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Vaccines are safe and efficient in controlling bacterial diseases in the aquaculture industry
and are in line with green farming. The present study develops a previously unreported
approach to prepare a live-attenuated V. alginolyticus vaccine by culturing bacteria in a
high concentration of magnesium to attenuate bacterial virulence. Furthermore,
metabolomes of zebrafish immunized with the live-attenuated vaccines were compared
with those of survival and dying zebrafish infected by V. alginolyticus. The enhanced TCA
cycle and increased fumarate were identified as the most key metabolic pathways and the
crucial biomarker of vaccine-mediated and survival fish, respectively. Exogenous fumarate
promoted expression of il1b, il8, il21, nf-kb, and lysozyme in a dose-dependent manner.
Among the five innate immune genes, the elevated il1b, il8, and lysozyme are overlapped
in the vaccine-immunized zebrafish and the survival from the infection. These findings
highlight a way in development of vaccines and exploration of the underlying mechanisms.

Keywords: Vibrio alginolyticus, live vaccine, metabolomics, TCA cycle, innate immunity
INTRODUCTION

Aquaculture contributes significantly to mankind, not only providing huge amounts of high-quality
food, but also promoting human economic development. However, the rapid intensification of
aquaculture has adverse ramifications, such as disease outbreaks, which are a major impediment to
the growth of aquaculture (1, 2). Vibrio alginolyticus is an important pathogen to both aquatic
animals and humans. In aquaculture, it infects a variety of aquatic animals, such as orange-spotted
grouper (3), large yellow croaker (4), and white shrimp (5, 6), leading to massive mortality of farmed
fishes and thereby causing serious damage to aquaculture. In humans, it causes sepsis,
gastroenteritis, wound, and ear infections. Antibiotics are effective to control infection caused by
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the bacterium, but the misuse and abuse of antibiotics negatively
impacts on aquatic environments, food safety, and development
of antibiotic resistance (7, 8). Therefore, an alternative approach
is especially needed.

Vaccines, taking advantages of reducing dependence on
antibiotics, are known to be used to provide long-lasting
protection against diseases and thus improve fish health and
reduce disease outbreaks with no drug residues. Several types of
vaccines have already been developed, such as inactivated whole-
cell (9, 10), live attenuated vaccines (9, 11–13), protein subunits
(14, 15), anti-idiotypic (16), and DNA vaccines (17, 18). To date,
most commercially available and authorized vaccines used in the
aquaculture industry are the inactivated whole-cell vaccines,
whereas the development of live-attenuated and combined
vaccines is in a demanding process (19). Comparatively, the
inactivated whole-cell vaccines usually provide poor but stable
immunity, while live attenuated vaccines have higher protective
efficacy and they do not require adjuvants that only require single
or few injections to provide protection. In Europe, a licensed live-
attenuated vaccine against V. vulnificus protecting eels from
vibriosis has been issued in clinic (20), suggesting live-
attenuated vaccine is an effective approach to control infection
caused by Vibrio spp. However, the development of vaccines is
still limited in aquaculture due to the large reservoir of bacterial
pathogens in the ecosystem that can hardly be protected by a
single type of vaccine and the various types of species of aquatic
animals. Thus, a novel vaccine-developing strategy is
urgently needed.

Live-attenuated vaccines are developed in several ways.
Random mutation(s) were generated through successive
passage of virulent strains under specific conditions (21–23) or
transposon based random insertion mutations or allelic
exchange have been frequently adopted (24, 25). Among the
targeted genes, genes encoding metabolic enzymes are selected
for vaccine candidates. The mutation of isocitrate dehydrogenase
(icd) gene in Vibrio anguillarum attenuate bacterial virulence
and subsequently protected rainbow trout (Oncorhynchus
mykiss) against infection caused by the bacterium (26).
Tricarboxylic acid (TCA) cycle must operate as a complete
cycle for Salmonella enterica serovar Typhimurium SR-11 to be
fully virulent but loss of different genes of the TCA cycle causes a
different level of loss of virulence (27, 28). Specifically, SR-11
DsucAB mutant, which is unable to convert a-ketoglutarate to
succinyl-coenzyme A (CoA), is avirulent; SR-11 DsucCDmutant,
unable to generate succinate from succinyl-CoA, is moderately
attenuated; SR-11 DsdhCDA mutant, unable to generate
fumarate from succinate, is slightly attenuated; and SR-11
Dmdh mutant, unable to convert malate to oxaloacetate, is
highly attenuated (27, 28). Thus, altering enzymatic activity
may represent an efficient approach to develop live-
attenuated vaccines.

Mg2+ participates in a multitude of essential processes. The
majority of cytosolic Mg2+ is involved in various aspects of
protein synthesis such as being a cofactor, a counter ion for
ATP or neutralizing negative charges from phosphates present in
the rRNA and then assemble ribosomes (29, 30). Without
Frontiers in Immunology | www.frontiersin.org 2
sufficient Mg2+, ribosomal subunits fall apart and membranes
become leaky (31). Free ionic Mg2+ regulates many important
metabolic enzymes and membrane channels at specific metal
binding sites. At concentrations naturally present in seawater,
Mg2+ improves migration without altering the growth rate of
Vibrio fischeri. Mg2+ addition enhances flagellation, at least in
part through an effect on the steady-state levels of flagellin
protein (32). The presence of magnesium is a critical factor in
promoting type III secretion system of protein substrates in V.
parahaemolyticus (33). V. alginolyticus is a mildly halophilic
bacterium which is considered to be V. parahaemolyticus type II
that can live in seawater with a wide range of magnesium
concentrations. Usually, sea water with a salinity of 3.5%
contains 54 mM Mg2+ (34). However, clinical and nonclinical
V. parahaemolyticus isolates are resistant to 300 mM Mg2+, a
concentration that is toxic to many other microorganisms, but
bacterial survival is affected (35), suggesting that the high
magnesium concentration is a strong stress to these bacteria.
Thus, we hypothesized that V. alginolyticus cultured in high
magnesium concentrations may be a new approach to develop
live-attenuated vaccines.
MATERIALS AND METHODS

Bacterial Strain and Culture Conditions
V. alginolyticus ATCC33787 was purchased from the Guangdong
Province Microbial Culture Collection (GDMCC). V. alginolyticus
is grown in 3% NaCl 0.5% yeast overnight and 1:100 using fresh
3% NaCl 0.5% yeast medium and grown at 30°C. For growth
curve, OD600 of the bacterial cultures was measured in medium
with 0, 0.78, 3.125, 12.5, 50 or 200 mM MgCl2, which were
designed according to the event that 50 mM is approximately the
MgCl2 concentration of coastal waters and then 50 time or divided
by 4 for other concentrations. Notably, different from V12G01
used in a previous report (36), which caused infectious symptoms
to significantly appear after 40 h, ATCC33787 led to the similar
infectious symptoms after 24 h.

Swarming and Swimming
V. alginolyticus was inoculated into 5 ml of 3% NaCl and 0.5%
yeast medium and cultured at 30°C overnight. Then 10 ml of each
sample was spotted onto the center of 1.5% or 0.3% agar LB
plates with 3% NaCl and 0, 0.78, 3.125, 12.5, 50 or 200 mM
MgCl2 for swarming and swimming, respectively. These plated
samples were incubated in a constant temperature incubator at
30°C for 8 h for the diameter of the halo.

Fish
Zebrafish (~0.2g body weight), Danio rerio, were obtained from a
zebrafish breeding corporation (Guangzhou, China). Zebrafish
were reared in 25 L water tanks and each tank was equipped with
closed recirculating aquaculture systems. These fish were
cultured for two weeks before experimental manipulation and
were fed twice daily.
December 2021 | Volume 12 | Article 739591
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Bacterial Challenge and Sample
Preparation for GC–MS Analysis
For the metabolic profile of zebrafish injected by vaccine,
zebrafish (n = 180) were randomly divided into two groups,
control group (n = 90) and bacterial vaccination group (n = 90).
The control group was injected with 5 ml of 3% saline per fish and
the vaccination group was intramuscularly injected with 5 ml V.
alginolyticus cultured with 200 mM MgCl2 (2 × 105 CFU) per
fish. Spleens were collected at 48 h post-injection. Nine spleens
were mixed for a sample. A total of ten samples were obtained for
GC–MS analysis.

For the metabolic profile of survival and dying zebrafish from
bacterial infection, zebrafish (n = 270) were randomly divided
into two groups, control group (n = 90) and bacterial challenge
group (n = 180). The control and bacterial challenge groups were
intramuscularly injected with 5 ml of 3% saline and 5 ml V.
alginolyticus (8 × 105 CFU, half lethal dose) per fish, respectively.
Spleens were collected at 24 h post-injection. Nine spleens were
mixed for a sample. A total of ten samples were obtained for GC–
MS analysis.

To prepare the fish sample for the GC–MS analysis, samples
were quenched with 1 ml of cold methanol (HPLC, Sigma
Aldrich) and sonicated for 5 min at a 200 W power setting.
After centrifugation at 12,000g for 10 min, 10 ml of 0.1 mg/ml
ribitol (Sigma Aldrich) as an analytical internal standard was
added. The supernatant was concentrated for 4 h in a rotary
vacuum centrifuge device, LABCONCO. The dried polar extracts
were used for the GC–MS analysis. Ten biological samples with
two technical repeats were separately used for the test and
control groups.

GC–MS Analysis
GC–MS analysis was carried out with a variation on the two stage
techniques as described previously (37, 38). In brief, samples
were derivatized through two steps. First, 80 ml of 20 mg/ml
methoxamine hydrochloride in pyridine (Sigma) was added to
the extracts and incubated for 3 h at 37°C. Then, 80 ml N-methyl-
N-trimethylsilyltrifluoroacetamide (MSTFA, Sigma-Aldrich)
was put and incubated for 1.5 h at 37°C. The samples were
centrifuged at 12,000g for 10 min at 4°C. A sample analysis was
carried out by Agilent 7890A GC equipped with an Agilent
5975C VLMSD detector (Agilent Technologies, Santa Clara, CA,
USA). The injector temperature was kept at 270°C, and 0.1 ml
aliquot was injected into a column. Temperature program of the
GC oven was held at 85°C for 5 min, followed by an increase to
270°C at a rate of 15°C min and then held for 5 min. Helium
was used as carrier gas and its flow rate was 1 ml/min. The MS
was operated in a range of 50–600 m/z. For each sample, two
technical replicates were prepared to confirm the reproducibility
of the reported procedures.

Exogenous Administration of Sodium
Malonate and Bacterial Challenge
To investigate the effect of the TCA cycle on host survival, a total
of 80 zebrafish were randomly divided into saline group (n = 20)
and sodium malonate group (n = 60). For sodium malonate
Frontiers in Immunology | www.frontiersin.org 3
group, the fish were further randomly divided into three
subgroups (n = 20). Each subgroup was reared in an individual
tank. Control group was injected with 5 ml saline (0.85% sodium
chloride) per fish, while the three subgroups were separately
injected with 12.5, 25, and 50 mM sodium malonate, once per
day for three days via intraperitoneal injection. These fish were
intramuscularly challenged with 5 ml V. alginolyticus (8 × 105

CFU, half lethal dose) per fish.

Measurement of PDH, a-KGDH, SDH, and
MDH Activity
The activity of pyruvate dehydrogenase (PDH), a-ketoglutarate
dehydrogenase (a-KGDH), succinate dehydrogenase (SDH) and
malate dehydrogenase (MDH) was measured as previously
reported with a modification (39). Briefly, visceral organs from
three zebrafish were pooled and homogenized in ice-cold PBS
(pH 7.4) which were added at a ratio of 1:15 (w/v). The
homogenates were centrifuged and protein concentration in
supernatant was measured by a BCA Protein Assay Kit
(Beyotime, China). The reaction buffer for PDH and a-KGDH
included 0.5 mM MTT, 2.5 mM MgCl2, 6.5 mM PMS, 0.2 mM
TPP, 50 mM PBS, and 2 mM sodium pyruvate (for PDH) or 2
mM sodium a-Ketoglutaric acid (for a-KGDH). The reaction
systems of SDH and MDH included 0.5 mMMTT, 13 mM PMS,
50 mM PBS, 5 mM succinate (for SDH) or 50 mM malate (for
MDH). All the reactions were performed in a final volume of 200
ml in a 96-well plate. Subsequently, the plate was incubated at 30°
C for 10 min for PDH, a-KGDH, SDH, and MDH. The optical
absorbance was performed in a microplate reader (Bio-Tek
Synergy2, USA) at 566 nm.

Gene Expression by Quantitative
Real-Time Polymerase Chain
Reaction (qRT-PCR)
For expression of genes encoding the TCA cycle, zebrafish
(n = 252) were divided into five groups, control group (n =
24), vaccination group (n = 24), L group (n = 24), M group (n =
60), and H group (n = 120). Control and vaccination groups were
intramuscularly injected with 5 ml saline solution and 5 ml V.
alginolyticus cultured with 200 mM MgCl2 (2 × 105 CFU),
respectively, each fish. L group, M group, and H group were
intramuscularly injected with 5 ml V. alginolyticus (2 × 105 CFU,
8 × 105 CFU, 1.5 × 106 CFU, respectively) each fish. These
zebrafish were collected at 24 h post-injection. For expression of
genes encoding innate immune immunity, zebrafish were
intramuscularly injected with 5 ml (50 or 100 mg) fumaric acid,
once a day for three days, and collected from vaccination and
bacterial challenge as described earlier. Expression of these genes
was analyzed by the qRT-PCR as previously described (39). The
total RNA was isolated from spleens pooled from six D. rerio
with Trizol (Invitrogen, USA). qRT-PCR was performed in 384-
well plates with a total volume of 10 ml containing 5 ml 2 × SYBR
Premix Ex TaqTM, 4.6 ml H2O, 0.1 ml cDNA template and 0.2 ml
each of forward and reverse primers (10 mM). The reaction
mixtures were run on a LightCycler 480 system (Roche,
Germany). Data were shown as the relative mRNA expression
December 2021 | Volume 12 | Article 739591
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compared with the b-actin gene by 2−DDCT method. All qRT-
PCR reactions were performed for four biological replicates.
Gene-specific primers used for qRT-PCR are shown in Table 1.
RESULTS

MgCl2 Influences Phenotype
of V. alginolyticus
To investigate the effect of magnesium ion on physiology of V.
alginolyticus, growth curve of V. alginolyticus ATCC33787 was
determined in a gradient concentration of MgCl2. Different
growth rate of the bacterium was observed in different MgCl2
concentrations, especially during the first 1–2 h. The growth rate
of ATCC33787 from the fastest to the slowest were in 50 mM ≥
12.5 mM > 3.125 mM > 0.78 mM > 0 mM > 200 mM MgCl2
(Figure 1A). Furthermore, swarming and swimming experiments
were also carried out in the gradient concentration of MgCl2. The
strongest swarming was measured in plates with 0.78 mM MgCl2
and then reduced with the increasing MgCl2 (Figure 1B).
Interestingly, the swarming ability was lower in plate with 200
mM MgCl2 than without MgCl2 (Figure 1B). However, MgCl2
concentration did not affect swimming ability in plates with 0.78–
50 mM MgCl2 and without MgCl2, where the bacterium diffused
to all the plates but not evenly distributed in 50 mMMgCl2. When
the concentration of MgCl2 reached 200 mM, the distribution was
depressed (Figure 1B). Importantly, virulence of ATCC33787 to
zebrafish was reduced with the increasing MgCl2 concentrations,
where similar survival was detected in zebrafish infected by
bacteria cultured in 200 mM MgCl2 and saline control
(Figure 1C). When zebrafish were infected with different
numbers of 200 mM MgCl2-cultured bacteria, percent survival
of zebrafish was elevated with the decreasing numbers of bacteria.
Frontiers in Immunology | www.frontiersin.org 4
Among them, all animals were survived at the infection dose of 2 ×
105 CFU bacteria (Figure 1D). Furthermore, zebrafish were
immunized with 2 × 105 CFU of 200 mM MgCl2-cultured
bacteria or saline. Then, zebrafish were challenged with a lethal
dose of 5 × 106 CFU V. alginolyticus ATCC33787. When all
animals died in the control group, 76% animals survived in the
experiment group (Figure 1E). These results indicate that 200mM
MgCl2-cultured ATCC33787 can be used as a live-attenuated
vaccine candidate against infection caused by V. alginolyticus.

Metabolome of Zebrafish Immunized With
the Live-Attenuated Vaccine Candidate
Hosts against bacterial infection have infective and anti-infective
metabolomes, which decide the consequences of infection (36,
40). This motivated us to explore the metabolic mechanisms by
which the vaccine candidate protects zebrafish against the
bacterial infection. To test this idea, GC–MS based
metabolomics was adopted to investigate the metabolic profiles
of control group (injected with saline) and vaccination group
(injected with 2 × 105 CFU of the V. alginolyticus vaccine). Nine
spleens were pooled as one sample. A total of 240 aligned peaks
were identified in each sample. After the removal of internal
standard, ribitol, any known artificial peaks, and merge of the
same compounds, 80 metabolites with reliable signals were
identified in each sample. Ten samples with two technical
repeats for each sample were included in each group, yielding
40 data sets. The correlation coefficient between technical
replicates varied between 0.996 and 0.999, demonstrating the
reproducibility of the data (Supplementary Figure 1A).
According to the Kyoto Encyclopedia of Genes and Genomes
(KEGG), 38, 27, 20, 12, and 3% of the metabolites were
categorized to carbohydrate, amino acid, fatty acid, nucleotide,
and others, respectively (Supplementary Figure 1B).
TABLE 1 | Primers used for qPCR analysis.

Gene Primer Sequence (5’-3’) Product size (bp)

b-actin Forward ACCCAGACATCAGGGAGTG 112
Reverse CATCCCAGTTGGTCACAATAC

il1b Forward TGGACTTCGCAGCACAAAATG 139
Reverse GTTCACTTCACGCTCTTGGATG

il 4 Forward TACATTGGTCCCCGTTTCTG 193
Reverse ACCCTTCAAAGCCATTCCTG

il 8 Forward CACGCTGTCGCTGCATTG 127
Reverse GTCATCAAGGTGGCAATGATCTC

il 21 Forward CTAAAGTGCTGCACCTGTCAG 181
Reverse TTGCACTGAGCTTTCTGTGTC

tnf-a Forward ATAAGACCCAGGGCAATCAAC 177
Reverse CAGAGTTGTATCCACCTGTTAAATG

c3b Forward TGTGACCCGCTGTATGTTCT 112
Reverse TTGGCTGGGAAGTTCTTCAC

tlr1 Forward CACCTGCGAGGAAAGTAAGT 108
Reverse TGTAAGGGCGCAATCAGAC

tlr3 Forward AGATTCTACACCTGGACATTCTCG 131
Reverse CATGATGGGCTTTGAATTG

nf-kb Forward GCTCATTCAGATTGCTCTACAC 126
Reverse CGTGTCTCCGTTCTCATCT

lysozyme Forward GACACTGGGACGCTGTGATG 174
Reverse AGGCCGTGCACACATAGTTG
December 2021 | Volume 1
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The metabolomic profiles of these two groups were displayed as
heat map (Supplementary Figure 1C). Kruskal–Wallis test was
used to compare the two groups, where 61 differential
abundances of metabolites were identified as shown in
Figure 2A. A Z-score plot ranged from −4.9 to 18.1 in the
vaccination group compared to control group and showed 15
increased metabolites and 46 decreased metabolites (Figure 2B).
Among these differential abundances of metabolites, 37, 34, 17,
and 12% of the metabolites were carbohydrate, amino acid, lipid,
and nucleotide (Supplementary Figure 2). These differential
abundances of metabolites were analyzed and outlined in KEGG
(http://www.genome.jp/kegg) and MetPA (http://metpa.
metabolomics.ca), respectively, for pathway enrichment.
A total of eight metabolic pathways were enriched, where the
Frontiers in Immunology | www.frontiersin.org 5
top three impactful pathways were TCA cycle, pyruvate
metabolism, alanine, aspartate and glutamate metabolism
(Figure 2C). Interestingly, among the eight enriched pathways,
all differential abundances of metabolites were elevated in the
TCA cycle and pyruvate metabolism but reduced in valine,
leucine, and isoleucine biosynthesis (Figure 2D). Therefore,
the TCA cycle can be further explored for vaccine-
conferred protection.

Metabolome of Zebrafish Infected With
LD50 of ATCC33787
To understand differential metabolic profiles between survival and
dead zebrafish infected with V. alginolyticus, GC–MS was used to
characterize the metabolomes of survival and dying zebrafish
A

B

D E

C

FIGURE 1 | MgCl2 regulates ATCC33787 phenotypes. (A) Growth curve of ATCC33787 cultured in medium with 0, 0.78, 3.125, 12.5, 50, and 200 mM
MgCl2.(B) Swimming and swarming of ATCC33787 cultured in medium with 0, 0.78, 3.125, 12.5, 50, and 200 mM MgCl2. (C) Percent survival of zebrafish infected
by V. alginolyticus cultured in medium with different concentrations of MgCl2. (D) Percent survival of zebrafish infected by different amounts of V. alginolyticus
cultured in 200 mM MgCl2. (E) Percent survival of zebrafish immunized by V. alginolyticus cultured in 200 mM MgCl2 and challenged by V. alginolyticus. Results (A)
are displayed as mean ± SEM, and significant differences are identified (*p < 0.05; **p < 0.01) as determined by two-tailed Student’s t-test.
December 2021 | Volume 12 | Article 739591
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infected with LD50 of ATCC33787 and saline group. GC–MS was
performed as described above. The identified 72 metabolites (p
<0.05) in survival and dying groups were shown as heatmap,
where survival and control groups were clustered (Figure 3A).
The differential abundances of metabolites were identified between
the control and survival groups or control and dying groups by
Frontiers in Immunology | www.frontiersin.org 6
Kruskal–Wallis test. Approximately 59 metabolites and 64
metabolites were identified (p <0.05) in survival metabolome
and dying metabolome, respectively. Z scores value of these
differential metabolites showed that fumaric acid was the most
upregulated metabolite in the survival group, and malic acid was
the most downregulated substance in the death group
A B

DC

FIGURE 2 | Metabolomic analysis of zebrafish to V. alginolyticus cultured in 200 mM magnesium. (A) Heat map showing relative abundance of metabolites
(Wilcoxon P <0.05) in control, vaccination groups. Heat map scale (blue to yellow: low to high abundance) is shown at bottom. (B) Z scores map in control,
vaccination groups. (C) Enriched metabolic pathways in control, vaccination groups. (D) Change of the abundance of the metabolites. The lists of the 60 metabolites
enriched in the eight pathways in panel (C). Yellow indicates increase; Blue indicates decrease.
December 2021 | Volume 12 | Article 739591
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(Figures 3B,C). Pathway analysis of 59 differential metabolites in
survival group and 64 differential metabolites in dying group were
performed in MetPA, fourteen and thirteen pathways were
enriched, respectively, as shown in Figures 3D, E. Interestingly,
Frontiers in Immunology | www.frontiersin.org 7
all metabolites of the TCA cycle and glycine, serine and threonine
metabolism were elevated (Figure 3F). These results indicate that
the elevated TCA cycle and glycine, serine and threonine
metabolism are required for the survival.
A B

D E

F

C

FIGURE 3 | Enriched pathways between dying and survival groups. (A) Heat map showing relative abundance of metabolites in control, survival and dying groups.
Heat map scale (blue to yellow: low to high abundance) is shown at bottom. (B) Z scores map in control and survival groups. (C) Z scores map in control and dying
groups. (D) Enriched metabolic pathways in control and survival groups. (E) Enriched metabolic pathways in control and dying groups. (F) Change of the abundance
of the metabolites. Yellow indicates increase, Blue indicates decrease.
December 2021 | Volume 12 | Article 739591
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Shared Metabolic Modulation Between the
Vaccination and Infection
It is interesting to compare the metabolomes induced by the
vaccine and mediated by the infection. To do this, a Venn
diagram was used to exhibit overlapped and unique
metabolites among 61, 59, and 64 differential abundances of
metabolites of the vaccination group, survival group, and dying
group, respectively. Forty metabolites were shared among these
three groups; 6, 10, and 10 were overlapped between the survival
and vaccination groups, survival and dying groups, vaccination
and dying groups, respectively; 3, 5, and 4 existed only in the
survival, vaccination and dying groups, respectively (Figure 4A).
Among these 14, 26, and 31 upregulated metabolites of the
vaccination, survival and dying groups, respectively, 2
metabolites were shared by the three groups; 7, 10, and 1
metabolites were shared by the survival and vaccination
groups, survival and dying groups, vaccination and dying
groups, respectively; 7, 4, and 18 metabolites were only present
in the survival, vaccination and dying groups, respectively
(Figure 4B). Among the 47, 33, and 33 downregulated
metabolites of the vaccination, survival and dying groups,
respectively, 12 metabolites were shared by the three groups;
10, 9, and 5 were shared by the survival and vaccination
group, survival and dying group, vaccination and dying group
respectively; 2, 20, and 7 were only present in the survival,
vaccination and dying groups, respectively (Figure 4C). When
all of the identified metabolites were analyzed together among
the three groups, the vaccination and survival groups were
clustered (Figure 4D), indicating the survival and vaccination
groups have similar metabolic profiles.

Moreover, orthogonal partial least squares discriminant
analysis (OPLS-DA) was adopted to identify shared
biomarkers between vaccination and survival groups. To do
this, S-plot was used for identification of discriminatory
variables. Cut-off values were set as greater or equal to 0.5 and
0.05 absolute value of covariance t and correlation p (corr),
respectively. As compared to the control group, seven
metabolites were increased and eight metabolites were
decreased in the vaccination group (Figure 4E). Whereas five
metabolites were increased and 10 metabolites were decreased in
the survival group (Figure 4F), while eight metabolites were
increased and 10 metabolites were decreased in the dying group
(Figure 4G). Among the shared metabolites, the abundance of
maltose, glucose, taurine was upregulated and the abundance of
glycolic acid, myo-inositol, stearic acid, palmitic acid was
downregulated in both of the survival and vaccination groups.
Malic acid, an intermediate metabolite of the TCA cycle, was
increased in the survival group and decreased in the dying group
(Figures 4E–G). PCA analysis among the survival group, dying
group and vaccination group further confirms this conclusion.
Compared to the dying group, pentadecanoic acid, malic acid,
cystathionine, ethanimidoate, glucose, mandelic acid, maltose,
galactose, benzoic acid and glutamic acid were increased; myo-
inositol, threonine, threonic acid, thymine, threose, palmitelaidic
acid, leucine, serine, uridine, heneicosanoic acid, 1-
monolinoleoyllglycerol, 4-hydroxybutyric acid, valine,
Frontiers in Immunology | www.frontiersin.org 8
creatinine, heptadecanoic acid, maleic acid, cytosine, stearic
acid, palmitic acid, glycolic acid and beta-lactic acid were
decreased in the survival and vaccination groups (Figure 4H).
These results indicate that the metabolic flux of glycolysis to the
TCA cycle instead of fatty acid biosynthesis is shared by the
vaccination and survival groups.

Elevation of the TCA Cycle Is Required
for Vaccine Efficacy and Survival
From Infection
The above results suggest that the TCA cycle plays a crucial role
in the protection against bacterial infection. To confirm this, the
activity of pyruvate dehydrogenase (PDH), a-Ketoglutarate
dehydrogenase (KGDH), succinate dehydrogenase (SDH) and
malate dehydrogenase (MDH) in the TCA cycle and pyruvate
metabolism were measured. The activity of all enzymes was
elevated in the vaccination group, survival group and reduced in
the dying group (Figure 5A). Then, iPath was used to compare
metabolic pathways among the vaccination, survival and dying
groups. The resulting global overview map provided a better
insight into the effects of vaccination and infection consequence
on the metabolism of the fish, where yellow and blue lines
represented increased and decreased pathways in the
reprogramming group, respectively. Elevation of the TCA cycle
in the vaccination and survival groups and fluctuation of the
TCA cycle in dying group form the most characteristic feature
(Figures 5B–D). Furthermore, qRT-PCR was used to detect
expression of genes encoding the TCA cycle of zebrafish
challenged by high (1.5 × 106 CFU, H), middle (8 × 105 CFU,
M) and low (2 × 105 CFU, L) doses of ATCC33787 and the 200
mM MgCl2-prepared live-attenuated vaccine (vaccination) and
saline solution was used control. They caused 15% survival
(survival-H) and 85% dying (dying-H), 60% survival (survival-
M) and 40% dying (dying-M), 100% survival (survival-L), and
100% survival (vaccination), respectively. On the whole, higher
expression of genes was detected in the three survival groups and
vaccination group than the control, while lower expression of
genes was measured in the two dying groups than the control.
The high expression was ranked as survival-H > survival-M and
vaccination > survival-L and low expression was listed as dying-
H > dying-M (Figure 5E). Finally, sodiummalonate, an inhibitor
of SDH, decreased the survival of zebrafish infected with
ATCC33787 in a dose-dependent manner (Figure 5F). These
results indicate that elevation of the TCA cycle is required for the
survival of zebrafish infected with ATCC33787. Consistently, the
elevated TCA cycle is a possible reason why the live-attenuated
vaccine provides an effective ability against the infection by
the bacterium.

Vaccine Enhances Innate Immune
Response
Innate immune response contributes to host immune protection
against bacterial infection (41, 42). Therefore, it is required to
investigate whether the live-attenuated vaccine activates an
innate immune response. The expression of ten innate
immune genes il1b, il4, il8, il21, tnf-a, c3b, tlr1, tlr3, nf-kb, and
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FIGURE 4 | Comparative analyses of vaccination group, survival group and dying group. (A) Venn diagram of the total differential metabolites between the
vaccination group, the survival group and the dying group. (B) Venn diagram of the upregulated differential metabolites between the vaccination group, the survival
group and the dying group. (C) Venn diagram of the downregulated differential metabolites between the vaccination group, the survival group and the dying group.
(D) Clusters of global substances’ relative changes between vaccination group, survival group and dying group. (E) Scores plot and S-plot of OPLS-DA model
between control, vaccination group in data (Figure 2A). Red triangles highlight candidate biomarkers. (F) Scores plot and S-plot of OPLS-DA model between control
and survival group in data (Figure 3A). Red triangles highlight candidate biomarkers. (G) Scores plot and S-plot of OPLS-DA model between control and dying
group in data (Figures 2A and 3A). Red triangles highlight candidate biomarkers. (H) Scores plot and S-plot of OPLS-DA model between vaccination, survival and
dying group in data. Red triangles highlight candidate biomarkers.
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FIGURE 5 | iPath analysis and activity of enzymes in dying and survival groups. (A) Enzyme activity of TCA cycle. (B) iPath analysis of the metabolites of differential
abundance in the survival group. (C) iPath analysis of the metabolites of differential abundance in the vaccination group. (D) iPath analysis of the metabolites of
differential abundance in the dying group. (E) qRT-PCR for expression of genes encoding the TCA cycle of zebrafish challenged by high (1.5 × 106 CFU, H), middle
(8 × 105 CFU, M) and low (2 × 105 CFU, L) doses of ATCC33787 and the 200 mM MgCl2-prepared live-attenuated vaccine (vaccination) and saline solution was
used control. (F) Percentage of survival of D. rerio when TCA cycle was blocked by inhibitor. Results (A, E) are displayed as mean ± SEM, and significant differences
are identified (*p < 0.05; **p < 0.01) as determined by two-tailed Student’s t-test.
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lysozyme were measured. Compared to the saline control, the
vaccination group exhibited elevated expression of il1b, il8, and
lysozyme but the rest of the genes remain unaffected (Figure 6A).
Meanwhile, expression of these genes was compared between the
survival group and the dying group. The expression of il1b, il8,
il21, tnf-a, tlr1, nf-kb, and lysozyme was elevated in the survival
group, while the expression of il1b, il4, tlr1, tlr3, and nf-kb was
reduced in the dying group (Figure 6B). Importantly, the
elevated il1b, il8, and lysozyme were shared between the
vaccination and survival groups, where expression of il1b was
reduced in the dying group.

Recently, we have showed that malic acid of the TCA cycle
promotes expression of innate immune genes and thereby
improves the survival of zebrafish infected with V. alginolyticus
(40). We speculate that the elevated TCA cycle is related to the
elevated expression of innate immune genes. To test this, fumaric
acid of the TCA cycle was used to test whether it can promote
Frontiers in Immunology | www.frontiersin.org 11
expression of the three shared genes il1b, il8, and lysozyme.
Indeed, exogenous fumaric acid increased expression of il1b, il8,
and lysozyme in a dose-dependent manner. Besides these, the
metabolite also promoted the expression of il21 and nf-kb
(Figure 6C). These results indicate that the live-attenuated
vaccine improves the immune level of zebrafish by promoting
the TCA cycle, and thus elevates the survival rate of zebrafish
infected with V. alginolyticus.
DISCUSSION

Reports have indicated that targeting at metabolic enzymes is an
efficient way to develop live-attenuated vaccines (26, 27). Mg2+

participates in a multitude of essential processes as a cofactor of
enzymes (29, 30). The present study explored the effect of
different concentrations of MgCl2 on bacterial virulence to
A

B

C

FIGURE 6 | Immune response of zebrafish to V. alginolyticus. (A) qRT-PCR for quantifying transcriptional levels of innate immune genes in zebrafish immunized by vaccine.
(B) qRT-PCR for quantifying transcriptional levels of innate immune genes in zebrafish of survival and dying groups. (C) qRT-PCR for quantifying transcriptional levels of innate
immune genes in zebrafish after injected by fumaric acid. Results are displayed as mean ± SEM, and significant differences are identified (*p < 0.05; **p < 0.01) as determined
by two-tailed Student’s t-test.
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zebrafish, and showed that V. alginolyticus cultured in 200 mM
MgCl2 were most potent in reducing virulence, including
avirulence to zebrafish and a limited flagellar movement, which
is also related to bacterial virulence (43). However, the 200 mM
MgCl2-cultured V. alginolyticus still kept immune protection
against V. alginolyticus infection and thereby can be used as a
live-attenuated vaccine candidate. Furthermore, we explored the
mechanisms by which the live-attenuated vaccine protects fish to
be free of bacterial infection via metabolic modulation. To do
this, comparison among the vaccine-induced metabolome and
bacterial infection-mediated survival metabolome and dying
metabolome was performed to identify shared characteristic
features in metabolism. Pieces of evidence indicated that the
activation of the TCA cycle is required for zebrafish to survive
from V. alginolyticus infection, where a key metabolite, fumarate,
identified from the shared characteristic feature can promote
innate immune response. Therefore, the present study develops a
previously unreported approach to study mechanisms by which
vaccines provide immune protection, which highlights a way in
vaccine design and exploration of the underlying mechanisms.

The core finding of the present study is that the live-
attenuated vaccine modulates metabolism to regulate innate
immune response. Recently, a line of evidence has indicated
that there is a close relationship between immune response and
metabolism (44–48), but that vaccines activate an innate
immune response against bacterial challenge via modulating
metabolism is unknown. The enhancement of the TCA cycle
forms a characteristic feature when immunized with the live-
attenuated vaccine, which is consistent with the elevated and
decreased expression of genes encoding the TCA cycle in survival
and dying groups, respectively. To validate whether the
metabolic modulation is related to immune protection, the
present study demonstrated that the enhancement of the TCA
cycle is an indicator that indicates vaccine efficacy against
infection with V. alginolyticus . On the contrary, the
inactivation of the TCA cycle was identified in zebrafish that
died of infection. This interesting finding was further confirmed
by an inhibitor sodium malonate of the TCA cycle. These results
indicate that the activation of the TCA cycle can protect zebrafish
against infection caused by V. alginolyticus, which is a
mechanism by which the V. alginolyticus cultured in 200 mM
MgCl2 provides immune protection. Yang et al. found that
boosted TCA cycle enhanced the survival of zebrafish to V.
alginolyticus infection, which may be attributed to providing
increased immunity against the infection (36, 40). Gong et al.
found that the inhibition of pyruvate metabolism and TCA cycle
decreased D. reiro survival against V. alginolyticus (43).
Therefore, the TCA cycle is key to provide protection against
V. alginolyticus infection.

The present study further used fumarate, an intermediate
metabolite of the TCA cycle, to explore why the activated TCA
cycle can promote immune protection against the infection. In
total, four intermediate metabolites of the TCA cycle, namely,
fumarate, succinate, malate, and a-ketoglutarate, were detected
in the GC–MS analysis. Among them, the abundance of fumarate
ranked from high to low: survival from the infection >
Frontiers in Immunology | www.frontiersin.org 12
vaccination > dying from the infection group, which is no
different with the control group. Thus, fumarate was selected.
Exogenous fumarate promoted the expression of il1b, il8, il21, nf-
kb, and lysozyme in a dose-dependent manner. Among the five
innate immune genes, the elevated il1b, il8, and lysozyme were
overlapped in the vaccine-immunized zebrafish and the survival
from the infection. IL-1b and IL-8 are pro-inflammatory
cytokines that mediate different kinds of immune responses
(44), while lysozyme catalyzes the destruction of the cell walls
of certain bacteria (44, 49). They play a key role in the innate
immunity against invaded bacterial pathogens. Thus, the
activated TCA cycle increased fumarate, thus promoting innate
immunity. This finding is consistent with the recent reports that
metabolites regulate innate immune response (43, 50, 51).

In summary, the present study develops a previously unreported
approach to prepare a live-attenuated V. alginolyticus vaccine by
culturing bacteria in a high concentration of magnesium to
attenuate bacterial virulence. Furthermore, the mechanisms of the
live-attenuated vaccine are explored through understanding
metabolic modulation. It is revealed that the live-attenuated
vaccine activates the TCA cycle and thereby elevated
intermediated metabolites such as fumarate to regulate innate
immunity. In our knowledge, this is first report to clarify vaccine-
induced mechanisms by metabolic modulation.
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Supplementary Figure 1 | Metabolomic profiling of vaccinated D. rerio speen.
(A) Reproducibility of metabolomic profiling platform. Metabolite abundances
Frontiers in Immunology | www.frontiersin.org 13
quantified in cell samples over two technical replicates are shown. Correlation
coefficient between technical replicates varies between 0.991 and 0.999. This plot
shows the two replicates with the weakest correlation of 0.991. (B) Categories of
the different metabolites. Eighty metabolites with different abundance were
searched against in KEGG for their categories. (C) Heat map showing relative
abundance of eighty metabolites in control and vaccination groups. Heat map scale
(blue to yellow: low to high abundance).

Supplementary Figure 2 | Categories of the 61 differential metabolites.
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