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Abstract: The π–π interaction is a major driving force that stabilizes protein assemblies during protein
folding. Recent studies have additionally demonstrated its involvement in the liquid–liquid phase
separation (LLPS) of intrinsically disordered proteins (IDPs). As the participating residues in IDPs are
exposed to water, π–π interactions for LLPS must be modeled in water, as opposed to the interactions
that are often established at the hydrophobic domains of folded proteins. Thus, we investigated the
association of free energies of benzene and phenol dimers in water by integrating van der Waals
(vdW)-corrected density functional theory (DFT) and DFT in classical explicit solvents (DFT-CES). By
comparing the vdW-corrected DFT and DFT-CES results with high-level wavefunction calculations
and experimental solvation free energies, respectively, we established the quantitative credibility of
these approaches, enabling a reliable prediction of the benzene and phenol dimer association free
energies in water. We discovered that solvation influences dimer association free energies, but not
significantly when no direct hydrogen-bond-type interaction exists between two monomeric units,
which can be explained by the enthalpy–entropy compensation. Our comprehensive computational
study of the solvation effect on π–π interactions in water could help us understand the molecular-level
driving mechanism underlying the IDP phase behaviors.

Keywords: pi–pi interaction; intrinsically disordered proteins; QM/MM; solvation effects;
enthalpy–entropy compensation

1. Introduction

The π–π interaction, a typical noncovalent bond involving π-electronic aromatic sys-
tems, is one of the prevalent molecular interactions in nature [1]. The association of large
biomolecules such as proteins [2,3] and nucleic acids [4] typically involves π–π interaction.
Additionally, it plays a significant role in biological processes such as charge transfer [5–7],
molecular recognition [8,9], and drug delivery [10].

Since Burley identified an interaction between aromatic rings that stabilizes protein
structure in 1985 [2], there have been extensive attempts in the realm of quantum chem-
istry to elucidate the nature of the π–π interaction. The Schlag group obtained benzene
dimer interaction energies using Møller–Plesset perturbation theories (MP2 and MP4) and
coupled-cluster single-double and perturbative triple (CCSD(T)) theory [11–14]. They
identified three stable geometries of benzene dimer, namely sandwich (S), parallel dis-
placed (PD), and T-shape (T) structures, and discovered that PD and T are the most stable
structures with similar binding energies. The Sherrill group further investigated the physi-
cal nature and substituent effect of the π–π interaction and provided benchmark-quality
potential energy curves for a benzene dimer calculated at the CCSD (T) level with a com-
plete basis set (CBS) limit [15–18]. These studies provide a fundamental understanding
of the π–π interaction and highlight the significance of its role in stabilizing the structure
of folded proteins.
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Intrinsically disordered proteins (IDPs) are a subclass of proteins lacking cooperatively
folded structures in their native state [19], and their biological significance has been exten-
sively studied in recent years. IDPs may undergo liquid–liquid phase separation (LLPS),
which is sequence-dependent, and the significance of the π–π interaction in determining
their LLPS behavior has been highlighted [20,21]. For example, Gabryelczyk et al. discov-
ered that interactions between tyrosine residues initiate the LLPS of histidine-rich proteins,
forming microdroplets [22]. The Pappu group modeled the inter-residue interactions using
the stickers-and-spacers framework to predict the phase behavior of IDPs and discovered
that the uniform patterning of aromatic residues promotes LLPS and inhibits aggrega-
tion [23–25]. At present, however, many molecular features of inter-residue interactions,
governing the LLPS of IDPs, remain obscure.

While the residues of folded proteins develop the π–π interaction primarily in the
hydrophobic pocket, which could be modeled in vacuo, as was likely done in numerous
previous quantum chemical studies, the residues of IDPs frequently protrude from the
protein backbone toward solvents to develop an interchain π–π interaction. Assuming
that the solvation effect’s presence is a major distinction between the inter-residue inter-
actions of folded proteins and IDPs, we explored aromatic π–π interactions in aqueous
environments. We examined how water solvation modifies the π–π interaction of benzene
and phenol dimers by combining two modern computational chemistry methods: (1) the
van der Waals (vdW)-corrected density functional theory (DFT) for an accurate descrip-
tion of direct monomer–monomer interaction energy; (2) DFT in classical explicit solvents
(DFT-CES), which is a mean-field quantum mechanics/molecular mechanics (QM/MM)
method [26–28] enabling an explicit treatment of solvent molecules for a reliable descrip-
tion of solvation free energy. We found that the solvation effect renormalizes the interaction
energies between benzene and phenol molecules, the conformational dependence of which
can be understood in terms of the changes in the number of hydrogen bonds (HB) before
and after dimer formation: water–benzene HB for benzene dimers and water–hydroxyl
HB for phenol dimers. The lack of a significant energy difference between in vacuo and in
aqua is ascribed to the enthalpy–entropy compensation, which preserves the most stable
configuration of a benzene dimer as a T-shape and a phenol dimer as a hydrogen-bonded
pair between hydroxyl groups. We expect that our study, which quantifies the interaction
strength between aromatic π systems in water, will provide a molecular understanding of
the π–π interaction mediated phase behavior of IDPs.

2. Methods
2.1. Brief Review of DFT-CES/2PT

DFT-CES is a grid-based mean-field QM/MM method that was recently developed
by the Kim group [26–28]. The mean-field QM/MM method iteratively solves QM op-
timizations and molecular dynamics (MD) simulations until a self-consistent solution
is obtained [29–31]. Each QM optimization step relaxes the electron density (ρQM) and
structure (rQM) of the QM particles in the presence of the ensemble-averaged electrostatic
potential of the MM component (〈VMM〉), whereas each MD simulation propagates the
positions (rMM) and momenta (pMM) of MM particles in the presence of frozen QM particles
and ρQM. Throughout this iterative procedure, known as the self-consistent ensemble-
averaged reaction field (SCERF), the free energy functional of the total QM/MM system,
Atot, is minimized for the QM nuclear and electronic degrees of freedom [32]:

Atot = EKS[ρQM; rQM]− kBT
∫

e−βHMM drMMdpMM (1)

Here, the first term indicates the QM subsystem’s internal energy (Eint
QM), where EKS is

the Kohn–Sham DFT total-energy functional. The second term represents the Helmholtz
free energy of the MM subsystem (AMM), where HMM is the Hamiltonian regarding the
dynamics of MM particles subject to the external potential applied by the frozen QM
subsystem (and, thereby, it includes the interaction between the QM and MM regions).



Int. J. Mol. Sci. 2022, 23, 9811 3 of 13

Eint
QM can be directly evaluated by DFT calculations, whereas free energy AMM cannot

be directly computed by conventional MD simulations, since such a calculation is often
accomplished by turning on and off the constant solute potential [27].

To determine AMM, we utilized the two-phase thermodynamics (2PT) model estab-
lished by Lin et al. [33], which permits a direct computation of free energy quantities
from MD trajectories. The 2PT model separates the total degrees of freedom in a liquid
system into gaseous and solid components. The total free energy of the system can then be
calculated from the linear combination of the gaseous and solid components, each of which
has been studied theoretically using the hard-sphere theory and quasi-harmonic oscillator
model, respectively. Notably, the 2PT model has been effective in estimating the thermo-
dynamics and phase behavior of Lennard–Jones particles at various densities [33], the
absolute entropy of water molecules [34] and organic solvents [35], and the surface tension
of typical liquids [36]. Furthermore, the 2PT model permits the direct decomposition of
free energy into enthalpic and entropic components, hence, enhancing the comprehension
of the investigated thermodynamic process.

By treating the solutes with QM and the solvents with MM, the DFT-CES/2PT method
can be used to evaluate the solvation free energies ∆Gsol. Considering that the solvation
process incurs negligible pressure–volume work, ∆Gsol can be evaluated by computing
the Atot. Our previous DFT-CES experiments paired with the 2PT method demonstrated
high accuracy in predicting the ∆Gsol of polar [26] and nonpolar molecules [27] and the
thermodynamics and structure of solid–liquid interfaces [37–40].

2.2. Computational Details

We implemented DFT-CES by coupling two open-source programs: the plane-wave
(PW) DFT code Quantum Espresso [41] and the large-scale atomic/molecular massively
parallel simulator (LAMMPS) [42]. For the DFT calculation, we employed the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional [43] with Grimme’s D3-type vdW
correction [44] and Becke–Johnson damping [45]. The electron–nucleus interaction was
described using the projector augmented-wave (PAW) method [46,47] with a 50 Ry kinetic
energy cutoff.

For the MD simulation at each SCERF iteration, we performed a canonical ensemble
(NVT) MD simulation for 2.5 ns at 300 K using the Nosé–Hoover thermostat [48,49] with
a 100-fs damping constant. The final 2 ns of the MD trajectory were used to evaluate the
〈VMM〉. The intermolecular interactions of water molecules were represented using a modi-
fied TIP3P water potential [50], with bond lengths and angles constrained to equilibrium
values using the RATTLE algorithm [51]. Long-range Coulomb interactions were treated
using the Ewald summation method [52] with a real-space cut-off of 15 Å.

The simulation box, consisting of one or two QM solute molecules (either benzene or
phenol) solvated by 1000 water molecules, has a cubic shape with a box length of 31.2 Å.
The vdW pair interaction between QM and MM particles was described using the OPLS-AA
force field [53], and SCERF iterations were conducted until the difference in Eint

QM was less
than 0.1 kcal/mol. DFT structural optimization may place the QM system too close to the
site of averaged MM particles because the DFT-CES involves Pauli repulsion between the
QM and MM regions only in the MD component utilizing the pairwise potential, but not in
the DFT part. To prevent such a technical issue with phenol systems, the H atom from the
hydroxyl group in phenol was maintained at its original position in the structure optimized
in vacuo, while no constraints were imposed on the benzene system.

We then calculated the free energy of association in water, ∆Gaq, using the thermo-
dynamic cycle shown in Figure 1. The free energy of association in vacuo, ∆Gvac, was
calculated using vdW-corrected DFT energetics, wherein the vibrational free energies, in-
cluding the zero-point energy (ZPE) contribution, were corrected using harmonic oscillator
partition functions. We estimated the vibrational frequencies for computational efficiency
using the Gaussian orbital code, Jaguar version 10.8 [54], at the level of PBE-D3/AUG-cc-
pVTZ-PP(-F). Then, using separate DFT-CES/2PT calculations, the solvation free energies
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of the monomers and their dimer complexes, i.e., ∆Gsol
mon and ∆Gsol

dim, were calculated,
leading to ∆Gaq = ∆Gvac + ∆∆Gsol, where ∆∆Gsol = ∆Gsol

dim − 2∆Gsol
mon.
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2.3. Exploration of Different Conformations

Herein, we focused on the π–π interactions in benzene and phenol dimers. As in
earlier quantum chemical investigations [11–18], stacked (ST), parallel-displaced (PD),
and T-shape (T) conformations were explored for benzene dimers (Figure 2a). It is to be
noted that two T conformations with different symmetries (labeled as T1 and T2) were
investigated for completeness.
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Phenol dimers can assume an extensive variety of different conformations depend-
ing on the relative locations of the hydroxyl (OH) groups attached to the phenyl rings.
To systematically investigate the impact of the relative locations of OH groups, we first
constructed two distinct ST conformations of the phenol dimer: one by positioning OH
groups with the closest distance, and the other by positioning OH groups with the farthest
distance, which are labeled ST (1,1′) and ST (1,4′), respectively (see Figure 2b). By hori-
zontally shifting one of the phenyl rings of ST (1,1′) and ST (1,4′), we constructed three
distinct PD conformations of phenol dimers, labeled PD (1,1′), PD (4,1′), and PD (1,4′),
as shown in Figure 2b.

For the T conformations, the OH group location in the horizontally laid phenyl ring
(whose carbons are labeled using primed numbers in Figure 2a) is thought to be less
important than the OH group location in the vertically standing phenyl ring (whose
carbons are labeled using unprimed numbers in Figure 2a). Indeed, we discovered virtually
no difference in ∆Gvac with different OH group locations in the horizontally laid phenyl
ring (Figure S1). Therefore, we chose two representative cases, T1 (1,2′) and T2 (1,1′),
as shown in Figure 2b. To explore the effect of the OH group location on the vertically
standing phenyl ring, we further chose the T2 (2,1′), T2 (3,1′), and T2 (4,1′) conformations.

Finally, as a hydrogen-bonded pair (HBP) can develop between the hydroxyl groups
of two phenol molecules, the corresponding geometry was also added for further investiga-
tion, although it cannot be strictly classified as a π–π interaction.

3. Results and Discussion
3.1. Benchmark: Dimer Binding Energy in Vacuo & Monomer Solvation Energy

Table 1 shows the binding energies of the benzene and phenol dimers in vacuo
(∆Evac), which were calculated using the difference in the DFT self-consistent field (SCF)
energies between the dimer and monomer, ∆Evac = ESCF

dimer − 2ESCF
monomer. Incorporating

the entropic corrections and the ZPE, the calculation of the corresponding free energy,
∆Gvac, is allowed as listed in Table 1. To evaluate the accuracy of PBE-D3, we compared
the ∆Evac values to the results of previous studies using high-level wavefunction theory,
such as coupled cluster theory. For the S, PD, and T1 conformations of the benzene dimer,
the results from the PBE-D3/PW level and the estimated CCSD(T)/aug-cc-pVQZ* level
agreed within approximately 0.2 kcal/mol [18]. When available, we further confirmed that
the ∆Evac values of phenol dimers correlate well with the MP2 and coupled-cluster level
data from previous studies [55,56].

To reliably predict ∆Gaq, the solvation free energy, ∆Gsol, must be accurately calculated
using the thermodynamic cycle depicted in Figure 1. In this regard, we compared the
estimated and observed values of ∆Gsol for the benzene and phenol monomers. Several
implicit solvation methods implemented in the Jaguar suite [54], including the Poisson–
Boltzmann finite element method (PBF) [57]; polarizable continuum model (PCM) [58]; and
Minnesota solvation models (SM6 and SM8) [59,60] were also evaluated. The results are
summarized in Table 2, and we found that the DFT-CES values agree with the experimental
values [61], in stark contrast with the implicit solvation methods, which predict ∆Gsol with
gross errors. It is clear that the existence of the OH group hugely determines the solvation
behavior in water, accounting for significant differences of ∆Gsol between benzene and
phenol, and this behavior can be extrapolated to polyphenols such as quercetin [62].
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Table 1. Estimated binding energies (∆Evac ) and binding free energies (∆Gvac ) of benzene and
phenol dimer in vacuum. The listed values are in kcal/mol. ∆Evac from other studies were cal-
culated using (a) estimated CCSD(T)/aug-cc-pVQZ*, which is a modified aug-cc-pVQZ basis set
lacking g functions on carbon and f functions on hydrogen [18]. (b) MP2/M062X/6-311++G(d,p) [55].
(c) CCSD(T)/CBS [56].

Present Study Others
∆Gvac ∆Evac ∆Evac

Benzene
Dimer

ST −2.34 −1.70 −1.70 (a)

PD −3.11 −2.43 −2.63 (a)

T1 −3.22 −2.66 −2.61 (a)

T2 −3.25 −2.66

Phenol
Dimer

ST (1,1′) −2.46 −1.69 −1.61 (b)

ST (1,4′) −3.11 −2.42 −2.76 (b)

PD (1,1′) −3.19 −2.45 −3.62 (b)

PD (1,4′) −3.71 −3.00
PD (4,1′) −3.14 −2.47 −4.26 (b)

T1 (1,1′) −3.12 −2.57
T1 (1,2′) −3.18 −2.64
T1 (1,3′) −3.34 −2.83
T2 (1,1′) −3.31 −2.79
T2 (1,2′) −3.10 −2.56
T2 (1,3′) −3.26 −2.75
T2 (1,4′) −3.28 −2.77
T2 (2,1′) −3.50 −2.99
T2 (3,1′) −5.90 −5.66
T2 (4,1′) −3.65 −3.12

HBP −7.29 −6.87 −6.81 (c)

Table 2. Calculated solvation free energies (∆Gsol) of benzene and phenol monomer using PBF, PCM,
SM6, SM8, and DFT-CES method. The listed values are in kcal/mol. The experimental values of
∆Gsol are from the hydration dataset of a previous study about solvated binding free energies [61].

Benzene Phenol

PBF −0.09 −6.72
PCM −2.52 −5.45
SM6 −3.27 −5.60
SM8 −3.61 −5.63

DFT-CES −0.85 −6.72
Experiment −0.87 −6.62

3.2. Free Energy of Association in Aqueous Environment

Based on the successful descriptions of ∆Evac and ∆Gsol enabled by PBE-D3 and
DFT-CES, respectively, we investigated the ∆Gaq of a benzene dimer for the ST, PD, T1,
and T2 conformations (Figure 3a). We observed that the solvation effect slightly weakens
the benzene dimer interaction for ST and PD conformations by 0.5–1 kcal/mol, while it
remains almost unchanged for the T1 and T2 conformations. This alters the most favorable
conformation of the benzene dimer; the PD and T conformations are almost equally stable
in vacuum, but the T conformations preferentially attain stability in water.
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Figure 3. (a) Association free energy of benzene dimers in vacuum (∆Gvac) and in solution (∆Gaq).
(b) Average number of water molecules in the first solvent shell (Nwat) and solvent accessible surface
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Intriguingly, the solvent-accessible surface areas (SASAs) of the two T conformations
were greater than those of the other two conformations, resulting in more water molecules
surrounding the solute molecules (Figure 3b). In contrast, hydrophobic interactions occur
between nonpolar and hydrophobic molecules, such as benzene, which tend to aggregate
in water while minimizing their solvent-exposed surface. This is because the aromatic ring
of benzene is not simply nonpolar and can develop two benzene–water hydrogen bonds on
both sides of the phenyl ring (Figure 3c) [63]. As the association into T conformations only
breaks one benzene–water hydrogen bond, while that into ST or PD conformations breaks
two hydrogen bonds, the benzene dimer association in water favors the T conformations.
Indeed, our earlier research indicated that breaking the benzene-water hydrogen bond
requires approximately 1 kcal/mol [64], which nearly corresponds to the current difference
in ∆Gsol between the PD and T conformations.

Figure 4a shows the ∆Gaq values of phenol dimers in various conformations. Note that
the T2 (2,1′) and T2 (4,1′) conformations were excluded from further discussion because
they were discovered to be extremely unstable in water, resulting in either a structure
largely deviated from its original conformation or a positive value of ∆Gaq (Figure S2).
Except for the T2 (3,1′) and HBP conformations, we found smaller differences among
different conformations and hydroxyl group positions. Moreover, ∆Gaq values were com-
parable to ∆Gvac values within a 1 kcal/mol margin. However, for the T2 (3,1′) and HBP
conformations, the solvation effect significantly weakened the dimer association.
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The major reason for the strongest binding in vacuum of the T2 (3,1′) and HBP
conformations can be found in the direct interaction between the two OH groups. The
HBP conformation creates an intermolecular HB between the two phenols. The T2 (3,1′)
conformation also causes the OH group at the vertically upright phenyl ring to point toward
the O atom of the OH group at the horizontally placed phenyl ring (see Figure 2), forming a
weak HB. Because OH groups are solvated by water molecules via strong hydrogen bonds
in the aqueous phase, when the association process develops a direct interaction between
two OH groups (e.g., for the case of T2 (3,1′) and HBP), the loss of water–hydroxyl hydrogen
bonds is inevitable. Figure 4b depicts the variation in the number of water–hydroxyl HB
during the phenol dimer association. HB connectivity is shown in Figure S3. As the OH
groups in the ST and PD conformations protrude toward the water phase, they can form
~2 HBs with water molecules for each OH group, as depicted in Figure 4c for the PD (4,1′)
case. On the other hand, the OH groups in the T2 (3,1′) and HBP conformations mutually
interact in the buried space, and only one solute–solvent hydrogen bond per OH group is
permitted, as illustrated in Figure 4d. This is ascribed to the weakened interaction between
T2 (3,1′) and HBP phenol dimers in water, whereas ∆Gaq and ∆Gvac are comparable for the
other conformations. Nevertheless, despite the loss of water–hydroxyl hydrogen bonds,
the HBP phenol dimer remains the most stable phenol dimer conformation in water.

We compared the values of ∆Gvac and ∆Gaq with the ring-to-ring distances between
the dimers of benzene and phenol (Figure S5). Both ∆Gvac and ∆Gaq have negative rela-
tionships with the distances, indicating that the most stable configurations (i.e., T-shape for
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benzene dimer and HBP for phenol dimer) have the longest R-R distances. We also investi-
gated the electrostatic potential surfaces of their configurations (Figure S6) and conclude
that the ring components of benzene or phenol tend to become apart from each other to
avoid the overlapping of charge densities, hence, developing strong π–π interactions.

3.3. Enthalpy–Entropy Compensation in Solvation Effect

Despite being non-negligible, the association free energy difference in vacuo and in
aqua is mostly limited within 1.4 kcal/mol for all benzene and phenol dimer cases, except
for the T2 (3,1′) and HBP phenol dimers, which have solute–solute hydrogen bonds (as also
supported by the natural bond orbital analyses shown in Figure S7). As the association
free energy difference is determined by the ∆∆Gsol, as illustrated in the thermodynamic
cycle (Figure 1), we decomposed ∆∆Gsol into the enthalpic contribution, ∆∆Hsol, and the
entropic contribution, −T∆∆Ssol, which are plotted in Figure 5.
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Except for the two outliers, T2 (3,1′) and HBP phenol dimers, the enthalpy–entropy
compensation behavior in ∆∆Gsol was well-defined. Moreover, as the corresponding
∆∆Hsol and −T∆∆Ssol values are distributed around the y = −x line, we discovered that
the solvation effects of enthalpy and entropy cancel each other out at 300 K, yielding small
differences between ∆Gaq and ∆Gvac within 1.4 kcal/mol. Interestingly, both ∆∆Hsol and
∆∆Ssol were negative for phenol dimers (except for T2 (3,1′) and HBP conformations), while
∆∆Hsol and ∆∆Ssol were positive for benzene dimers. Thus, it is inferred that enthalpy
drives the coalescence of two hydration shells of phenol monomers into one, whereas
entropy drives the fusion of benzene hydration shells. Consequently, the former can be
classified as a nonclassical hydrophobic association, whereas the latter can be considered
as an example of classical association.

During the dimerization of phenol into the T2 (3,1′) or HBP conformation, the enthalpy
disfavors the coalescence of two hydration shells (∆∆Hsol > 0) owing to the loss of the
hydroxyl–water hydrogen bond, but the entropy is insufficient to compensate (∆∆Ssol~0).
This causes the solvation thermodynamics of the T2 (3,1′) and HBP conformations to
deviate from the trend established by the enthalpy–entropy compensation, resulting in
a significantly weakened association free energy in water. However, despite this energy
cost in water, the HBP conformation of phenol dimers has the strongest ∆Gaq among all
considered conformations; it is also stronger than the ∆Gaq of the benzene dimer.
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3.4. Relationships with Phase Behaviors of IDPs

Benzene and phenol are analogs of phenylalanine (Phe) and tyrosine (Tyr) side chains,
respectively. Even with a small number of charged residues, a subset of IDPs containing
a significant number of Phe/Tyr residues can drive liquid–liquid phase separation. One
well-known example is the N-terminal low-complexity domain of FUS (fused in sarcoma),
which contains 24 Tyr residues and few charged residues (2 Asp) [65].

The strongest benzene dimer interaction is −3.44 kcal/mol for the T1 conformation,
and the strongest phenol dimer interaction is −4.93 kcal/mol for the HBP conformation;
both are negative and sufficiently large, so they can promote the association, but the phenol
dimer has a stronger binding. Other theoretical investigations [66,67] have demonstrated
that the interaction strength of the associating units is positively correlated with the LLPS
propensity. Indeed, previous experiments [23] have demonstrated that Phe and Tyr can
replace each other without significantly altering the phase behaviors, but Tyr induces a
stronger tendency toward LLPS than Phe [68,69].

4. Conclusions

In this study, the thermodynamics of benzene and phenol dimer association were
investigated by determining the free energy of π–π interactions in water. Using vdW-
corrected DFT and DFT-CES methods, we quantitatively estimated the free energy of dimer
association in water, ∆Gaq. Each component term (free energy of dimer association in
vacuum and solvation free energy) was sufficiently accurate to be compared with available
high-level coupled cluster-level calculations and experimental values. Interestingly, we dis-
covered that the solvation effect only marginally modifies the π–π interaction free energies,
unless a direct hydrogen-bond-like interaction develops between the two monomers. This
trend can be explained in terms of enthalpy–entropy compensation, which clarifies that
entropy and enthalpy drive the association of benzene and phenol dimers, respectively.
We expect that this study will yield quantitatively reliable free-energetic values for π–π
interactions in water and provide a fundamental understanding of the molecular driving
force for the liquid–liquid phase separation of IDPs.
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