
Sensors 2012, 12, 1863-1884; doi:10.3390/s120201863

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Parametric Dense Stereovision Implementation on a System-on

Chip (SoC)

Alfredo Gardel
1,
*, Pablo Montejo

2
, Jorge García

1
, Ignacio Bravo

1
 and José L. Lázaro

1

1
 Electronics Department, University of Alcala, Alcalá de Henares, Madrid 28871, Spain;

E-Mails: jorge.garcia@depeca.uah.es (J.G.); ibravo@depeca.uah.es (I.B.);

lazaro@depeca.uah.es (J.L.L.)
2
 Higher Polytechnic Institute José Antonio Echeverría (CUJAE), La Habana, 19390, Cuba;

E-Mail: pablo.montejo@electrica.cujae.edu.cu

* Author to whom correspondence should be addressed; E-Mail: alfredo@depeca.uah.es;

Tel.: +34-91-885-6585; Fax: +34-91-885-6540.

Received: 12 January 2012; in revised form: 1 February 2012 / Accepted: 7 February 2012 /

Published: 10 February 2012

Abstract: This paper proposes a novel hardware implementation of a dense recovery of

stereovision 3D measurements. Traditionally 3D stereo systems have imposed the

maximum number of stereo correspondences, introducing a large restriction on artificial

vision algorithms. The proposed system-on-chip (SoC) provides great performance and

efficiency, with a scalable architecture available for many different situations, addressing

real time processing of stereo image flow. Using double buffering techniques properly

combined with pipelined processing, the use of reconfigurable hardware achieves a

parametrisable SoC which gives the designer the opportunity to decide its right dimension

and features. The proposed architecture does not need any external memory because the

processing is done as image flow arrives. Our SoC provides 3D data directly without the

storage of whole stereo images. Our goal is to obtain high processing speed while

maintaining the accuracy of 3D data using minimum resources. Configurable parameters

may be controlled by later/parallel stages of the vision algorithm executed on an embedded

processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames

per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained

considering 2 Mpix images, with a minimum initial latency. The implementation of

computer vision algorithms on reconfigurable hardware, explicitly low level processing,

opens up the prospect of its use in autonomous systems, and they can act as a coprocessor

to reconstruct 3D images with high density information in real time.

OPEN ACCESS

Sensors 2012, 12

1864

Keywords: stereovision; reconfigurable hardware; correspondence; entropy; correlation;

real-time processing

1. Introduction

In recent years, stereovision has become a very attractive sensing technique for obtaining 3D

information [1–3]. Recovering depth via triangulation is present in many computer vision systems.

Several authors have attempted to imitate the human vision in different electronic systems devoted to

stereo vision [2]. Stereovision systems can provide accurate real-time data in different applications. A

rough division may be done to differentiate the recovery of 3D measurements using triangulation from

different points of view.

The arrangement of the cameras imposes some restrictions on any stereovision algorithm. Typical

setups include two or three cameras (ideally coplanar) not too far apart to facilitate the overlap of their

images to provide an accurate 3D measurement. Other systems try to obtain a broader 3D

measurement from a large covered area, so the cameras are placed throughout a room with a large field

of view (for example, for object location in sports video sequences). In our case, the SoC

implementation is more suitable to coplanar (compact) stereovision systems. In other stereovision

systems in which optical axes intersect, a previous rectification process is needed.

This type of stereovision systems are ruled by the epipolar geometry which is the intrinsic

projective geometry existing between two views from the camera arrangement. A widely used

configuration of that geometry is shown in Figure 1 [4], where the cameras with centers (c, c)́ share

the same image plane (parallel optics axes), with the epipoles (e, e)́ located at infinity [5,6]. Parameter

 denotes the distance between optical centers.

Figure 1. Epipolar geometry.

In order to obtain 3D measurements is necessary to know the intrinsic parameters of each camera

and the extrinsic parameters of the overall stereo system. Typically, these parameters are obtained

through a calibration process. The calculation of a 3D measurement involves obtaining the inverse

process of image formation expressed in Equation (1):

 (1)

where:

c c' B

e at

infinity

e ́at

infinity

Sensors 2012, 12

1865

 are the 3D coordinates for a considered scene point.

 is the rotation matrix and the translation vector.

 is the equivalent focal length of the system.

 is an scale factor, considering that .

 is the optical center (expressed in pixels).

 are pixel coordinates of the point captured by the camera sensor.

So given a point in an image, possible location correspondence in the other image is limited to a

single line. Ideally for two identical aligned cameras it is the same horizontal line. In addition, inside

that line only a range of pixels correspond to the overlap between the two cameras field of view.

Therefore, to get the depth,

 , it is only necessary to obtain the disparity between

corresponding image points, the other parameters remain constant, as shown in Figure 2.

Figure 2. Disparity measurement.

A stereovision system has to solve two problems point selection and correspondences, as not all

points of the scene are suitable to find its correspondence. Reliable 3D points are scene points which

have features that uniquely identify it in the different images. The other points should be discarded as

they would produce mismatches.

Obtained the 3D point correspondences, a whole reconstruction of the 3D data should be done,

imposing different rules to give robustness to the image depth of the scene, as described in [7]. The

latter is beyond the scope of our paper, restricting the SoC processing to obtain 3D data to later stages

of an algorithm.

Many point selection and correspondence methods are used in the scientific literature. A ranking of

different stereoscopic algorithms is given in [1]. For the selection of image points, many articles

suggest methods for detection of lines and corners in stereo images [7]. This method provides reliable

3D data by finding correspondences for a small area in the stereo images considering the image

gradient as a feature of matching. To consider other textured objects, several authors have introduced,

in the point selection, the entropy feature of the neighborhood area. Thus, pixels characterized by a

high entropy value are more likely to be effective to achieve the correspondence between the images as

it is shown in [8]. In our case, the latter method is preferred for point selection so dense 3D data can be

recovered, without further exploration about subpixellic location.

Sensors 2012, 12

1866

For this reduced number of points, a correspondence between images should be obtained thus

providing a disparity and also a depth measurement. There are different algorithms and techniques for

matching corresponding areas as shown in [9]. Considering a coplanar stereovision system, there is

small change of perspective between cameras, so it could be assumed that the object (if not occluded)

is captured very similarly by the camera set. To calculate the similarity of two image areas, the most

commonly used method is the sum of squared differences (SSD), which in the ideal case of complete

correspondence between two areas, SSD is zero. In this case, the algorithm considers there is a

correspondence if a minimum SSD exists. Coplanar geometry facilitates the correspondence because

matching areas are searched on a line. Computation of SSD is done on selected points around that line.

To consider a zone as a correspondence area, that SSD value must be the minimum value of SSD on

the line and always below a maximum value threshold. If there are other possible matching areas on

the line, an ambiguity arises, and different approaches may be taken into account. In our case, areas

with ambiguity in the correspondence are discarded.

Other authors prefer to use the sum of absolute differences (SAD) [1–3,5–8]. The SAD method is

hardware efficient, given its regular structure and large parallelism [10]. In contrast, this method

introduces some errors if there is any occlusion or light is not uniform [11]. There are other studies that

seek to increase the accuracy and reliability of stereovision, using hierarchical Gaussian basis

functions and wavelet transform to obtain correspondences [7].

The approach followed in this work is to obtain an autonomous stereovision system, which provides

a 3D image of the scene, without limiting the number of correspondences, a common issue of many

embedded algorithms that use stereovision. Besides, vision sensors have an increasing number of pixels,

thus a SoC for stereovision is more needed than ever. The use of large images is important because the

reliability of the depth estimation is highly dependent on the resolution of the input images [2].

Most real time vision systems are expensive, inflexible, with few possibilities for reuse in the

design and parameterization. The use of FPGAs can improve these aspects as it is shown in [11] by

leveraging the parallelism inherent in many vision algorithms. Many authors have used reconfigurable

hardware to accelerate certain computer vision algorithms as in [12].

The paper is organized as follows: Section 2 presents different related works. Section 3 describes

the overall architecture; In Section 4, the entropy measurement and entropy block are presented.

Section 5 explain data arbitration used in the proposed architecture. In Section 6, it is presented the

correlation block with special interest in the efficient control implemented. Finally, results and possible

configurable implementations are given in Section 7.

2. Related Work

Different authors have proposed architectures to accelerate the computation of dense disparity maps

in real-time applications, trying to maintain the accuracy of the results. In [13], a stereovision system

using semi-global matching (SGM) implement different steps for 3D recovery, from image rectification,

to obtaining an estimated disparity map. It achieves a processing framerate of 30 fps for VGA images.

It is stated there in that local stereo matching methods are more suitable for hardware implementations.

The most common implementations that can be found in the field of dense disparity maps

architectures are based on SAD [14–18]. In [16–18] only the SAD process is implemented. In [16]

Sensors 2012, 12

1867

three different configurations are presented, based on the number of resources used. In [14] a

stereovision system using three cameras resolves more reliably ambiguous points, making the system

more robust, since for each 3D scene point two different correspondences are obtained. However the

setup and cost of this stereovision system is greater. In [15], an architecture for stereo matching is

based on adaptive ROI in SAD process. The requirement of storage of a sub-image in memory does

not allow on-the-fly processing.

Other authors [19,20] propose the use of census transform to calculate the disparity image. The

census transform reduces size memory and accesses to that memory. Thus, only binary operations are

performed, reducing the processing time, but accuracy is also reduced.

We propose a novel architecture that selects the most appropriate points by an entropy

measurement. The configuration allows for different number of candidates, thus there will be a large

number of distributed points throughout the image. Image processing is performed on-the-fly, so data

storage is reduced at minimum. The main goal is to increase processing speed using minimum

hardware; the improvement in accuracy of the stereovision algorithm is out of the scope of our paper,

without performing any 3D scene reconstruction, thus high level algorithms will be responsible for

improving and interpreting the 3D data results similar to the approach given in [21].

3. SoC Architecture for 3D Dense Stereovision

The algorithm proposed herein is divided into the following main blocks:

(a) Entropy block to select suitable points: This block indicates if a point is suitable for use in a

matching process. Corresponding region of interest (ROI) is written in a FIFO memory. In this

step, the entropy function is used, as it provides general information without loss of relevant

information to obtain scene 3D points.

(b) ROI correlation matching: In this block it is evaluated a number of areas to look for

correspondence, using SSD or SAD. Subsequently, the depth calculation is performed,

discarding possible ambiguities.

There is one important pre-requisite for the architecture of the system that is not to store the whole

image in memory, to process the image flow on-the-fly and at the full rate of the camera. The

producer-consumer architecture should overlap the operation with minimal resources using a double

buffer strategy, as will be described later. The architecture uses the same kernel size for the calculation

of entropy and correlation matching, thus disparity is calculated for the ROI center.

The flowchart shown in Figure 3 presents the overall SoC architecture designed. The procedure

starts with the computation of image entropy from both video-camera flows. Using these entropy

values, suitable candidate areas of each image are selected, in order to do a ROI matching by the

correlator block. From the N possible set of cameras of the stereoscopic system, the herein described

algorithm process two image flows. A higher threshold for the entropy values is applied to camera 1,

selecting ROIs with high entropy values. The threshold is dynamically adjusted in order to maintain a

certain percentage of candidate points in the video flow. The neighborhood of candidate points (ROI

values) is stored in a local memory to later processing. On the other side, the entropy threshold for the

camera 2 image flow, is lower than threshold applied to camera 1, thus correspondence areas are

Sensors 2012, 12

1868

maintained in the processing to match good candidate points selected on camera 1, without losing

important image information.

Figure 3. Proposed SoC architecture.

Threshold 1

(high)

Entropy

Computation

Suitable

Points

Selection

Area of

interest

Camera 1

Threshold 2

(low)

Entropy

Computation

Suitable

Points

Selection

Area of

interest

Camera 2

Delay

Row

FIFO

Double

Buffering

SAD

Correlator

Remove

Ambiguous

Points

3D

Calculation

A sub-sampling in possible candidate points is done. Thus if a point is selected as candidate, the

next candidate should be at a minimum distance from it, giving a dispersion of candidate points

throughout the image. This spreading reduces the amount of local memory needed, allowing the

hardware to process the image flow on-the-fly. The high-entropy ROIs from camera 1 image flow are

stored in a double buffer memory bank, used to process different image rows. It is worth to note that

spreading candidate points in vertical could lead to process non-consecutive rows. The double buffer

allows for the candidate selection in one row while making the correlation matching with areas from

camera 2 for a previous row. Thus, the image flow from camera 2 should be delayed one complete

image line, in order to start providing candidate correlation matching areas to be processed with

candidate point areas from camera 1 for a particular line. In the next sections, the hardware

implementation of the different blocks is described.

4. Entropy Computation

Several authors have identified the entropy value of a ROI area as a suitable indicator to carry out a

reliable search of its correspondence in stereo images [8]. The entropy of a ROI is an energy

Sensors 2012, 12

1869

measurement which should be present for a robust matching. The entropy E of a ROI is

calculated using the Equation (2):

 (2)

where is the probability that a given gray level appears in the area of size pixels referenced to

the pixel under analysis (coordinate). The probability should be obtained as the number of

occurrences of each gray level in the area under analysis normalized by the total number of pixels, thus

a common formula is based on histogram values as expressed in Equation (3):

 (3)

where is the histogram binned in a total number of Bins and g is the current bin gray level in the

area of size pixels referenced to the pixel under analysis.

Figure 4(a) shows a test image of 1,024 × 1,024 pixels with a captured scene presenting many

different features and depths. Figure 4(b) depicts the processed entropy image. The greater the entropy

of the image area represented, the highest color scale is shown at the right.

Figure 4. (a) Original image. (b) Corresponding entropy image.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350
2.5

3

3.5

4

4.5

5

5.5

6

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

(a) (b)

Figure 5 shows the image pixels with higher entropy which are suitable to be used in the

computation of stereo disparity considering a dispersion of 5 pixels between rows. It can be seen that

suitable points are distributed throughout the whole image, generating a dense stereo image. Possible

areas with few points are due to low entropy values. It is worth to note that in these areas ambiguous

matches are obtained. Properly selecting different thresholds more or less pixels in the entropy image

are selected. The adjustment of the threshold could be specified locally, considering different areas in

the image each one with its own dynamic entropy threshold.

Sensors 2012, 12

1870

Figure 5. Entropy areas used as matching candidates.

4.1. Hardware Block for Entropy Computation

As indicated in the previous section, the calculation of the entropy of a ROI image is obtained from

its histogram (occurrences of each gray level). The proposed design process the image in real-time

without the need to store the image in memory. Therefore, linear buffers are used to present the image

stream in a parallelized way thus it is possible to access to all the pixels in the area at the same time.

The aim is to process a new image area at each clock cycle. Considering a delay for each histogram

computation of K cycles, it is necessary to use at least K histogram blocks to reuse the block once it

has finished its computation. The scheme of one histogram calculation block (implemented in XSG) is

shown in Figure 6.

Figure 6. Histogram computation block.

Sensors 2012, 12

1871

Let us consider a squared ROI of size n by n pixels in the image. By using a dual-port memory it is

possible to write all data from the input port in one clock cycle and then read each position, pixel by

pixel, updating a specific counter block which is associated to the gray level of that pixel. The

histogram division consider herein is 32 bins for the 256 gray levels, which provides enough

information while reducing the hardware resources consumed. In addition, the number of bins has been

reduced from the total number of gray levels in order to reduce the entropy measurement which in turn

reduces the number of points with high entropy. The later selected points, considering this smoothed

entropy, have more probability to get a correct value of disparity. The histogram values are introduced

to a combinational block that implements Equation (4) in order to obtain the entropy values:

 (4)

where represents the histogram values related to the probability of occurrence in a given area. A

LUT function is made in the implementation block to carry out the calculation of the logarithm

as given in [22], achieving a maximum processing frequency up to 122 MHz. All resulting values of

the functions are summed by a vertical line of adders in cascade as it is shown in Figure 7.

Figure 7. Entropy calculation from counter histogram ROI values.

With the proposed structure, the entropy value for a given image ROI is obtained each clock cycle,

after an initial latency. Thus, the hardware block provides a whole image entropy on-the-fly with

minimum implementation in hardware [23]. Next section, consider that there are stored in local

memory the information about ROI candidates selected from camera 1 with a high threshold value,

introducing the delayed row from image data flow of camera 2. An important aspect to note is that ROI

data in both memories are stored following the row order, very useful to restrict possible region of

matching in the correlation block as it will be explained later.

Sensors 2012, 12

1872

5. Data Arbitration for an Efficient Data Flow to Correlation Block

Candidate points from image flow of camera 1 are stored in the double buffer alternating the

memory for each new processed row. ROI values and other features as mean gray level, standard

deviation, etc. could be introduced as the vector to be matched with camera 2. Data flow from camera

2 is delayed a row. Therefore, at the start of a row from camera 2, all the possible candidates from

camera 1 are already stored in memory. Thus, each possible ROI selected from camera 2 data flow is

offered to the correlator block in order to obtain a valid matching with any of the values stored in

current memory used for camera 1 candidates.

Figure 8. Control data flow to introduce data to correlator block.

Figure 8 shows an implementation diagram for data arbitration. Control_Alta_H1 subsystem

determines whether the area under analysis exceeds the threshold level, if so the ROI values and

location are written in local memory (Memoria_impar/par). The same procedure is done for image

flow of camera 2 (Control_Alta_H2). In this case, the double buffer technique is substituted with a

FIFO memory. If exists data in this FIFO memory, the correlator block starts the search around. It

reads consecutively the candidates of camera 1 looking for a match with the current point of camera 2

obtained from the FIFO memory. Entropy value of the current ROI (H_Cam1) is introduced to the

Control_Alta_H1 block, and compared with the corresponding threshold. If the value of entropy passes

the threshold, the ROI is given in parallel to a FIFO memory. In the same way, the Control_Alta_H2

block comes with the value H_Cam2 and another FIFO memory for that image flow. Each ROI stored

in those FIFOs is given to the correlation block. Next section presents the efficient correlation the

range of possible ROIs for a given image point.

SAD_XY 1_XY 2

1

Mux

sel

d0

d1

Memoria _Par

din

we

re

rst

dout

Memoria _Impar

din

we

re

rst

dout

FIFO

din

we

re

dout

empty

%full

full

Correlator

ROI_Cam1_XY

ROI_Cam2_XY

SAD_XY1_XY2

Control _Correlacion

Cantidad

empty _FIFO

re_Impar

re_Par

re_FIFO

sel_FIFO

Control _Alta _H2

full_FIFO

H
we_FIFO

Control _Alta _H1

H

we_Impar

we_Par

rst_Impar

rst_Par

Cantidad

H_Cam 2

4

H_Cam 1

3

ROI-Cam 2_XY

2

ROI-Cam 1_XY

1

Sensors 2012, 12

1873

6. Efficient Stereovision Correlation

Several techniques could be applied to obtain the correlation matching. In our work, Sum of

Absolute Difference (SAD) is used. The literature discusses several variations that use this method of

correlation. Most focus on the selection of the ROI size and its geometric shape [24]. Geometry

variation for the ROI image is out of the scope of this paper. SAD is suitable to be implemented in

reconfigurable hardware, using simple efficiently available resources. In contrast, SSD (sum of

squared differences) needs to include a multiplier block to calculate the correlation value. In our

context, it is advisable to implement hardware blocks for an algorithm of reduced complexity which

provides correct results. The SAD correlation for two image areas considering rectangular ROIs is

obtained by the application of Equation (5):

 (5)

where IL and IR are the set of pixels in the left and right image respectively; D is the number of

consecutive pixels in the possible overlapping range where to find the correspondence of the IR image

in the IL image. Therefore, each ROI stored in the FIFO is correlated only with the areas of selected

buffer that are within the range D, processing the minimum number of possible correlations. This

range is defined for each new area of the FIFO to correlate, taking into account the location of current

camera 2 pixel. In Figure 9 it is shown an example of range D available for correlation given a specific

pixel from camera 2.

Figure 9. Range D available for correlation.

To carry out the implementation of the correlation block, considering ROIs of n × n pixels to

correlate, n × n subtract operations are needed. Next, considering the absolute value of each

subtraction, a pipeline of adders implemented in cascade calculates the overall total sum. After an

initial latency, a complete pair ROI correlation is made in each clock cycle. In Figure 10, the

implementation for a ROI of 9 × 9 pixels is shown. Several stages of adders compute in pipeline the

sum of absolute differences (SAD output). Besides the block offers synchronized the location of pixels

in camera 1 and 2 to obtain the disparity.

Camera 1 Camera 2

D

Sensors 2012, 12

1874

Figure 10. Correlation implementation.

As indicated above, all selected points from camera 1 should be good candidates in order to obtain a

satisfactory match. But, possible ambiguities may occur if certain selected areas are too similar while

searching in the same row (i.e., textured zones) [23]. To solve these uncertainties, a hardware block to

discriminate ambiguous points is proposed. On the other hand, possible errors due to occlusions will

be correctly discarded because the matching provides low values of correlation thus discarding

that ROI.

Figure 11. Implementation of ambiguous points discriminator.

Maximum Correlation Value

2

Valid Data

1

Sub

a

b
a - b

Relational

Operator 3

<=

Relational

Operator 2

<=

Relational

Operator 1

>=

Relational

Operator

<=

Register1

dq z
-1

Register

dq z
-1

Mux1

sel

d0

d1

Mux

sel

d0

d1

Logical

Operator

AND

Constant 1

THR

Constant

CorrDif

Correlation Value

1

Sensors 2012, 12

1875

For each ROI candidate from camera 2 a set of correlation values is obtained. The minimum SAD

correlation value represents the highest similarity between areas, and therefore provides the suitable

correspondence. There are two situations where the correspondence should be discarded. First, if the

minimum SDA correlation value does not satisfy a minimum similarity threshold, and second, when

several correlation values are very close to that minimum SDA correlation value, because several ROIs

could be considered as a suitable matching (ambiguous points). For the latter, a hardware block is

proposed (Figure 11). The two better correlation values are stored for each correlation sub-process.

ROI candidates are discarded if there is not enough correlation difference (CorrDif) between them.

The disambiguation block allows for pipelined processing.

7. Results

This section presents different results of the proposed SoC. First, a detailed analysis of all

parameters involved in the algorithm is performed, obtaining the resource consumption for different

configurations. Next subsection presents the synthesis results for a SoC implementation in a

XC6SLX150T Xilinx Spartan 6 FPGA.

7.1. Analysis of Design Parameters

The fundamental requirement in the proposed SoC is real time image processing. To achieve this

approach, the number of points to process should be adjusted properly, in order to not exceed the

planned consumption of hardware resources. In the proposed algorithm, entropy thresholds control the

number of candidate points to process and limit the maximum number of 3D points. Several options

can be used to perform a dynamic control of these thresholds, as Gaussian estimators, PID regulation,

etc. from an in-FPGA processor. Another design requirement is to obtain stereo points throughout the

image, so a certain number of candidate points in each line should be established. In addition, taking

into account the image size in order to megapixels (Mpix) provided by current sensors will be

necessary to introduce scatter parameters in columns and rows.

Figure 12. Relationship between parameters: Influence and dependence.

Framerate

&

Design

Frequency

Row Size

Scatter

&

% Candidate

Points

Double

Buffering

Memory Size

FIFO Memory

Size

Entropy

Thresholds

Entropy

Kernel Size

Correlation

Kernel Size

Number of

Correlators

Sensors 2012, 12

1876

Figure 12 presents the relationship between all parameters involved in the proposed system.

Highlighted parameters are independent; while the rest of parameters are fixed by means of an expression.

As indicated in previous sections, stereo 3D processing is carried out row by row, with a double

buffering schema. Therefore, resources should be dimensioned to process a single row completely

during the reception of the next image row. Moreover, assuming a continuous data transmission from

the sensor, the design frequency should be fixed to at least the data transmission frequency (camera

framerate).

To begin a correlation stage of a single row, all candidate points of camera 1 should previously be

stored in a buffer memory. Therefore, only two parameters, framerate and row size, are involved to

determinate the suitable number of candidate points to be processed in a row, through a dynamic

threshold parameter. In some cases, different areas in the image could present different values of

entropy so that the number of candidate points could vary considerably. To address this situation, the

threshold 1 is an array of parameter values, presenting different value for each camera line. At the end

of a frame processing, new values for threshold 1 are modified in order to obtain the desired number of

candidate points. The constant represents the ratio between the number of candidate points in the

camera 2 and camera 1. In the proposed algorithm, the threshold parameter of the camera 2 is used to

maintain stable this relationship, updated in each line in the same way that the threshold 1. A simple

PID control loop should be capable to adjust the threshold values, but the parameters should be

adjusted to have an overdamped oscillation. Besides, to obtain a distribution of points throughout a

row, a scatter parameter is applied to obtain a minimum separation between candidate points.

Once the above parameters are fixed we could estimate the number of correlations to execute in a

single row by means of expression Equation (6):

 (6)

where is the number of pixels in an image row, is the scatter applied to the row, is

the range of possible values of the camera 1 to process respect to a candidate point from camera 2, as

shown in Figure 13. For example, given a point in the row of the camera 2, the range of possible

values in the row of the camera 1 is represented by this expression: .

Figure 13. Range D in overlapping area.

Overlapping Area

x (camera 2)

Dmax

x2,min

x (camera 1)

x2,max

x1,min

x1,max

xcp

D(xcp)

x1,xcp

Sensors 2012, 12

1877

The distance, between and , represents the overlapping area where correspondences

could locate. Therefore, this distance defines the maximum range expressed as in the Figure 13.

To clarify this requirements, in Figure 14 an estimated number of correlations to process in each

row is shown. The y-axis represents the size of the row in pixels and the x-axis the percentage number

of candidate points.

Figure 14. Example of estimated number of correlations for each row.

Two parameters define the size of the double buffer memory: entropy kernel size and number of

candidate points to obtain 3D depth. It could store coordinates and area to process of all possible

suitable points in a buffer, while in other buffer candidate points are correlated. This size could

be estimated by Equation (7):

 (7)

where is the maximum number of suitable points that the entropy block could select through the

current threshold and is the size of the kernel in pixels, assuming a squared kernel. The number of

suitable points is fixed through previous parameters. On the other hand, kernel size parameter is

practically independent of processing time, completed initial latency whenever a new image is

transmitted. In contrast, resources are increased in entropy and correlation blocks. Sometimes,

according to image information, a greater kernel size improves the location of the correspondence and

avoids some ambiguities. However, the FIFO memory must be larger since more points are suitable

due to a lower threshold. The FIFO memory size is fixed through size of the double buffering memory

and the parameter , because this parameter relates the number of candidates points to store. Entropy

and correlation kernels have the same dimension (n × n). In the proposed implementation, it will be

possible to configure the correlation kernel less than entropy kernel in order to reduce resources.

Finally, the number of correlators to implement is analyzed. In previous sections, a single correlator

has always been used in our SoC implementation. Depending on the resources available or framerate

to process, several correlators could be implemented. The two main blocks (entropy block and

correlation block) process an area at each clock cycle, after the initial latency of each block. As it is

shown in Figure 14, the number of correlations exceeds the maximum number of pixels to process in

the entropy block (all pixels in the row). So the next processing row should wait for the correlation

5
10

15
20

640

1280
1600

2048

3008

0

1

2

3

4

5

6

x 10
4

Candidates Points (%)

Row Size

C
o

rr
e

la
ti

o
n

s
 /
 R

o
w

Sensors 2012, 12

1878

block to finish its task. Otherwise, it just could discard the remaining candidate points in the

correlation process, losing some 3D points. To increase the achievable framerate, the optimal solution

would be to implement several correlator blocks in order to ensure complete processing of points in the

ROI matching.

Table 1 shows the values of all parameters for different configurations. The first column contained

common image sizes used in the actual systems. We make a distinction between various values of

candidate points and two ROI sizes. From this, all parameters are determined.

Table 1. Design parameters and resource consumption.

Size

Image

(Mpix)

Row

Size

(Pix)

Column

Size (Pix)

Candidate

Points

ROI Size

(n × n)

Correlations/

Row

Double

Buffer

Memories

Size (KBytes)

FIFO

Memory

Size *

(KBytes)

Delay

Buffers

(KClycles)

Framerate *

(Images/Sec)

fclk = 100 MHz

0.3 640 480

5%
9 × 9

203
5 3 5 4,203

13 × 13 10 7 8 4,203

10%
9 × 9

781
10 7 5 1,090

13 × 13 21 15 8 1,090

15%
9 × 9

1,781
15 11 5 476

13 × 13 32 24 8 476

1.2 1,280 960

5%
9 × 9

781
10 7 11 545

13 × 13 21 15 16 545

10%
9 × 9

3,125
20 15 11 135

13 × 13 43 32 16 135

15%
9 × 9

7,031
31 23 11 60

13 × 13 64 48 16 60

2 1,600 1,200

5%
9 × 9

1,416
12 9 14 225

13 × 13 27 20 20 225

10%
9 × 9

5,583
25 18 14 57

13 × 13 54 40 20 57

15%
9 × 9

12,500
38 28 14 25

13 × 13 81 60 20 25

3 2,048 1,536

5%
9 × 9

1,904
16 12 18 143

13 × 13 34 25 26 143

10%
9 × 9

7,617
33 24 18 35

13 × 13 69 51 26 35

15%
9 × 9

17,139
49 36 18 15

13 × 13 103 77 26 15

5.3 3,008 1,960

5%
9 × 9

3,650
24 18 27 62

13 × 13 50 37 39 62

10%
9 × 9

14,602
48 36 27 15

13 × 13 101 75 39 15

15%
9 × 9

58,679
73 54 27 3

13 × 13 152 114 39 3

Sensors 2012, 12

1879

7.2. SoC Implementation Results

In Tables 2 and 3 the resources consumed by the SoC implementation using a XC6SLX150T Xilinx

Spartan 6 FPGA are shown.

Table 2. Resources used on a XC6SLX150T: Slice Registers and Slice LUTs.

XC6SLX150T Xilinx Spartan 6 FPGA

ROI Size

(n × n)

Resources Entropy Block # Resources Correlation Block

SliceRegisters SliceLUTs SliceRegisters SliceLUTs

9 × 9 21% 46% 5% 11%

13 × 13 30% 65.9% 7.5% 16.4%

Table 3. Resources used on a XC6SLX150T: Block RAM.

Image Size

(Mpix)

Row Size

(Pix)

Column

Size (Pix)

Candidate

Points

ROI Size

(n × n)

Utilization Block

XC6SLX150T-RAM/FIFO

0.3 640 480

5%
9 × 9 1 %

13 × 13 2 %

10%
9 × 9 2 %

13 × 13 5 %

15%
9 × 9 4 %

13 × 13 9 %

1.2 1,280 960

5%
9 × 9 2 %

13 × 13 5 %

10%
9 × 9 5 %

13 × 13 12 %

15%
9 × 9 8 %

13 × 13 18 %

2 1,600 1,200

5%
9 × 9 3 %

13 × 13 7 %

10%
9 × 9 7 %

13 × 13 15 %

15%
9 × 9 10 %

13 × 13 23 %

3 2,048 1,536

5%
9 × 9 4 %

13 × 13 9 %

10%
9 × 9 9 %

13 × 13 19 %

15%
9 × 9 14 %

13 × 13 29 %

5.3 3,008 1,960

5%
9 × 9 6 %

13 × 13 14 %

10%
9 × 9 13 %

13 × 13 29 %

15%
9 × 9 21 %

13 × 13 44 %

Sensors 2012, 12

1880

Figure 15(a) shows the results of entropy for the Cones dataset. To obtain these results, the size of

the ROI is set to 13, using 32 bins. A particular case is shown in Figure 15(b), which represent, the

values of entropy for a specific line of the image (line 200). The thresholds for determining whether a

suitable point is selected are displayed with green color. These thresholds are always above the

minimum threshold shown in red. The green circles represent selected points to be stored in memory.

The percentage of candidate points to be selected is set to 15% and the dispersion value to 7. It is

observed that in areas of the line where entropy values are lower than the threshold are not selected

points, so the number of selected points is below 15%. In successive iterations, the threshold should

decrease in these areas in order to obtain more points (≈15%).

Figure 15. (a) Entropy values for the Cones dataset. (b) Entropy values for horizontal line 200.

(a)

(b)

After presenting different possibilities of the system, a specific configuration has been tested,

considering an image size of 1,280 × 960 pixels. The ROI size was set to 9 × 9 pixels, same kernel size

for the calculation of entropy and correlation matching. Desired candidate points was set to 10% of

points for each row, and 4 pixels dispersion. Figure 16 shows the dense disparity map with 3D

information recovered from the image tests.

Figure 16. Dense disparity map.

Sensors 2012, 12

1881

The stereo flow is injected directly from an external memory connected to the FPGA. This real

emulation allows considering any stereo system regardless of the source image used, without taken

care about other aspects such as control of camera lines and parameters of image capture. This dense

map could give up to 30,000 data points using the configuration presented above.

Figure 17. Correlation results: (a) Original Cones dataset. (b) Original Tsukuba dataset.

(c) and (d) Ground truth. (e) and (f) Correlation Results.

(a)

(b)

(c)

(d)

(e)

(f)

Sensors 2012, 12

1882

To finalize the results section, Figure 17(e,f) shows overall correlation results for the Cones and

Tsukuba datasets without taking into account the selected suitable points, respectively. So these results

are provided by the proposed SoC in the case that all points of the image are suitable points. This leads

have zero entropy threshold. In Figure 17(a,b) the original images of each dataset are shown. Then, it

shows the ground truth (Figure 17(c,d)). Depending on the parameters configuration, a number of

disparity points are provided by the SoC. They should have an entropy value exceeds its threshold.

Thus, appropriate disparity values will be obtained while maintaining accurate results.

8. Conclusions

This paper presents an efficient hardware implementation of a parametrisable stereovision SoC. The

main contribution is the proposal of hardware architecture to correctly recover stereovision 3D

measurements distributed throughout the whole image, eliminating the limitation on the maximum

number of stereo correspondence points as it is commonly considered in many applications. Using

double buffering techniques properly combined with pipelined processing, the use of reconfigurable

hardware achieves a parametrisable SoC which gives the designer the opportunity to decide the correct

dimension and features of this coprocessor.

Control parameters could be downloaded into the FPGA via any communication bus (PCI,

Ethernet) or changed by the later stages of the algorithm by means of an embedded processor.

Parameters suitable for change are threshold values for candidate selection and dispersion of ROI

candidates. Current digital cameras offer the possibility of modifying the frame rate reducing the

image processed, thus high level computer vision may modify the number of 3D data to obtain for

each particular configuration of cameras in the stereovision system. Other SoC parameters are fixed

and a reconfiguration of the hardware should be addressed in those cases, i.e., image size, histogram

bins, gray levels, etc. The SoC may return the number of total candidate points in each row or

complete image flow, the number of ambiguous candidates in each row or complete image, etc. It is

possible to process stereo images in real-time, thus, considering a hardware clock of 100 MHz inside

the FPGA, image flows up to 50 fps of dense stereo maps (10% of pixels) could be obtained for

2 Mpix images, with a minimum initial latency. Compared with time-of-flight depth cameras, classical

stereovision may be used with any standard camera which in turn reduces the cost of the embedded

system.

The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level

processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor

to reconstruct 3D images with high density information.

Acknowledgments

This work has been funded by Spanish MICINN in the ESPIRA project (REF-DPI2009-10143).

References

1. Arnbrosch, K.; Kubinger, W. Accurate hardware-based stereo vision. Comput. Vision Image

Underst. 2010, 114, 1303–1316.

Sensors 2012, 12

1883

2. Diaz, J.; Ros, E.; Carrillo, R.; Prieto, A. Real-time system for high-image resolution disparity

estimation. IEEE Trans. Image Process. 2007, 16, 280-285.

3. Woodfill, J.I.; Buck, R.; Jurasek, D.; Gordon, G.; Brown, T. 3D vision: Developing an embedded

stereo-vision system. Computer 2007, 40 106-108.

4. Faugeras, O. Three-Dimensional Computer Vision: A Geometric Viewpoint; MIT Press:

Cambridge, MA, USA, 1993.

5. Fusiello, A.; Irsara, L. Quasi-Euclidean epipolar rectification of uncalibrated images. Mach.

Vision Appl. 2011, 22, 663-670.

6. Fusiello, A.; Trucco, E.; Verri, A. A compact algorithm for rectification of stereo pairs. Mach.

Vision Appl. 2000, 12, 16-22.

7. Moallem, P. Effective parameters in search space reduction used in a fast edge-based stereo

matching. J. Circ. Syst. Comput. 2005, 14, 249-266.

8. Cheng, L.A.; Gong, J.; Yang, X.; Fan, C.; Han, P. Robust affine invariant feature extraction for

image matching. IEEE Geosci. Remote Sens. Lett. 2008, 5, 246-250.

9. Perri, S.; Colonna, D.; Zicari, P.; Corsonello, P. SAD-Based Stereo Matching Circuit for FPGAs.

In Proceedings of (ICECS '06): 13th IEEE International Conference on Electronics, Circuits and

Systems, Calabria, Italy, 10–13 December 2006; pp. 846-849.

10. Park, D.-K.; Cho, H.-M.; Cho, S.-B.; Lee, J,-H. A Fast Motion Estimation Algorithm for SAD

Optimization in Sub-Pixel. In Proceedings of (ISIC '07): International Symposium on Integrated

Circuits, Ulsan, South Korea, 26–28 September 2007; pp. 528-531.

11. Kalomiros, J.A.; Lygouras, J. Hardware implementation of a stereo co-processor in a medium-

scale field programmable gate array. IET Comput. Digit. Tech. 2008, 2, 336-346.

12. Kalomiros, J.A.; Lygouras, J. Design and evaluation of a hardware/software FPGA-based system

for fast image processing. Microprocess. Microsyst. 2008, 32, 95-106.

13. Banz, C.; Hesselbarth, S.; Flatt, H.; Blume, H.; Pirsch, P. Real-Time Stereo Vision System Using

Semi-Global Matching Disparity Estimation: Architecture and FPGA-Implementation. In

Proceedings of 2010 International Conference on Embedded Computer Systems (SAMOS),

Hannover, Germany, 19–22 July 2010; pp. 93–101.

14. Jia, Y.; Zhang, X.; Li, M.; An, L. A Miniature Stereo Vision Machine (MSVM-III) for Dense

Disparity Mapping. In Proceedings of (ICPR 2004): 17th International Conference on Pattern

Recognition, Beijing, China, 23–26 August 2004; pp. 728-731.

15. Hariyama, M.; Yokoyama, N.; Kameyama, M.; Kobayashi, Y. FPGA Implementation of a Stereo

Matching Processor Based on Window-Parallel-and-Pixel-Parallel Architecture. In Proceedings

of 48th Midwest Symposium on Circuits and Systems, Miyagi, Japan, 7–10 August 2005;

pp. 1219-1222.

16. Lee, S.H.; Yi, J.; Kim, J.S. Real-time stereo vision on a reconfigurable system. Lect. Notes

Comput. Sci. 2005, 3553, 225–236.

17. Perri, S.; Colonna, D.; Zicari, P.; Corsonello, P. SAD-Based Stereo Matching Circuit for FPGAs.

In Proceedings of (ICECS '06): 13th IEEE International Conference on Electronics, Circuits and

Systems, Calabria, Italy, 10–13 December 2006; pp. 846-849.

Sensors 2012, 12

1884

18. Cuadrado, C.; Zuloaga, A.; Martin, J.L.; Lazaro, J.; Jimenez, J. Real-Time Stereo Vision

Processing System in a FPGA. In Proceedings of (IECON 2006): IEEE 32nd Annual Conference

on Industrial Electronics, Bilbao, Spain, 6–10 November 2006; pp. 3455-3460.

19. Naoulou, A.; Boizard, J.-L.; Fourniols, J.Y.; Devy, M. An Alternative to Sequential Architectures

to Improve the Processing Time of Passive Stereovision Algorithms. In Proceedings of (FPL '06):

International Conference on Field Programmable Logic and Applications, Toulouse, France,

28–30 August 2006; pp. 1-4.

20. Ibarra-Manzano, M.A.; Almanza-Ojeda, D.-L.; Devy, M.; Boizard, J.-L.; Fourniols, J.-Y. Stereo

Vision Algorithm Implementation in FPGA Using Census Transform for Effective Resource

Optimization. In Proceedings of (DSD '09): 12th Euromicro Conference on Digital System

Design, Architectures, Methods and Tools, Toulouse, France, 27–29 August 2009; pp. 799-805.

21. Kim, J.; Kim, J.H.; Ho, H.H.; Cho, J.D. Real-Time Smoothing Filter for Three Dimensional

Disparity Map Algorithm and Hardware Implementation. In Proceedings of (MWSCAS): 2011

IEEE 54th International Midwest Symposium on Circuits and Systems, Suwon, South Korea, 7–10

August 2011; pp. 1-4.

22. Bariamis, D.; Iakovidis, D.K.; Maroulis, D. Dedicated hardware for real-time computation of

second-order statistical features for high resolution images. Adv. Concepts Intell. Vision Syst.

Proc. 2006, 4179, 67-77.

23. Kim, J.; Sikora, T. Confocal Disparity Estimation and Recovery of Pinhole Image for Real-

Aperture Stereo Camera Systems. In Proceedings of (ICIP 2007): IEEE International Conference

on Image Processing, Berlin, Germany, 16 September–19 October 2007; p. V-229-V-232.

24. Ben-Ari, R.; Sochen, N. A geometric approach for regularization of the data term in stereo-vision.

J. Math. Imag. Vision. 2008, 31, 17-33.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons. org/licenses/by/3. 0/).

