flow, is lower than threshold applied to camera 1, thus correspondence areas are 
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maintained in the processing to match good candidate points selected on camera 1, without losing 

important image information.  

Figure 3. Proposed SoC architecture.  
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A sub-sampling in possible candidate points is done. Thus if a point is selected as candidate, the 

next candidate should be at a minimum distance from it, giving a dispersion of candidate points 

throughout the image. This spreading reduces the amount of local memory needed, allowing the 

hardware to process the image flow on-the-fly. The high-entropy ROIs from camera 1 image flow are 

stored in a double buffer memory bank, used to process different image rows. It is worth to note that 

spreading candidate points in vertical could lead to process non-consecutive rows. The double buffer 

allows for the candidate selection in one row while making the correlation matching with areas from 

camera 2 for a previous row. Thus, the image flow from camera 2 should be delayed one complete 

image line, in order to start providing candidate correlation matching areas to be processed with 

candidate point areas from camera 1 for a particular line. In the next sections, the hardware 

implementation of the different blocks is described.  

4. Entropy Computation 

Several authors have identified the entropy value of a ROI area as a suitable indicator to carry out a 

reliable search of its correspondence in stereo images [8]. The entropy of a ROI is an energy 
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measurement which should be present for a robust matching. The entropy E of a     ROI is 

calculated using the Equation (2):  

                                  
     
   

     
     (2)  

where   is the probability that a given gray level appears in the area of size       pixels referenced to 

the pixel under analysis (coordinate    ). The probability  should be obtained as the number of 

occurrences of each gray level in the area under analysis normalized by the total number of pixels, thus 

a common formula is based on histogram values as expressed in Equation (3):  

        
        
                    (3)  

where      is the histogram binned in a total number of Bins and g is the current bin gray level in the 

area of size       pixels referenced to the pixel under analysis.  

Figure 4(a) shows a test image of 1,024 × 1,024 pixels with a captured scene presenting many 

different features and depths. Figure 4(b) depicts the processed entropy image. The greater the entropy 

of the image area represented, the highest color scale is shown at the right.  

 

Figure 4. (a) Original image. (b) Corresponding entropy image.  
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Figure 5 shows the image pixels with higher entropy which are suitable to be used in the 

computation of stereo disparity considering a dispersion of 5 pixels between rows. It can be seen that 

suitable points are distributed throughout the whole image, generating a dense stereo image. Possible 

areas with few points are due to low entropy values. It is worth to note that in these areas ambiguous 

matches are obtained. Properly selecting different thresholds more or less pixels in the entropy image 

are selected. The adjustment of the threshold could be specified locally, considering different areas in 

the image each one with its own dynamic entropy threshold.  

  



Sensors 2012, 12 

 

 

1870 

Figure 5. Entropy areas used as matching candidates.  

 

4.1. Hardware Block for Entropy Computation 

As indicated in the previous section, the calculation of the entropy of a ROI image is obtained from 

its histogram (occurrences of each gray level). The proposed design process the image in real-time 

without the need to store the image in memory. Therefore, linear buffers are used to present the image 

stream in a parallelized way thus it is possible to access to all the pixels in the area at the same time. 

The aim is to process a new image area at each clock cycle. Considering a delay for each histogram 

computation of K cycles, it is necessary to use at least K histogram blocks to reuse the block once it 

has finished its computation. The scheme of one histogram calculation block (implemented in XSG) is 

shown in Figure 6.  

Figure 6. Histogram computation block.  
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Let us consider a squared ROI of size n by n pixels in the image. By using a dual-port memory it is 

possible to write all data from the input port in one clock cycle and then read each position, pixel by 

pixel, updating a specific counter block which is associated to the gray level of that pixel. The 

histogram division consider herein is 32 bins for the 256 gray levels, which provides enough 

information while reducing the hardware resources consumed. In addition, the number of bins has been 

reduced from the total number of gray levels in order to reduce the entropy measurement which in turn 

reduces the number of points with high entropy. The later selected points, considering this smoothed 

entropy, have more probability to get a correct value of disparity. The histogram values are introduced 

to a combinational block    that implements Equation (4) in order to obtain the entropy values:  

                        (4) 

where      represents the histogram values related to the probability of occurrence in a given area. A 

LUT function       is made in the implementation block to carry out the calculation of the logarithm 

as given in [22], achieving a maximum processing frequency up to 122 MHz. All resulting values of 

the    functions are summed by a vertical line of adders in cascade as it is shown in Figure 7.  

Figure 7. Entropy calculation from counter histogram ROI values.  

 

 

With the proposed structure, the entropy value for a given image ROI is obtained each clock cycle, 

after an initial latency. Thus, the hardware block provides a whole image entropy on-the-fly with 

minimum implementation in hardware [23]. Next section, consider that there are stored in local 

memory the information about ROI candidates selected from camera 1 with a high threshold value, 

introducing the delayed row from image data flow of camera 2. An important aspect to note is that ROI 

data in both memories are stored following the row order, very useful to restrict possible region of 

matching in the correlation block as it will be explained later.  
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5. Data Arbitration for an Efficient Data Flow to Correlation Block 

Candidate points from image flow of camera 1 are stored in the double buffer alternating the 

memory for each new processed row. ROI values and other features as mean gray level, standard 

deviation, etc. could be introduced as the vector to be matched with camera 2. Data flow from camera 

2 is delayed a row. Therefore, at the start of a row from camera 2, all the possible candidates from 

camera 1 are already stored in memory. Thus, each possible ROI selected from camera 2 data flow is 

offered to the correlator block in order to obtain a valid matching with any of the values stored in 

current memory used for camera 1 candidates.  

Figure 8. Control data flow to introduce data to correlator block. 

 

 

Figure 8 shows an implementation diagram for data arbitration. Control_Alta_H1 subsystem 

determines whether the area under analysis exceeds the threshold level, if so the ROI values and 

location are written in local memory (Memoria_impar/par). The same procedure is done for image 

flow of camera 2 (Control_Alta_H2). In this case, the double buffer technique is substituted with a 

FIFO memory. If exists data in this FIFO memory, the correlator block starts the search around. It 

reads consecutively the candidates of camera 1 looking for a match with the current point of camera 2 

obtained from the FIFO memory. Entropy value of the current ROI (H_Cam1) is introduced to the 

Control_Alta_H1 block, and compared with the corresponding threshold. If the value of entropy passes 

the threshold, the ROI is given in parallel to a FIFO memory. In the same way, the Control_Alta_H2 

block comes with the value H_Cam2 and another FIFO memory for that image flow. Each ROI stored 

in those FIFOs is given to the correlation block. Next section presents the efficient correlation the 

range of possible ROIs for a given image point.  
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6. Efficient Stereovision Correlation 

Several techniques could be applied to obtain the correlation matching. In our work, Sum of 

Absolute Difference (SAD) is used. The literature discusses several variations that use this method of 

correlation. Most focus on the selection of the ROI size and its geometric shape [24]. Geometry 

variation for the ROI image is out of the scope of this paper. SAD is suitable to be implemented in 

reconfigurable hardware, using simple efficiently available resources. In contrast, SSD (sum of 

squared differences) needs to include a multiplier block to calculate the correlation value. In our 

context, it is advisable to implement hardware blocks for an algorithm of reduced complexity which 

provides correct results. The SAD correlation for two image areas considering rectangular ROIs is 

obtained by the application of Equation (5): 

                                             
     
   

     
     (5) 

where IL and IR are the set of pixels in the left and right image respectively; D is the number of 

consecutive pixels in the possible overlapping range where to find the correspondence of the IR image 

in the IL image. Therefore, each ROI stored in the FIFO is correlated only with the areas of selected 

buffer that are within the range D, processing the minimum number of possible correlations. This 

range is defined for each new area of the FIFO to correlate, taking into account the location of current 

camera 2 pixel. In Figure 9 it is shown an example of range D available for correlation given a specific 

pixel from camera 2.  

Figure 9. Range D available for correlation.  

 

 

To carry out the implementation of the correlation block, considering ROIs of n × n pixels to 

correlate, n × n subtract operations are needed. Next, considering the absolute value of each 

subtraction, a pipeline of adders implemented in cascade calculates the overall total sum. After an 

initial latency, a complete pair ROI correlation is made in each clock cycle. In Figure 10, the 

implementation for a ROI of 9 × 9 pixels is shown. Several stages of adders compute in pipeline the 

sum of absolute differences (SAD output). Besides the block offers synchronized the location of pixels 

in camera 1 and 2 to obtain the disparity. 
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Figure 10. Correlation implementation.  

 

 

As indicated above, all selected points from camera 1 should be good candidates in order to obtain a 

satisfactory match. But, possible ambiguities may occur if certain selected areas are too similar while 

searching in the same row (i.e., textured zones) [23]. To solve these uncertainties, a hardware block to 

discriminate ambiguous points is proposed. On the other hand, possible errors due to occlusions will 

be correctly discarded because the matching provides low values of correlation thus discarding  

that ROI.  

Figure 11. Implementation of ambiguous points discriminator. 
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For each ROI candidate from camera 2 a set of correlation values is obtained. The minimum SAD 

correlation value represents the highest similarity between areas, and therefore provides the suitable 

correspondence. There are two situations where the correspondence should be discarded. First, if the 

minimum SDA correlation value does not satisfy a minimum similarity threshold, and second, when 

several correlation values are very close to that minimum SDA correlation value, because several ROIs 

could be considered as a suitable matching (ambiguous points). For the latter, a hardware block is 

proposed (Figure 11). The two better correlation values are stored for each correlation sub-process. 

ROI candidates are discarded if there is not enough correlation difference (CorrDif) between them. 

The disambiguation block allows for pipelined processing. 

7. Results 

This section presents different results of the proposed SoC. First, a detailed analysis of all 

parameters involved in the algorithm is performed, obtaining the resource consumption for different 

configurations. Next subsection presents the synthesis results for a SoC implementation in a 

XC6SLX150T Xilinx Spartan 6 FPGA.  

7.1. Analysis of Design Parameters 

The fundamental requirement in the proposed SoC is real time image processing. To achieve this 

approach, the number of points to process should be adjusted properly, in order to not exceed the 

planned consumption of hardware resources. In the proposed algorithm, entropy thresholds control the 

number of candidate points to process and limit the maximum number of 3D points. Several options 

can be used to perform a dynamic control of these thresholds, as Gaussian estimators, PID regulation, 

etc. from an in-FPGA processor. Another design requirement is to obtain stereo points throughout the 

image, so a certain number of candidate points in each line should be established. In addition, taking 

into account the image size in order to megapixels (Mpix) provided by current sensors will be 

necessary to introduce scatter parameters in columns and rows.  

Figure 12. Relationship between parameters: Influence and dependence.  
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Figure 12 presents the relationship between all parameters involved in the proposed system. 

Highlighted parameters are independent; while the rest of parameters are fixed by means of an expression.  

As indicated in previous sections, stereo 3D processing is carried out row by row, with a double 

buffering schema. Therefore, resources should be dimensioned to process a single row completely 

during the reception of the next image row. Moreover, assuming a continuous data transmission from 

the sensor, the design frequency should be fixed to at least the data transmission frequency (camera 

framerate).  

To begin a correlation stage of a single row, all candidate points of camera 1 should previously be 

stored in a buffer memory. Therefore, only two parameters, framerate and row size, are involved to 

determinate the suitable number of candidate points to be processed in a row, through a dynamic 

threshold parameter. In some cases, different areas in the image could present different values of 

entropy so that the number of candidate points could vary considerably. To address this situation, the 

threshold 1 is an array of parameter values, presenting different value for each camera line. At the end 

of a frame processing, new values for threshold 1 are modified in order to obtain the desired number of 

candidate points. The constant   represents the ratio between the number of candidate points in the 

camera 2 and camera 1. In the proposed algorithm, the threshold parameter of the camera 2 is used to 

maintain stable this relationship, updated in each line in the same way that the threshold 1. A simple 

PID control loop should be capable to adjust the threshold values, but the parameters should be 

adjusted to have an overdamped oscillation. Besides, to obtain a distribution of points throughout a 

row, a scatter parameter is applied to obtain a minimum separation between candidate points.  

Once the above parameters are fixed we could estimate the number of correlations to execute in a 

single row by means of expression Equation (6): 

       
             

   
      

       

   
  

        (6)  

where         is the number of pixels in an image row,     is the scatter applied to the row,        is 

the range of possible values of the camera 1 to process respect to a candidate point from camera 2, as 

shown in Figure 13. For example, given a point     in the row of the camera 2, the range of possible 

values in the row of the camera 1 is represented by this expression:                       .  

Figure 13. Range D in overlapping area.  
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The distance, between        and        , represents the overlapping area where correspondences 

could locate. Therefore, this distance defines the maximum range expressed as      in the Figure 13. 

To clarify this requirements, in Figure 14 an estimated number of correlations to process in each 

row is shown. The y-axis represents the size of the row in pixels and the x-axis the percentage number 

of candidate points. 

Figure 14. Example of estimated number of correlations for each row.  

 

Two parameters define the size of the double buffer memory: entropy kernel size and number of 

candidate points to obtain 3D depth. It could store coordinates and area to process of all possible 

suitable points in a buffer, while in other buffer candidate points are correlated. This size      could 

be estimated by Equation (7):  

          
        (7)  

where     is the maximum number of suitable points that the entropy block could select through the 

current threshold and   is the size of the kernel in pixels, assuming a squared kernel. The number of 

suitable points is fixed through previous parameters. On the other hand, kernel size parameter is 

practically independent of processing time, completed initial latency whenever a new image is 

transmitted. In contrast, resources are increased in entropy and correlation blocks. Sometimes, 

according to image information, a greater kernel size improves the location of the correspondence and 

avoids some ambiguities. However, the FIFO memory must be larger since more points are suitable 

due to a lower threshold. The FIFO memory size is fixed through size of the double buffering memory 

and the parameter  , because this parameter relates the number of candidates points to store. Entropy 

and correlation kernels have the same dimension (n × n). In the proposed implementation, it will be 

possible to configure the correlation kernel less than entropy kernel in order to reduce resources.  

Finally, the number of correlators to implement is analyzed. In previous sections, a single correlator 

has always been used in our SoC implementation. Depending on the resources available or framerate 

to process, several correlators could be implemented. The two main blocks (entropy block and 

correlation block) process an area at each clock cycle, after the initial latency of each block. As it is 

shown in Figure 14, the number of correlations exceeds the maximum number of pixels to process in 

the entropy block (all pixels in the row). So the next processing row should wait for the correlation 
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block to finish its task. Otherwise, it just could discard the remaining candidate points in the 

correlation process, losing some 3D points. To increase the achievable framerate, the optimal solution 

would be to implement several correlator blocks in order to ensure complete processing of points in the 

ROI matching.  

Table 1 shows the values of all parameters for different configurations. The first column contained 

common image sizes used in the actual systems. We make a distinction between various values of 

candidate points and two ROI sizes. From this, all parameters are determined.  

Table 1. Design parameters and resource consumption.  

Size 

Image 

(Mpix)  

Row 

Size 

(Pix)  

Column 

Size (Pix)  

Candidate 

Points 

ROI Size  

(n × n)  

Correlations/ 

Row 

Double 

Buffer 

Memories 

Size (KBytes)  

FIFO 

Memory 

Size * 

(KBytes)  

Delay 

Buffers 

(KClycles)  

Framerate * 

(Images/Sec) 

fclk = 100 MHz 

0.3 640 480 

5% 
9 × 9 

203 
5 3 5 4,203 

13 × 13 10 7 8 4,203 

10% 
9 × 9 

781 
10 7 5 1,090 

13 × 13 21 15 8 1,090 

15% 
9 × 9 

1,781 
15 11 5 476 

13 × 13 32 24 8 476 

1.2 1,280 960 

5% 
9 × 9 

781 
10 7 11 545 

13 × 13 21 15 16 545 

10% 
9 × 9 

3,125 
20 15 11 135 

13 × 13 43 32 16 135 

15% 
9 × 9 

7,031 
31 23 11 60 

13 × 13 64 48 16 60 

2 1,600 1,200 

5% 
9 × 9 

1,416 
12 9 14 225 

13 × 13 27 20 20 225 

10% 
9 × 9 

5,583 
25 18 14 57 

13 × 13 54 40 20 57 

15% 
9 × 9 

12,500 
38 28 14 25 

13 × 13 81 60 20 25 

3 2,048 1,536 

5% 
9 × 9 

1,904 
16 12 18 143 

13 × 13 34 25 26 143 

10% 
9 × 9 

7,617 
33 24 18 35 

13 × 13 69 51 26 35 

15% 
9 × 9 

17,139 
49 36 18 15 

13 × 13 103 77 26 15 

5.3 3,008 1,960 

5% 
9 × 9 

3,650 
24 18 27 62 

13 × 13 50 37 39 62 

10% 
9 × 9 

14,602 
48 36 27 15 

13 × 13 101 75 39 15 

15% 
9 × 9 

58,679 
73 54 27 3 

13 × 13 152 114 39 3 
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7.2. SoC Implementation Results 

In Tables 2 and 3 the resources consumed by the SoC implementation using a XC6SLX150T Xilinx 

Spartan 6 FPGA are shown.  

Table 2. Resources used on a XC6SLX150T: Slice Registers and Slice LUTs. 

 
XC6SLX150T Xilinx Spartan 6 FPGA 

ROI Size  

(n × n)  

# Resources Entropy Block # Resources Correlation Block 

SliceRegisters SliceLUTs SliceRegisters SliceLUTs 

9 × 9 21% 46% 5% 11% 

13 × 13 30% 65.9% 7.5% 16.4% 

Table 3. Resources used on a XC6SLX150T: Block RAM. 

Image Size 

(Mpix)  

Row Size 

(Pix)  

Column 

Size (Pix)  

Candidate 

Points 

ROI Size 

(n × n)  

# Utilization Block 

XC6SLX150T-RAM/FIFO 

0.3 640 480 

5% 
9 × 9 1 % 

13 × 13 2 % 

10% 
9 × 9 2 % 

13 × 13 5 % 

15% 
9 × 9 4 % 

13 × 13 9 % 

1.2 1,280 960 

5% 
9 × 9 2 % 

13 × 13 5 % 

10% 
9 × 9 5 % 

13 × 13 12 % 

15% 
9 × 9 8 % 

13 × 13 18 % 

2 1,600 1,200 

5% 
9 × 9 3 % 

13 × 13 7 % 

10% 
9 × 9 7 % 

13 × 13 15 % 

15% 
9 × 9 10 % 

13 × 13 23 % 

3 2,048 1,536 

5% 
9 × 9 4 % 

13 × 13 9 % 

10% 
9 × 9 9 % 

13 × 13 19 % 

15% 
9 × 9 14 % 

13 × 13 29 % 

5.3 3,008 1,960 

5% 
9 × 9 6 % 

13 × 13 14 % 

10% 
9 × 9 13 % 

13 × 13 29 % 

15% 
9 × 9 21 % 

13 × 13 44 % 
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Figure 15(a) shows the results of entropy for the Cones dataset. To obtain these results, the size of 

the ROI is set to 13, using 32 bins. A particular case is shown in Figure 15(b), which represent, the 

values of entropy for a specific line of the image (line 200). The thresholds for determining whether a 

suitable point is selected are displayed with green color. These thresholds are always above the 

minimum threshold shown in red. The green circles represent selected points to be stored in memory. 

The percentage of candidate points to be selected is set to 15% and the dispersion value to 7. It is 

observed that in areas of the line where entropy values are lower than the threshold are not selected 

points, so the number of selected points is below 15%. In successive iterations, the threshold should 

decrease in these areas in order to obtain more points (≈15%). 

Figure 15. (a) Entropy values for the Cones dataset. (b) Entropy values for horizontal line 200. 

 

(a) 

 

(b) 

 

After presenting different possibilities of the system, a specific configuration has been tested, 

considering an image size of 1,280 × 960 pixels. The ROI size was set to 9 × 9 pixels, same kernel size 

for the calculation of entropy and correlation matching. Desired candidate points was set to 10% of 

points for each row, and 4 pixels dispersion. Figure 16 shows the dense disparity map with 3D 

information recovered from the image tests.  

Figure 16. Dense disparity map.  
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The stereo flow is injected directly from an external memory connected to the FPGA. This real 

emulation allows considering any stereo system regardless of the source image used, without taken 

care about other aspects such as control of camera lines and parameters of image capture. This dense 

map could give up to 30,000 data points using the configuration presented above.  

Figure 17. Correlation results: (a) Original Cones dataset. (b) Original Tsukuba dataset. 

(c) and (d) Ground truth. (e) and (f) Correlation Results.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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To finalize the results section, Figure 17(e,f) shows overall correlation results for the Cones and 

Tsukuba datasets without taking into account the selected suitable points, respectively. So these results 

are provided by the proposed SoC in the case that all points of the image are suitable points. This leads 

have zero entropy threshold. In Figure 17(a,b) the original images of each dataset are shown. Then, it 

shows the ground truth (Figure 17(c,d)). Depending on the parameters configuration, a number of 

disparity points are provided by the SoC. They should have an entropy value exceeds its threshold. 

Thus, appropriate disparity values will be obtained while maintaining accurate results. 

8. Conclusions 

This paper presents an efficient hardware implementation of a parametrisable stereovision SoC. The 

main contribution is the proposal of hardware architecture to correctly recover stereovision 3D 

measurements distributed throughout the whole image, eliminating the limitation on the maximum 

number of stereo correspondence points as it is commonly considered in many applications. Using 

double buffering techniques properly combined with pipelined processing, the use of reconfigurable 

hardware achieves a parametrisable SoC which gives the designer the opportunity to decide the correct 

dimension and features of this coprocessor.  

Control parameters could be downloaded into the FPGA via any communication bus (PCI, 

Ethernet) or changed by the later stages of the algorithm by means of an embedded processor. 

Parameters suitable for change are threshold values for candidate selection and dispersion of ROI 

candidates. Current digital cameras offer the possibility of modifying the frame rate reducing the 

image processed, thus high level computer vision may modify the number of 3D data to obtain for 

each particular configuration of cameras in the stereovision system. Other SoC parameters are fixed 

and a reconfiguration of the hardware should be addressed in those cases, i.e., image size, histogram 

bins, gray levels, etc. The SoC may return the number of total candidate points in each row or 

complete image flow, the number of ambiguous candidates in each row or complete image, etc. It is 

possible to process stereo images in real-time, thus, considering a hardware clock of 100 MHz inside 

the FPGA, image flows up to 50 fps of dense stereo maps (10% of pixels) could be obtained for  

2 Mpix images, with a minimum initial latency. Compared with time-of-flight depth cameras, classical 

stereovision may be used with any standard camera which in turn reduces the cost of the embedded 

system. 

The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level 

processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor 

to reconstruct 3D images with high density information.  

Acknowledgments 

This work has been funded by Spanish MICINN in the ESPIRA project (REF-DPI2009-10143).  

References 

1. Arnbrosch, K.; Kubinger, W. Accurate hardware-based stereo vision. Comput. Vision Image 

Underst. 2010, 114, 1303–1316.  



Sensors 2012, 12 

 

 

1883 

2. Diaz, J.; Ros, E.; Carrillo, R.; Prieto, A. Real-time system for high-image resolution disparity 

estimation. IEEE Trans. Image Process. 2007, 16, 280-285.  

3. Woodfill, J.I.; Buck, R.; Jurasek, D.; Gordon, G.; Brown, T. 3D vision: Developing an embedded 

stereo-vision system. Computer 2007, 40 106-108. 

4. Faugeras, O. Three-Dimensional Computer Vision: A Geometric Viewpoint; MIT Press: 

Cambridge, MA, USA, 1993. 

5. Fusiello, A.; Irsara, L. Quasi-Euclidean epipolar rectification of uncalibrated images. Mach. 

Vision Appl. 2011, 22, 663-670.  

6. Fusiello, A.; Trucco, E.; Verri, A. A compact algorithm for rectification of stereo pairs. Mach. 

Vision Appl. 2000, 12, 16-22.  

7. Moallem, P. Effective parameters in search space reduction used in a fast edge-based stereo 

matching. J. Circ. Syst. Comput. 2005, 14, 249-266.  

8. Cheng, L.A.; Gong, J.; Yang, X.; Fan, C.; Han, P. Robust affine invariant feature extraction for 

image matching. IEEE Geosci. Remote Sens. Lett. 2008, 5, 246-250.  

9. Perri, S.; Colonna, D.; Zicari, P.; Corsonello, P. SAD-Based Stereo Matching Circuit for FPGAs. 

In Proceedings of (ICECS '06): 13th IEEE International Conference on Electronics, Circuits and 

Systems, Calabria, Italy, 10–13 December 2006; pp. 846-849.  

10. Park, D.-K.; Cho, H.-M.; Cho, S.-B.; Lee, J,-H. A Fast Motion Estimation Algorithm for SAD 

Optimization in Sub-Pixel. In Proceedings of (ISIC '07): International Symposium on Integrated 

Circuits, Ulsan, South Korea, 26–28 September 2007; pp. 528-531.  

11. Kalomiros, J.A.; Lygouras, J. Hardware implementation of a stereo co-processor in a medium-

scale field programmable gate array. IET Comput. Digit. Tech. 2008, 2, 336-346.  

12. Kalomiros, J.A.; Lygouras, J. Design and evaluation of a hardware/software FPGA-based system 

for fast image processing. Microprocess. Microsyst. 2008, 32, 95-106. 

13. Banz, C.; Hesselbarth, S.; Flatt, H.; Blume, H.; Pirsch, P. Real-Time Stereo Vision System Using 

Semi-Global Matching Disparity Estimation: Architecture and FPGA-Implementation. In 

Proceedings of 2010 International Conference on Embedded Computer Systems (SAMOS), 

Hannover, Germany, 19–22 July 2010; pp. 93–101. 

14. Jia, Y.; Zhang, X.; Li, M.; An, L. A Miniature Stereo Vision Machine (MSVM-III) for Dense 

Disparity Mapping. In Proceedings of (ICPR 2004): 17th International Conference on Pattern 

Recognition, Beijing, China, 23–26 August 2004; pp. 728-731. 

15. Hariyama, M.; Yokoyama, N.; Kameyama, M.; Kobayashi, Y. FPGA Implementation of a Stereo 

Matching Processor Based on Window-Parallel-and-Pixel-Parallel Architecture. In Proceedings  

of 48th Midwest Symposium on Circuits and Systems, Miyagi, Japan, 7–10 August 2005;  

pp. 1219-1222. 

16. Lee, S.H.; Yi, J.; Kim, J.S. Real-time stereo vision on a reconfigurable system. Lect. Notes 

Comput. Sci. 2005, 3553, 225–236. 

17. Perri, S.; Colonna, D.; Zicari, P.; Corsonello, P. SAD-Based Stereo Matching Circuit for FPGAs. 

In Proceedings of (ICECS '06): 13th IEEE International Conference on Electronics, Circuits and 

Systems, Calabria, Italy, 10–13 December 2006; pp. 846-849. 



Sensors 2012, 12 

 

 

1884 

18. Cuadrado, C.; Zuloaga, A.; Martin, J.L.; Lazaro, J.; Jimenez, J. Real-Time Stereo Vision 

Processing System in a FPGA. In Proceedings of (IECON 2006): IEEE 32nd Annual Conference 

on Industrial Electronics, Bilbao, Spain, 6–10 November 2006; pp. 3455-3460.  

19. Naoulou, A.; Boizard, J.-L.; Fourniols, J.Y.; Devy, M. An Alternative to Sequential Architectures 

to Improve the Processing Time of Passive Stereovision Algorithms. In Proceedings of (FPL '06): 

International Conference on Field Programmable Logic and Applications, Toulouse, France,  

28–30 August 2006; pp. 1-4. 

20. Ibarra-Manzano, M.A.; Almanza-Ojeda, D.-L.; Devy, M.; Boizard, J.-L.; Fourniols, J.-Y. Stereo 

Vision Algorithm Implementation in FPGA Using Census Transform for Effective Resource 

Optimization. In Proceedings of (DSD '09): 12th Euromicro Conference on Digital System 

Design, Architectures, Methods and Tools, Toulouse, France, 27–29 August 2009; pp. 799-805. 

21. Kim, J.; Kim, J.H.; Ho, H.H.; Cho, J.D. Real-Time Smoothing Filter for Three Dimensional 

Disparity Map Algorithm and Hardware Implementation. In Proceedings of (MWSCAS): 2011 

IEEE 54th International Midwest Symposium on Circuits and Systems, Suwon, South Korea, 7–10 

August 2011; pp. 1-4. 

22. Bariamis, D.; Iakovidis, D.K.; Maroulis, D. Dedicated hardware for real-time computation of 

second-order statistical features for high resolution images. Adv. Concepts Intell. Vision Syst. 

Proc. 2006, 4179, 67-77.  

23. Kim, J.; Sikora, T. Confocal Disparity Estimation and Recovery of Pinhole Image for Real-

Aperture Stereo Camera Systems. In Proceedings of (ICIP 2007): IEEE International Conference 

on Image Processing, Berlin, Germany, 16 September–19 October 2007; p. V-229-V-232.  

24. Ben-Ari, R.; Sochen, N. A geometric approach for regularization of the data term in stereo-vision. 

J. Math. Imag. Vision. 2008, 31, 17-33.  

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons. org/licenses/by/3. 0/).  


