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Abstract

B-cell lymphoma and melanoma harbor recurrent mutations in the gene encoding the EZH2 

histone methyltransferase, but the carcinogenic role of these mutations is unclear. Here we 

describe a mouse model in which the most common somatic EZH2 gain-of-function mutation 

(Y646F in human, Y641F in the mouse) can be conditionally expressed. Expression of Ezh2Y641F 

in mouse B-cells or melanocytes caused high-penetrance lymphoma or melanoma, respectively. 

Bcl2 overexpression or p53 loss, but not c-Myc overexpression, further accelerated lymphoma 

progression, and expression of mutant B-Raf but not mutant N-Ras further accelerated melanoma 

progression. Although expression of Ezh2Y641F increased abundance of global H3K27 

trimethylation (H3K27me3), it also caused a widespread redistribution of this repressive mark, 
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including a loss of H3K27me3 associated with increased transcription at many loci. These results 

suggest that Ezh2Y641F induces lymphoma and melanoma through a vast reorganization of 

chromatin structure inducing both repression and activation of polycomb-regulated loci.

 INTRODUCTION

Data from several cancer types suggest that dysregulation of polycomb group complexes 

(PcGs) can contribute to malignant transformation, consistent with the fact that PcG 

complexes regulate thousands of transcripts responsible for cell fate1–3. The role of PcG-

mediated gene silencing in cancer is supported by the observation that many cancers harbor 

higher levels or activating mutations of PcG genes. Moreover, PcG-repressed genes include 

tumor suppressors like the INK4a/ARF (CDKN2a) locus4–6.

EZH2 (Enhancer of Zeste Homolog 2) is the catalytic component of the Polycomb 

repressive complex group 2 (PRC2) and was first identified in Drosophila for its role in 

development and differentiation. EZH2 is highly expressed in different types of B-cell 

tumors7,8, and along with PcG proteins EED and BMI, is critical to B-cell development9–11. 

Sequencing studies identified frequent mutations in the EZH2 SET-domain (e.g. tyrosine 

residue 646 (Y646, equivalent to Y641 in the mouse)) in germinal center (GC) diffuse large 

B-cell lymphoma (DLBCL) and follicular lymphomas12–14. Somatic EZH2 mutations or 

amplifications also occur in other tumor types, including non-small cell lung cancer, prostate 

cancer, colon carcinoma and melanoma15–17, whereas loss-of-function events appear in 

MDS/AML18 and T-cell ALL19. These findings suggest that EZH2 may be a potential 

therapeutic target beyond lymphoma, with currently five open clinical trials using three 

different Ezh2 inhibitors (GSK, Epizyme and Constellation).

No mouse model of the most common EZH2 SET-domain mutations is currently available to 

investigate its cell-dependent in vivo effect or to test the efficacy of EZH2-targeted 

therapeutics. To understand the role and function of this mutation in malignant progression, 

we generated a model permitting conditional expression of the mutant protein ‘knocked-in’ 

to the native locus with intact cis-regulatory elements. We examined the ability of this allele 

to promote lymphoid and solid (e.g. melanoma) malignancies by itself, and in co-operation 

with other oncogenic events, by crossing to mouse strains expressing tissue-specific Cre-

recombinase.

 RESULTS

 Expression of Ezh2Y641F promotes lymphoma

We validated expression of the Ezh2Y641F allele by Southern blot, PCR and qRT-PCR (Fig. 

1a, Supplementary Fig. 1a–d). In the absence of CRE-mediated recombination, the allele 

produces a wild-type transcript (Fig. 1a) and upon CRE-mediated deletion of a floxed ‘mini-

gene’, it expresses the Y641F mutant, which is equivalent to the most common EZH2 
missense mutation (Y646F) in human cancers 15,17. To assess functionality in vivo, we 

crossed the Ezh2Y641F/+ allele to CD19CRE/+ mice, which constitutively express CRE 

recombinase in B-lymphocytes20. CD19 positive B-cells from 8-week-old CD19CRE/+ and 
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CD19CRE/+Ezh2Y641F/+ mice expressed Ezh2 transcripts at equal levels (Supplementary Fig. 

1e). Consistent with a reported gain-of-function of the Y641F mutation in humans21, B-cells 

from 8-week-old CD19CRE/+Ezh2Y641F/+ mice exhibited a ~3-fold increase in H3K27me3 

compared to matched B-cells from CD19CRE/+Ezh2+/+ mice and CD19− cells (Fig. 1b). 

Expression of Ezh2Y641F had minimal effect on B-cell development in 8-week old mice 

(Supplementary Fig. 2a–h).

To examine the effects of Ezh2Y641F on B-cell malignancy, we longitudinally observed a 

cohort of littermate CD19CRE/+Ezh2Y641F/+ and CD19CRE/+Ezh2+/+ animals. In contrast to 

results employing animals expressing Ezh2Y641F under the control of a collagen promoter22, 

expression of Ezh2Y641F from the endogenous locus induced highly penetrant B-cell 

lymphoma with a median survival of one year (Fig. 1c). All tumors analyzed (n = 15) from 

CD19CRE/+Ezh2Y641F/+ mice demonstrated recombination of the Ezh2 allele (not shown) 

and a CD45+ B220+ CD19+ IgM+ CD43+ CD5+ phenotype; they also expressed the 

myeloid marker Mac1 (Supplementary Fig. 3a). Tumor-bearing mice demonstrated 

disruption of the splenic architecture and expansion of abnormal, large lymphoid cells in the 

white pulp, with ~50% of animals demonstrating frank leukemia and/or hepatic involvement 

(Supplementary Fig. 3b). Tumors exhibited increased expression of H3K27me3 and were 

readily transplantable into syngeneic recipients (Fig. 1d, and Supplementary Fig. 3c–e). 

Therefore, physiological expression of Ezh2Y641F in young mice does not markedly perturb 

the development of B-lymphocytes, but facilitates malignant transformation.

To determine whether genetic alterations detected in human B-cell lymphomas cooperate 

with Ezh2Y641F in tumor formation, we transduced hematopoietic progenitors from 

CD19CRE/+Ezh2+/+ or CD19CRE/+Ezh2Y641F/+ mice with retroviruses encoding Bcl2 or c-

Myc. Expression of c-Myc subtly increased B-cell lymphocytosis (Supplementary Fig. 4a), 

but did not accelerate tumor formation in CD19CRE/+Ezh2Y641F/+ mice (Fig. 1e). Consistent 

with a prior report22, recipients of Bcl2-transduced CD19CRE/+Ezh2Y641F/+ hematopoietic 

progenitors developed advanced B-cell lymphoma much faster than recipients of Bcl2-

transduced CD19CRE/+Ezh2+/+ cells (Fig. 1e, P < 0.001, Supplementary Fig. 4b, c). 

Moreover, the combination of somatic p53 inactivation with Ezh2Y641F expression 

accelerated lymphoma formation (Fig. 1f, P < 0.001, Supplementary Fig. 4d,e). These 

results suggest that globally increased H3K27me3 cooperates with apoptotic resistance 

mediated by Bcl2 overexpression or p53 loss to accelerate B-cell transformation, consistent 

with the co-occurrence of these genetic alterations in human B-cell lymphoma23.

In vitro, EZH2Y641F exhibits decreased H3K27 mono-methylase activity, but increased di- 

and tri-methylase activity compared to EZH2+/+ 21,24, suggesting that transformation may 

require expression of both wild-type and mutant proteins. Consistent with this model, to our 

knowledge, all human cancers observed to date harboring EZH2Y641F mutations also retain 

a wild-type copy of EZH213,15,17,23. To test the requirement of wild-type Ezh2 for 

tumorigenesis, we determined the tumor latency of CD19CRE/+Ezh2Y641F/Y641F mice. 

CD19CRE/+Ezh2Y641F/Y641F mice developed splenomegaly and lymphadenopathy with an 

infiltration of abnormal B220lowMac1low B-cells (Fig. 1g, h) with kinetics and tumor 

immunophenotype nearly identical to CD19CRE/+Ezh2Y641F/+ mice. Both heterozygous and 

homozygous mice for the Y641F mutation exhibited elevated levels of H3K27me3 

Souroullas et al. Page 3

Nat Med. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared to controls (Fig. 1i). As both alleles from tumors of Ezh2Y641F/Y641F underwent 

recombination (Supplementary Fig. 4f) and therefore only express mutant Ezh2, these data 

demonstrate that wild-type Ezh2 function is dispensable for tumorigenesis in cells harboring 

Ezh2Y641F mutations. This observation could reflect residual monomethylase activity of the 

tyrosine to phenylalanine substitution, which may not be a feature of other Y646 mutations 

of EZH2 21; it is also possible that another H3K27 monomethylase (e.g. EZH1) compensates 

for loss of EZH2 activity in these tumors.

 Ezh2Y641F cooperates with B-Raf but not N-Ras to induce melanoma

In addition to lymphoma, EZH2Y646 mutations are observed in 3% of human 

melanoma 25–27, with focal amplifications of EZH2 noted in 15 of 262 (5.7%) of cases from 

the Cancer Genome Atlas (TCGA). As B-RAFV600E or N-RASQ61R mutations occur in the 

majority of human melanomas, we tested the ability of the Ezh2Y641F allele to cooperate 

with the conditionally activatable mouse alleles of B-RafV600E (ref. 28) or N-RasQ61R 

(ref. 29) in the presence of the tamoxifen-inducible tyrosinase CRE allele 

(TyrCREERT2) 30,31. Melanoma was not observed in TyrCREERT2B-RafV600 as previously 

described29,32. The inclusion, however, of a heterozygous Ezh2Y641F mutation rapidly 

accelerated tumorigenesis of un-pigmented, non-metastatic melanoma in the context of B-
RafV600E activation and combined B-RafV600EPtenL/+ (Fig. 2a–c). Ezh2Y641F, therefore, 

cooperates with mutant B-RAF (± haploinsufficiency of PTEN) in melanoma formation and 

maintenance.

In contrast, melanocyte-specific activation of Ezh2Y641F in the presence of N-RasQ61R did 

not accelerate melanomagenesis, with or without p16Ink4a loss (Fig. 2d). As B-RAF is 

thought to be a downstream effector of N-RAS signaling to MEK/ERK, the differing 

abilities of N-RasQ61R and B-RafV600E to promote melanoma in the context of Ezh2Y641F 

was unexpected. We carefully examined data from prior melanoma sequencing studies25–27 

using cBIOPORTAL15,17. In accord with our murine genetic results, EZH2 mutations in 

human melanoma co-occur at a significant frequency with activating mutations in B-RAF (P 
= 0.006), and are mutually exclusive with N-RAS mutations (P = 0.004) (Supplementary 

Fig. 5). These results suggest that while RAF/MEK/ERK activation synergizes with 

EZH2Y641F mutations in melanoma formation, a RAF-independent aspect of mutant RAS 

signaling renders the oncogenic effects of mutant EZH2 irrelevant to transformation.

We performed experiments to address the cooperation of EZH2 mutation with B-RAF but 

not N-RAS. We observed that the expression of N-RAS and B-RAF is not altered by the 

presence of the Y641F mutation (data not shown). A major pathway activated by N-RAS but 

not B-RAF is PI3K-AKT. To determine if mutant N-RAS but not B-RAF inhibits the 

oncogenic effects of Ezh2Y641F, we transduced primary human melanocytes with B-

RAFV600E, N-RASQ61K or PIK3CA-CAAX, a membrane-bound and constitutively active 

catalytic subunit of PI3K. As previously reported33, expression of each resulted in 

oncogene-induced senescent, as characterized by increased expression of p16INK4a (Fig. 2e), 

ceased proliferation and flat enlarged morphology (data not shown). Neither B-RAFV600E, 

N-RASQ61K nor PIK3CA-CAAX significantly altered EZH2 mRNA levels (Fig. 2f), 

however, N-RASQ61K and PIK3CA-CAAX, but not B-RAFV600E, resulted in a global 
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decrease in H3K27me3 levels (Fig. 2g). This result is consistent with prior reports 

suggesting that activated AKT induces genome-wide changes in H3K27me3 (ref. 34) via 

phosphorylation and suppression of EZH235. These experiments suggest RAS-PI3K 

activation attenuates the oncogenic effects of Ezh2Y641F, explaining the inability of N-

RasQ61K to accelerate melanoma formation.

 Ezh2 activity is required for tumor maintenance

Next we investigated whether Ezh2 inhibition could suppress tumor growth in these mice. 

shRNA-mediated knock-down of Ezh2 in cell lines derived from the mouse melanomas 

described above resulted in significant growth inhibition (P < 0.01, Fig. 3a,b), suggesting 

that Ezh2 is required not only for tumor initiation but also maintenance. To determine the 

importance of Ezh2 enzymatic activity, we supplemented these genetic results with a 

pharmacological approach. We treated cell lines derived from TyrCREERT2B-
RafV600Ezh2Y641F/+ melanoma with three EZH2 inhibitors: UNC1999 (ref. 36), GSK126 

(ref. 37) and a previously unpublished SAM-competitive pyridinone inhibitor, JQEZ5. The 

Constellation and Epizyme inhibitors were not available to us for comparative analysis at the 

times of these studies. JQEZ5 was designed as an open-source compound with high potency 

and bioavailability, is ~10-fold selective for EZH2 over EZH1, and exhibits in vitro activity 

against the Y646F mutant in a homogenous assay (Supplementary Fig. 6a, b). In a panel of 

Ezh2+/+ or Ezh2Y641F melanoma cell lines, UNC1999 and GSK126 showed EC50s of 

greater than 3.5μM regardless of Ezh2 genotype (ratio of average EC50WT/EC50Y641F = 1.4 

for both agents, Supplementary Fig. 6c). In contrast, JQEZ5 was nearly 5-fold more potent 

in Ezh2Y641F melanoma cell lines than in wild-type cell lines (EC50Y641F = 860nM vs. 

EC50WT = 4.0μM, Supplementary Fig. 6c, d). Treatment with all three compounds resulted 

in decreased H3K27me3 levels, with JQEZ5 being effective at nanomolar concentrations 

(Fig. 3c, d, Supplementary Fig. 7a, b). All three compounds induced cell cycle arrest within 

3–5 days of treatment at their respective EC50s (Fig. 3e). Sub-micromolar exposures of 

JQEZ5 of greater than 1 week also induced cell death in Ezh2Y641F mutant lines 

(Supplementary Fig. 7c, d). To determine if Ezh1, an Ezh2 homolog, was responsible for 

residual H3K27me3 signal after Ezh2 inhibition (Fig. 3c, d), we knocked down Ezh1 in 

mutant melanoma cell lines treated with JQEZ5. Ezh1 knockdown did not affect cell growth 

or global H3K27me3 levels in inhibitor-treated Ezh2+/+ or Ezh2Y641F cell lines 

(Supplementary Fig. 8), suggesting that Ezh1 does not compensate for Ezh2 inhibition in 

these melanomas.

We next assessed the anti-tumor efficacy of EZH2 inhibitors in vivo. We studied lymphoma 

in CD19CREEzh2Y641F+ mice with autochthonous tumors, and melanoma in 

immunodeficient mice transplanted with cell lines derived from the tumors of 

TyrCREERT2B-RafV600EPtenL/+Ezh2Y641F/+ or TyrCREERT2B-RafV600EPtenL/L mice. Once 

tumors reached 10 mm3 in size, mice were treated with vehicle, the B-Raf inhibitor 

Dabrafenib (25mpk daily), JQEZ5 (50mpk, daily), or a combination of both. JQEZ5 was 

selected for these studies as it was the most efficacious compound in vitro, exhibited low 

toxicity, with favorable pharmacokinetic properties in vivo, comparable to those of Ezh2 

inhibitors currently in clinical trials (Supplementary Fig. 6c–e). As single agents, Dabrafenib 

and JQEZ5 resulted in tumor growth inhibition in both Ezh2+/+ and Ezh2Y641F/+ tumors, 
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with Dabrafenib being the more potent agent. Combinatorial treatment with Dabrafenib and 

JQEZ5 resulted in additive activity in Ezh2Y641F/+ but not Ezh2+/+ tumors (Fig. 3f). After 

developing lymphoma as assessed by the appearance of pathological symptoms, 

CD19CRE/+Ezh2Y641F/+ animals were treated with vehicle or 50mpk of JQEZ5 by daily 

intraperitoneal injection. Six days of treatment with JQEZ5 complete cleared the malignant 

population (B220lowMac1low) from the spleen, without depleting normal B-cells (Fig. 3g, h, 

Supplementary Fig. 6f). These data show that a selective inhibitor of EZH2 has potent 

single-agent activity in vivo in an autochthonous model of Ezh2Y641F-mutant B-cell 

lymphoma, and is effective in combination with a B-RAF inhibitor in RAF-mutant 

melanoma.

 Effects of Ezh2Y641F on RNA expression

To understand the molecular effects of Ezh2 activation in B-cells and melanoma, we 

performed RNA-seq and H3K27me3 chromatin immunoprecipitation and sequencing (ChIP-

seq). As the expression of Ezh2Y641F in young adult mice did not alter B-cell development 

(Supplementary Fig. 2), for B-cell analysis, we examined CD19+ cells isolated from the 

spleen of 8-week-old CD19CRE/+Ezh2Y641F/+ and CD19CRE/+Ezh2+/+ littermates. For 

melanoma experiments, we screened >20 cell lines derived from tumors of TyrCREERT2B-
RafV600PtenL/+Ezh2Y641F/+ mice, and sub-cloned two lines that had not recombined the 

Ezh2 allele. Through in vitro 4-OH-tamoxifen treatment, these lines yielded isogenic lines 

differing only in expression of the Ezh2 mutation. In B-cells, 213 transcripts were 

upregulated and 346 were repressed by Ezh2Y641F (P < 0.01, Supplementary Table 1), 

whereas 563 genes were upregulated and 746 were downregulated in the Ezh2Y641F 

melanoma cells (P < 0.01, Supplementary Table 2). Gene set enrichment analysis (GSEA) in 

both B-cells and melanoma cell lines expressing Ezh2Y641F revealed a significant 

concordance between genes downregulated in cells expressing EZH2Y641F and genes 

silenced by the PRC2 complex 38,39 (Fig. 4a, Supplementary Table 3). In separate biological 

replicates, we confirmed by qRT-PCR the altered expression of 8 transcripts identified by 

RNA-seq (Supplementary Fig. 9).

The RNA-seq analysis yielded two surprising results. First, in B-cells, GSEA indicated that 

transcripts repressed by expression of Ezh2Y641F were enriched for genes known to be 

repressed by C-MYC activation in other B-lineage cells40–42 (Fig. 4b; Supplementary Fig. 

10a, b; Supplementary Table 3). Enrichment for C-MYC targets was also observed in 

Ezh2Y641F expressing melanoma cell lines, albeit with less significance than in lymphoma 

(Supplementary Table 3). To directly assess the relationship between C-MYC and EZH2 in 

B-cells, we first used a B-cell lymphoma line (P493-6)43 with tet-inducible C-MYC 

expression. Upon activation of C-MYC, EZH2 expression increased in a time-dependent 

manner (Fig. 4c), resulting in increased global H3K27me3 (Fig. 4d). We next analyzed C-

MYC ChIP datasets available through the ENCODE consortium, looking for enrichment of 

C-MYC and MAX (a dimerization partner of C-MYC) at the EZH2 locus. Our analysis 

showed multiple C-MYC/MAX binding sites at the EZH2 transcription start site (TSS), in 

the EZH2 promoter, and at an enhancer ~50 kb 5′ to the TSS in multiple cell types, 

including lymphoma (Supplementary Fig 10c). The C-MYC/MAX binding peaks were 

associated with strong peaks of H3K27 acetylation (H3K27Ac, Supplementary Fig. 10c), 
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suggesting transcriptional activation. These findings agree with prior studies of C-MYC and 

EZH2 expression44,45, and suggest that some of the oncogenic effects of C-MYC 

amplification in B-cell lymphoma may be mediated by EZH2 activation.

A second surprising finding of the RNA-seq analysis of Ezh2Y641F cells was an increase in 

the expression of many genes known to be directly repressed by the PRC2 complex and 

EZH2, such as Hoxc4, Hoxc9 and Meis1 in B-cells (Supplementary Fig. 9, Supplementary 

Table 1) and the Hoxd gene cluster in melanoma cell lines (Supplementary Table 2). Mining 

Epigenomics Roadmap46 data, we noted that many of the PRC2-regulated genes activated by 

Ezh2Y641F were densely covered with repressive H3K27me3 in normal B-cells, suggesting 

they are silenced in healthy cells (Supplementary Fig. 11a). In contrast, many of the genes 

most strongly repressed by Ezh2Y641F lacked H3K27me3 in normal B-cells, and instead 

were located near enhancer elements marked with H3K27Ac (Supplementary Fig. 11b). This 

suggests that Ezh2Y641F activates certain silenced genes and silences certain activated genes.

 Ezh2Y641F expression causes global re-distribution of H3K27me3

To determine if this apparent pattern was a direct effect of altered H3K27me3 abundance, 

we performed H3K27me3 ChIP-seq. Principal component analysis (PCA, Fig. 5a) of the 

differentially expressed ChIP-seq peaks showed that the first PC of the dataset reflected 

Ezh2 genotype, whereas a second, weaker PC reflected tissue of origin (B-cells vs. 

melanoma). Treatment with JQEZ5 altered the peak pattern in Ezh2-mutant melanoma cell 

lines along the first PC towards untreated isogenic WT cells (Fig. 5a), suggesting EZH2 

inhibition significantly ‘normalized’ the peak pattern in Ezh2Y641F expressing cells. This 

impression was confirmed when H3K27me3 was visualized across the entire genome 

(Supplementary Fig. 12a).

We next performed hierarchical clustering of these samples by genome-wide, non-

overlapping 5 kb windows that exhibited dynamic H3K27me3 between Ezh2+/+ and 

matched Ezh2Y641F/+ cells based on a standard deviation threshold (Supplementary Fig. 12b, 

c). This analysis revealed two major clusters: one with increased H3K27me3 in Ezh2+/+ 

samples, and a larger cluster with increased H3K27me3 in Ezh2Y641F/+ samples. These 

clusters appeared in both B-cells and melanoma cells with significant overlap of dynamic 

regions (Supplementary Fig. 12b, c). The finding of a large number of loci with dense 

H3K27me3 in Ezh2+/+ samples that is lost in Ezh2Y641F/+ B-cells or melanoma was 

unexpected given the presumed hypermorphic activity of the mutant enzyme, yet such loci 

were even more obvious using a ‘peak calling’ algorithm (MACS47), which assigns 

statistical significance to each dynamic peak. A ‘volcano plot’ of the log-transformed fold-

change of H3K27me3 peak signal versus log transformed P value demonstrated that the 

peaks with most highly significant change between Ezh2+/+ and Ezh2Y641F/+ samples were 

those that decreased 2–4 fold in Ezh2Y641F/+ cells. As in the PCA, there was a significant 

restoration of the wild-type peak pattern in Ezh2Y641F/+ melanoma cells by JQEZ5 treatment 

(Fig. 5b, Supplementary Fig. 12a). We considered the possibility that this apparent decrease 

in peaks in Ezh2Y641F/+ cells reflected an artifact of normalization, as a relative increase in 

genome-wide H3K27me3 could dilute the intensity of the highest peaks seen in Ezh2+/+ 

cells. However, we discounted this possibility for two reasons. First, the fold-decrease of 
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H3K27me3 at certain loci (Fig. 5b) greatly exceeded the global increase in H3K27me3 by 

western analysis (Fig. 1b, j), suggesting dilution alone as an unlikely cause. Moreover, the 

observed changes in peak height correlated with RNA expression at specific loci: for 

example, the significant increase in HoxC expression in Ezh2Y641F/+ B-cells correlated with 

H3K27me3 loss at this locus (Fig. 5c), whereas Igf1 repression in Ezh2Y641F/+ melanoma 

cells lines occurred in the setting of greatly increased H3K27me3 at this locus (Fig. 5c). 

These observations suggest that the expression of mutant Ezh2 causes a global re-

distribution of H3K27me3, from highly focal peaks apparent in Ezh2+/+ samples to a larger 

number of broader, less focal peaks in Ezh2Y641F/+ samples, with attendant changes in gene 

expression.

We analyzed the effects of Ezh2Y641F expression on the distribution of H3K27me3 at 

promoter regions, TSS and gene bodies. Toward that end, we rank-ordered transcripts by 

level of expression in Ezh2+/+ samples, and averaged the normalized H3K27me3 intensity 

± 5 kb around the TSS for the top and bottom quartiles of expression (Fig. 5d). Consistent 

with prior work 48, this analysis showed increased H3K27me3 flanking the TSS of genes 

with the lowest expression (black), with an obvious ‘spike’ of H3K27me3 immediately 3′ to 

the TSS. Expression of Ezh2Y641F led to a relative decrease in H3K27me3 in the least 

transcribed genes with little effect on H3K27me3 at transcripts in the highest quartile of 

expression. This observation suggests that the increased expression of some transcripts in 

Ezh2Y641F mutant cells (Supplementary Table 1, 2) results from a paradoxical loss of 

H3K27me3 around the TSS’s of certain PRC2-repressed genes.

We next analyzed mean normalized H3K27me3 signal around the TSS (± 5 kb) of genes 

with a significant change in expression between Ezh2+/+ and Ezh2Y641F/+ cells 

(Supplementary Table 1 and 2). Genes upregulated in the presence of Ezh2Y641F in both B-

cells and melanoma cell lines exhibited decreased H3K27me3 signal around the TSS, 

particularly immediately 3′ to the TSS (Fig. 5e-left). In contrast, genes that were 

downregulated in the presence of Ezh2Y641F exhibited increased H3K27me3, starting on 

average more than 2 kb downstream of TSS (Fig. 5e-right). These results are consistent with 

a prior report suggesting H3K27me3 in the gene body is strongly repressive, whereas 

promoter H3K27me3 can also be seen in actively transcribed genes48. To further consider 

this possibility, we analyzed H3K27me3 along the gene body [from TSS to Transcription 

Termination Site (TTS)] of transcripts differentially expressed between Ezh2+/+ and 

Ezh2Y641F/+ samples (Fig. 5f). In contrast to the effects of Ezh2 mutations around the TSS, 

we observed a modest effect of Ezh2Y641F on upregulated genes (P = 0.07), but a marked 

increase (P = 1.7e-15) of H3K27me3 in the gene body of downregulated genes (Fig. 5f).

Finally, we analyzed the effect of the Ezh2Y641F mutation on the entire genome, focusing on 

melanoma cell lines. Toward this end, we identified broad H3K27me3 domains in Ezh2+/+ 

cells across the genome, and then compared the mean, normalized H3K27me3 signal 10 kb 

upstream and downstream of these domains in Ezh2+/+ vs. Ezh2Y641F/+ samples. Consistent 

with our peak-calling analysis (Fig. 5b), we observed a dramatic decrease in H3K27me3 in 

Ezh2Y641F/+ samples, which was largely restored with JQEZ5 treatment. Importantly, 

however, we observed an increase in H3K27me3 extending for more than 10 kb both 5′ and 

3′ to these domains in Ezh2Y641F/+ samples (Fig. 5g). In aggregate, these results demonstrate 
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that the Ezh2Y641F mutant enzyme causes a global redistribution of H3K27me3 away from 

focal peaks (e.g. near the TSS) across broad regions including gene bodies and intergenic 

regions.

 DISCUSSION

Consistent with prior work 21, we show that under physiological conditions, global 

H3K27me3 levels are elevated in cells expressing Ezh2Y641F, consistent with a model of 

increased enzymatic activity. On the other hand, through H3K27me3 ChIP-seq analysis, we 

provide evidence that the Y641F mutation does not monotonically increase H3K27me3, but 

rather redistributes the H3K27me3 mark across the genome with complex effects on 

transcription. Through integrated analysis of ChIP-seq and RNA-seq, we observe loci where 

Ezh2Y641F samples show reduced H3K27me3 and increased expression, and vice versa. In 

particular, we note that the effects are not uniform with regard to genomic regions: the 

mutation seems to favor H3K27me3 over large regions—at gene bodies and intergenic 

regions—at the expense of focal peaks near the TSS. While the mechanistic basis for this 

preference in unclear, the recent solution of the crystal structure of the yeast (C. 
Thermophilus) PRC2 complex provides tantalizing clues49. In this work, the authors suggest 

that wild-type EZH2 is allosterically activated when EED binds H3K27me3, through 

reorganization of the complex that alters the lysine substrate channel of the enzyme in a 

manner similar to the A682 SET domain mutation50. This structure suggests that the yeast 

amino acid (Y826) homologous to Y646 also participates in the formation of this substrate 

channel, providing the possibility that this mutation reduces the need for H3K27me3-EED 

stimulation of the enzymatic complex, thereby creating a more promiscuous complex. Such 

a complex would be expected to increase H3K27me3 at most nucleosomes. If some co-

factor (e.g. SAM) for tri-methylation were limiting, however, such a complex might also 

show reduced H3K27me3 at focal peaks that perhaps more strongly require the stimulatory 

effects of the H3K27me3-EED interaction in cells expressing the wild-type complex. 

Regardless of the precise mechanistic details, however, the observations that Ezh2Y641F 

expression decreases H3K27me3 at many loci (Fig. 5b–g; Supplementary Fig. 12) and that 

this effect is largely reversed with an EZH2 inhibitor (Fig. 5b, g; Supplementary Fig. 12a) 

are not consistent with the notion that this is a strictly hypermorphic allele. Rather, we 

believe the allele should more properly be considered neomorphic, perhaps as a result of 

reduced requirements for H3K27me3-mediated auto-activation.

Therapeutically, these results have direct implications for human cancers harboring SET 

domain mutations of Ezh2. First, the overlap of gene-expression signatures of Ezh2 

activation and c-Myc repression in B-lineage cancers (Fig. 4b) and lack of cooperation 

between c-Myc over-expression and Ezh2 mutation in lymphomagenesis (Fig. 1e) suggests 

the intriguing possibility that EZH2 mediates some of the transforming effects of C-MYC in 

lymphoma. Just as recent reports suggesting BAP151, ARID1a 52 and SNF5 53 mutations 

predict sensitivity to EZH2 inhibitors, this finding suggests a rationale for testing EZH2 

inhibitors in B-cell neoplasms characterized by strong C-MYC activation. Additionally, we 

report a newly developed, potent pharmacologic EZH2 inhibitor, JQEZ5, with excellent in 
vitro and in vivo properties and which demonstrates marked in vivo anti-tumor activity in a 

faithful model of Ezh2 mutant cancer (Fig. 3, Supplementary Fig. 6). Lastly, the discovery of 
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the exquisite and specific cooperation between activating genetic events of EZH2 and B-

RAF, but not N-RAS (Fig. 2, Supplementary Fig. 5), predicts synergistic activity of 

combined therapy with RAF inhibitors (e.g. dabrafenib or vemurafenib) and EZH2 

inhibitors in this heretofore unappreciated melanoma sub-type representing 3–9% of all 

melanoma patients.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Design, oncogenic activity and genetic interactions of the Ezh2Y641F allele in B-cells
a. Schematic of Ezh2Y641F targeting strategy. * denotes Y641F mutation in exon 16.

b. Western blot analysis and quantification of total H3 and H3K27me3 in 

CD19CRE/+Ezh2+/+ vs CD19CRE/+Ezh2Y641F/+ mice. Error bars show standard error of the 

mean (SEM) for four independent experiments.

c. Kaplan-Meier analysis of lymphoma-free survival of littermate CD19CRE/+ vs 

CD19CRE/+Ezh2Y641F/+ mice. Median cancer-free survival of CD19CRE/+Ezh2Y641F/+ mice 

is 383 days (P < 0.001, calculated using a log rank test).

d. Peripheral blood FACS analysis of CD45.1 recipient mice 6 weeks after transplantion of 

100,000 CD19+ cells from lymphoma-bearing CD19CRE/+Ezh2Y641F/+ CD45.2 animals.

e. Kaplan-Meier analysis of cancer-free survival of the transplant recipient mice. Donor 

CD19CRE/+Ezh2Y641F/+ CD45.2 Sca1+ hematopoietic progenitors were transduced as 

indicated and adoptively transferred into sub-lethally irradiated CD45.1 recipient mice. P 
values were calculated using a log rank test.

f. Kaplan-Meier analysis of lymphoma-free survival of CD19CRE/+p53L/L with Ezh2+/+ vs 

Ezh2 Y641F/+ mice. Median survival for CD19CRE/+p53L/LEzh2Y641F/+ mice is 159 days (P 
< 0.001, calculated using a log rank test).
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g. Enlarged spleens and lymph nodes from CD19Cre+ (+/+), CD19CRE/+Ezh2Y641F/+ (F/+) 

and CD19CRE/+Ezh2Y641F/Y641F (F/F) mice.

h. Representative FACS analyses of peripheral blood from (g). Circles indicates the 

abnormal lymphoid population.

i. Western blot analysis and quantification of total H3 and H3K27me3 in control, 

heterozygous and homozygous Ezh2Y641F mice. Error bars show the SEM calculated from 

three different western blots using separate biological samples. ** P < 0.01.
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Figure 2. Mutant Ezh2Y641F genetically interacts with mutant B-RafV600E but not N-RasQ61R to 
induce melanoma
a. Kaplan-Meier analysis of melanoma-free survival by indicated B-Raf and Pten genotypes. 

P values are for the indicated pair-wise comparisons, calculated using a log rank test.

b and c. Representative tumor and histological images from tamoxifen-treated B-
RafV600EEzh2Y641F mouse. Scale bars as indicated.

d. Kaplan-Meier analysis of melanoma-free survival by indicated N-Ras and p16INK4a 

genotypes. P values are for the indicated pair-wise comparisons, calculated using a log rank 

test

e. p16INK4a expression in primary human melanocytes transduced with lentiviruses 

expressing the indicated genes. Averages and SEM from three independent experiments. ** 

P < 0.01

f. EZH2 expression in primary human melanocytes transduced with lentiviruses expressing 

the indicated genes. Averages and SEM from three independent experiments.

g. Western blot analysis and quantification of total H3 and H3K27me3 levels in primary 

human melanocytes transduced with lentiviruses expressing the indicated genes. 

Representative plot from three independent experiments.
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Figure 3. Ezh2 inhibitors demonstrate anti-neoplastic activity in Ezh2Y641F-mutant cancers
a. Western blot demonstrating Ezh2 knock-down in a mouse Ezh2Y641F/+ melanoma cell 

line. Control represents scramble shRNA, while significant knock-down was observed with 

clone G10.

b. Growth curve after Ezh2 knock-down in a representative mouse Ezh2Y641F/+ melanoma 

cell line carried out in triplicate. (Control vs G10, ** P <0.01)

c. Total H3 and H3K27me3 western blots of melanoma cell lines of the indicated Ezh2 
genotype grown in the presence or absence of 1μM JQEZ5.

d. Quantification of the Western analysis in (c). Averages and SEM of three independent 

experiments. ** P <0.01

e. Cell cycle analysis of three Ezh2 mutant melanoma cell lines cultured for 72 hours in the 

presence or absence of 1μM Ezh2 inhibitor JQEZ5. * P < 0.05

f. Melanoma tumor volume progression in mice transplanted with Ezh2+/+ (left) vs 

Ezh2Y641F/+ (right) tumor lines. Mice were treated with Dabrafenib, JQEZ5 or a 

combination of the two once tumors reached 10 mm3 in size. (n = 8 tumors per group, **P < 

0.01)

g. Representative flow analysis of the spleens of CD19CRE/+ or CD19CRE/+Ezh2Y641F/+ 

mice. Mice were treated with either vehicle or JQEZ5 for 1 week after they developed 
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symptoms of lymphoma. Cells were gated on CD19+ cells. Red star indicates the malignant 

B220lowMac1low population.

h. Quantification of FACS analysis in (g). Error bars show the SEM (n = 5 mice per group, 

** P < 0.01).
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Figure 4. Gene expression in Ezh2Y641F reflects enrichment for PRC2 targets, H3K27me3-
suppressed genes and a C-MYC signature
a. Gene set enrichment analysis (GSEA) in melanoma cell lines expressing Ezh2+/+ or 

Ezh2Y641F/+. Select significantly enriched gene set plots at P < 0.01 and false discovery rate 

(FDR) < 0.01 are shown with their respective normalized enrichment score (NES).

b. GSEA and heat map comparing expression of genes downregulated in BCL2L1/MYC-

driven myeloma 21 to RNA-seq results of Ezh2Y641F mutant versus wild-type splenic B-

cells. Transcripts repressed by C-MYC in myeloma are also repressed by Ezh2 activation in 

primary B-cells.

c. EZH2 expression in P493-6 lymphoma cells before and after activation of MYC. Average 

of three independent experiments.

d. Western blot analysis and quantification of total H3 and H3K27me3 performed on P493-6 

cells before and 72h after activation of C-MYC. Error bars reflect the SEM calculated from 

three different western blots using separate biological samples. ** P < 0.01.

Souroullas et al. Page 18

Nat Med. Author manuscript; available in PMC 2016 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Ezh2Y641F changes the genomic distribution and dynamics of H3K27me3
a. Principal component analysis of B-cell and melanoma ChIP-seq data.

b. Volcano plot of H3K27me3 ChIP-seq data displaying the log2 ratio of Ezh2Y641F/+ over 

Ezh2+/+ signals for each peak (x-axis, log2 values) vs the significance of the differences (y-

axis, −log10 P values). Left – B-cells, Center – melanoma cells, Right –melanoma cells + 

JQEZ5. The volcano plot on the right displays the log2 ratio of JQEZ5-treated over vehicle-

treated melanoma cells.

c. Representative loci showing decreased H3K27me3 at the HoxC locus in B-cells 

(upregulated), and the Igf1 locus in melanoma cell lines (downregulated).

d. Analysis of H3K27me3 signal at 5 kb upstream and downstream of transcriptional start 

sites of the bottom 25% (black) and top 25% (red) of genes based on expression in B-cells 

(left) and melanoma cells (right).

e. Analysis of H3K27me3 signal at 5 kb upstream and downstream of transcriptional start 

sites of the significantly upregulated (left) and downregulated (right) genes in melanoma 

samples in the presence of Ezh2Y641F.

f. Summary of H3K27me3 signal within gene bodies (TSS–TTS) of upregulated and 

downregulated genes in the presence of Ezh2+/+ vs Ezh2Y641F in melanoma cells.
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g. Meta-analysis of the amplitude and distribution of H3K27me3 signal over broad 

H3K27me3 domains identified in Ezh2+/+ melanoma cells. One-hundred variable-width 

windows cover the peak regions, and one-hundred 100-bp windows cover the 10 kb flanking 

these regions. H3K27me3 signal is summarized for Ezh2+/+, Ezh2Y641F/+ and Ezh2Y641F/+ + 

JQEZ5 in melanoma cells.
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