
J Thromb Haemost. 2022;20:2465–2474.    | 2465wileyonlinelibrary.com/journal/jth

Received: 20 May 2022  | Accepted: 8 August 2022

DOI: 10.1111/jth.15844  

R E V I E W  A R T I C L E

The NO/cGMP/PKG pathway in platelets: The therapeutic 
potential of PDE5 inhibitors in platelet disorders

Anisa Degjoni1  |   Federica Campolo1  |   Lucia Stefanini2  |   Mary Anna Venneri1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and 
Haemostasis.

Manuscript handled by: Katsue Suzuki- Inoue Final decision: Katsue Suzuki- Inoue, 08 August 2022  

1Department of Experimental Medicine, 
Sapienza University of Rome, Rome, Italy
2Department of Translational and 
Precision Medicine, Sapienza University of 
Rome, Rome, Italy

Correspondence
Mary Anna Venneri, Department of 
Experimental Medicine, Sapienza 
University of Rome, Viale del Policlinico, 
155, Rome 00161, Italy.
Email: maryanna.venneri@uniroma1.it

Abstract
Platelets are the “guardians” of the blood circulatory system. At sites of vessel 
injury, they ensure hemostasis and promote immunity and vessel repair. However, 
their uncontrolled activation is one of the main drivers of thrombosis. To keep 
circulating platelets in a quiescent state, the endothelium releases platelet antagonists 
including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl 
cyclase (GC). The latter produces the second messenger cyclic guanosine- 3′,5′- 
monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase 
G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools 
are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) 
that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 
5 (PDE5) is a cGMP- specific PDE, broadly expressed in most tissues in humans and 
rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first- line therapy 
for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract 
symptoms. However, several studies have shown that PDE5i may ameliorate the 
outcome of various other conditions, like heart failure and stroke. Interestingly, NO 
donors and cGMP analogs increase the capacity of anti- platelet drugs targeting the 
purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, 
and preclinical studies have shown that PDE5i inhibits platelet functions. This review 
summarizes the molecular mechanisms underlying the effect of PDE5i on platelet 
activation and aggregation focusing on the therapeutic potential of PDE5i in platelet 
disorders, and the outcomes of a combined therapy with PDE5i and NO donors to 
inhibit platelet activation.
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1  |  INTRODUC TION

Platelets are small anucleated blood cells that ensure hemostasis at 
sites of blood vessel injury by aggregating and releasing a plethora of 
bioactive molecules, thereby limiting blood loss and pathogen entry, 
and promoting vessel repair.1

When the endothelial lining is intact and healthy, platelets are 
maintained in a resting non- adhesive state by short- lived molecules 
constitutively released by the endothelium, namely nitric oxide 
(NO) and prostacyclin (prostaglandin I2 [PGI2]). NO is an apolar 
gas produced from L- arginine by nitric oxide synthase (NOS) with 
an intravascular half- life of 2 ms that can enter platelets by simple 
diffusion and stimulate the intracellular soluble receptor guanylyl 
cyclase (sGC), which in turn catalyzes the conversion of guanosine- 
5′- triphosphate (GTP) to cyclic guanosine 3′,5′- monophosphate 
(cGMP).2 Prostacyclin is a lipid mediator of the eicosanoid family 
(half- life of 42 s) that binds the platelet G protein- coupled prosta-
cyclin receptor (IP), which stimulates adenylyl cyclase to convert 
adenosine- 5′- triphosphate (ATP) to adenosine 3′,5′- monophosphate 
(cAMP).3 cGMP and cAMP activate protein kinase G (PKG) and A 
(PKA), respectively, that phosphorylate hundreds of intracellular 
targets to ultimately inhibit the activation of platelets flowing along 
the endothelium.4 The NO and PGI2 paracrine effect also extends 
to nearby leukocytes and smooth muscle cells.5 Thus, their overall 
outcome is to inhibit/dampen thrombosis and inflammation and pro-
mote vasodilation.

When the endothelial lining is injured or inflamed, the local 
concentration of these key inhibitory mediators is reduced locally 
and the molecular breaks are released and thereby smooth muscle 
cells contract and platelets and leukocytes are more prone to be-
come active.6 At the sites of injury platelets sense and respond to 
exposed components of the extracellular matrix (ECM) such as col-
lagen, and locally generated soluble agonists, such as thrombin; that 
is, the product of the coagulation cascade.7 These agonists trigger 
intracellular signaling cascades that promote the conversion of in-
tegrin receptors from a low-  to a high- affinity state for their ligands 
(integrin inside- out activation).7 The β1 integrins (α2β1, α6β1, α5β1, 
αIIbβ3, αvβ3) support adhesion and spreading of the first layer of 
platelets to the ECM.8 αIIbβ3, the most abundant integrin expressed 
in platelets, in its active state binds to plasmatic fibrinogen or von 
Willebrand factor (VWF) released from the injured endothelium, 
supporting the formation of a three- dimensional platelet aggregate 
(hemostatic plug) at the injury site.9 The controlled amplification of 
activation that is necessary to recruit more platelets and to ensure 
stability of the growing aggregate is mediated by co- stimulatory 
signaling provided by the short- lived autocrine/paracrine agonists 
thromboxane (Tx)A2 and adenosine diphosphate (ADP), which are 
released from activated platelets and can only act locally like NO 
and prostacyclin.10,11

Uncontrolled activation of the platelet pro- adhesive and secre-
tory functions is one of the main drivers of thrombosis and can also 
exacerbate other disease states such as inflammation, infections,12 
diabetes, and cancer.13,14 For instance, COVID- 19 patients display 

hyperactive platelets and a higher risk of thrombotic complica-
tions,12 which could be explained, at least in part, by the endothe-
lial dysfunction and the reduced NO bioavailability documented in 
these patients.

In clinical practice, the strategy most widely used to counteract 
pathological platelet activation is to inhibit the amplificatory path-
ways mediated by TxA2 and ADP by treatment of patients with aspi-
rin (which prevents TxA2 synthesis) and/or ADP receptor, purinergic 
receptor type Y, subtype 12 (P2Y12) blockers such as clopidogrel.15 
In principle, one could lower platelet activation not only by inhib-
iting the activation pathways but also by boosting the inhibitory 
pathways.

One way to do this is by increasing the intracellular levels of 
cGMP. Intracellular cGMP pools are tightly regulated by a fine bal-
ance between the NO receptor guanylyl cyclase (GC) and phos-
phodiesterases (PDE) that are responsible for cyclic nucleotides 
hydrolysis.16 In mammals, the PDE superfamily includes 60 differ-
ent isoforms with different specificity for cAMP and/or cGMP.17 
Phosphodiesterase type 5 (PDE5) is a cGMP- specific phosphodies-
terase broadly expressed in most tissues in humans and mice,18– 20 
which jumped to the headlines thanks to the development of its 
pharmacological inhibitor, sildenafil (Viagra). In clinical practice 
PDE5 inhibitors (PDE5i) are used as first- line therapy for erectile 
dysfunction (ED), pulmonary arterial hypertension (PAH), and lower 
urinary tract symptoms (LUTS).21 However, several studies have 
shown that PDE5 may ameliorate the outcome in various other con-
ditions, including heart failure,22 stroke,23 diabetic nephropathy,24,25 
peripheral artery disease, and premature ejaculation,26 and its clini-
cal applications are increasing in several fields.27– 30

As expected, NO donors and cGMP analogs greatly increase 
the capacity of P2Y12 inhibitors to block platelet aggregation31 and 
PDE5i in particular have been shown to inhibit platelet function.32 
However, the pathological context in which these therapeutic strat-
egies could be most effective and safe remains to be established.

2  |  SIGNALING PATHWAYS REGUL ATING 
CGMP IN PL ATELETS

2.1  |  Nitric oxide

Cytosolic levels of cGMP are regulated by a fine balance between 
the activity of the NO- stimulated sGC and PDEs. The harmonized 
activity of these players converges in a complex signaling pathway 
whose initiator is NO, a free radical, naturally produced through 
oxidation of the amino acid L- arginine by the NOS. The main source 
of NO in the blood is endothelial NOS (eNOS), but there is also a 
NOS resident in platelets that contributes to the vascular pool of 
NO.33 NO regulation of vascular tone occurs through different 
pathways according to cell needs and environmental stimuli. Under 
physiological conditions, NO mainly synthesized by endothelial 
eNOS induces cGMP production via stimulation of sGC in vascular 
smooth muscle cells.34 The increase of cGMP activates PKG thus 
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preventing calcium influx and promoting cytosolic calcium reuptake 
into the sarcoplasmic reticulum. These coupled events, acting 
on myosin– actin bridges, finally induce muscle relaxation. Under 
hypoxic conditions sGC- mediated cGMP production is inhibited 
and Rho- associated protein kinase (ROCK) activation mediated by 
inosine cyclic monophosphate (cIMP) triggers muscle contraction.35 
These mechanisms ensure vascular homeostasis and prevent 
vascular damage that occurs in several pathological conditions 
such as atherosclerosis in which NO concentration declines 
promoting smooth muscle cell proliferation and ECM deposition.5 
NO is best known for its stimulatory role on sGC. However, NO 
can downregulate platelet function, independently of sGC, through 
nitration or S- nytrosilation of intracellular signaling proteins.36,37 
S- nytrosilation of N- ethylmaleimide– sensitive factor (NSF) was 
shown to inhibit platelet granule release, indispensable for platelet 
activation, by impairing its ability to disassemble the soluble N- 
ethylmaleimide NSF attachment receptor (SNARE) complex.36 Even 
though it is well established that NO is a strong negative regulator 
of platelet activation and adhesion,38,39 under oxidative stress 
conditions, there is an impairment of NO signaling in platelets 
called “NO resistance” leading to dysfunction of the classical NO/
cGMP/PKG pathway. Superoxide anion (O2−) radicals can act as NO 
scavengers and at the same time inactivate sGC.40

Platelet sensitivity to NO as well as cGMP and sGC decreases 
with age, and among young people, women are the ones to show 
a higher expression of cGMP and sGC.41 Homocysteine, an eNOS 
inhibitor, induces formation of the peroxynitrite biomarker nitroty-
rosine, and leads to decreased NO bioavailability, NO impairment, 
endothelial damage, and stimulation of platelet aggregation.42 
Enhanced intraplatelet reactive oxygen species production de-
creases NO bioavailability, and potential defects in the heme group 
of sGC are probably implicated in the platelet hyperaggregability as-
sociated with a high- fat diet.43 The platelet inhibitor aspirin can also 
exert its function via NOS acetylation increasing NO production and 
activating its downstream signaling.44

2.2  |  Soluble guanylate cyclase

NO acts as the initiator of a cascade of signals that converge in 
the activity of its cytosolic receptor, namely sGC, a member of 
the nucleotide cyclase family.45 sGC activity increases several 
fold when binding to NO,46 leading to cGMP generation. sGC is a 
heterodimer consisting of an alpha bound to a beta subunit, and 
the alpha subunit is present in two isoforms.45 Strategies for the 
genomic deletion of individual subunits have been developed in 
recent years. Removal of either one of the alpha isoforms has no 
effect on sGC, while depletion of the beta subunit coding gene 
led to total absence of the sGC, and consequent interruption 
of the NO/sGC/cGMP/PKG signaling transduction pathway.47 
As a heme- containing α/β–  heterodimer, the redox state of the 
heme moiety is a crucial regulator for binding of NO to sGC, for 
the reason that sGC can bind NO and become active only when 

the heme iron is in its reduced state (Fe2+), while in presence of 
oxidized state iron (Fe3+), sGC is insensitive to NO and unable 
to bind to it.48 Even though, as mentioned in the previous 
section, there are NO- dependent sGC- independent inhibitory 
mechanisms, several mouse models confirmed the inhibitory 
role of the NO/GC/cGMP axis in platelets.47,49 Consistently, NO- 
independent pharmacological sGC agonists inhibit platelets.50 
They can be distinguished in sGC stimulators and sGC activators 
that are effective on Fe2+ or Fe3+ iron, respectively. A known sGC 
stimulator, YC- 1 (3- [5- hydroxymethyl- 2furyl]- 1- benzyl indazole), 
acts on sGC by sensitizing it to CO, stimulating sGC in a NO- 
similar manner.51 sGC stimulators also increase sGC activity acting 
on specific regions in the structure of the enzyme, such as BAY 
41- 2272, which acts on the regulatory region on the sGC α1 
subunit, increasing the enzyme activity.52 Activation of the sGC 
can be induced in a heme- dependent or - independent manner. The 
heme- dependent activation of sGC is observed during NO binding 
to Fe2+,53 or during treatment with nitro vasodilators such as 
glyceryl trinitrate, that result in activation of sGC by modulating 
the heme moiety, forming a nitrosyl heme of the enzyme.54 YC- 
1, on the other hand, activates sGC in both NO- dependent 
and NO- independent manners.55 The sGC activator HMR1766 
reduces platelet activation in vivo after chronic treatment of 
diabetic rats.56 The sGC activator BAY 60- 2770 was shown to 
overstimulate platelet sGC and to inhibit platelet aggregation, 
adhesion, intracellular Ca2+ levels, and integrin aIIbβ3 activation 
particularly in heme- oxidizing conditions.57 The GC stimulator 
riociguat is effective in the treatment of pulmonary hypertension 
but it was shown to inhibit platelet activation in whole blood only 
at concentrations above 50 μM, which is much higher than the 
concentrations reached in the plasma of patients (150– 500 nM), 
suggesting that platelets may not be the target of this drug.58 
On the other hand, the phosphodiesterase 3 (PDE3) inhibitor 
dipyridamole, a widely used antiplatelet drug, has been shown 
to augment NO production and bioavailability under diabetic 
conditions59 and on experimental models of ischemic limbs.60 In 
comparison to riociguat, dipyridamole is more effective because 
it increases NO bioavailability; inhibits the cellular reuptake of 
adenosine, thus inhibiting platelet aggregation; and has been 
shown to play an effective role in platelets, where it inhibited 
shear- induced platelet aggregation with a larger efficacy in whole 
blood compared to platelet rich plasma,61 making it a more reliable 
treatment for platelet- related disorders. Thrombospondin- 1 
(TSP- 1) is a universal inhibitor of sGC that blocks both heme- 
dependent and - independent activation.62 TSP- 1 increases with 
age, and in chronic diseases such as diabetes and atherosclerosis, 
thus the therapeutic potential of drugs that target sGC could be 
compromised in these pathological conditions in which TSP- 1 
signaling is elevated.62 While the inhibitory effect of sGC in NO- 
stimulated circulating platelets is unquestionable, its role during 
thrombus formation seems to be more complex. Increasing 
evidence suggests that sGC can be activated downstream of 
the VWF receptor GP- Ib- IX- V63,64 or the Toll- like receptor 
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(TLR)4 stimulated by pathogen- associated molecular patterns 
(PAMPS) like lipopolysaccharide or damage- associated molecular 
patterns (DAMPS) and can have a stimulatory effect on platelet 
activation65 in synergy with other platelet agonists. Moreover, a 
recent study has shown that sGC has mechanosensitive properties 
and its inhibitory function is potentiated by shear stress.66 These 
apparently contradictory observations are conciliated by a 
proposed model in which, during thrombus formation, sGC might 
display a biphasic role in the modulation of platelet function.67 In 
the early stages of thrombus formation, platelet sGC/cGMP axis 
is activated by VWF or PAMPs and DAMPs situated at the site of 
injury and promotes thrombus formation.68 During the late stages 
of thrombus growth, the effect of high shear stress stimulates the 
sGC/cGMP inhibitory signaling axis and results in the limitation of 
platelet activation and of thrombus growth.68 NO- dependent or 
- independent activation of sGC leads to increase of cGMP, whose 
levels are finely regulated by the action of cGMP- hydrolyzing 
phosphodiesterases.

2.3  |  Phosphodiesterases and platelets

Phosphodiesterases belong to a large family of enzymes virtually 
expressed in all tissues and responsible for cyclic nucleotide 
hydrolysis.18 Eleven PDE families have been identified so far that, 
following multiple splicing processes, give rise to more than 100 PDE 
isoforms in humans and rodents.69 PDEs differ in their structure, 
properties, location, cellular expression, and targets.17 PDE5 is the 
principal cGMP hydrolyzer, for which three isoforms have been 
identified in humans and mice.18,70 Given the broad expression and 
the ability of PDE5 to control cGMP levels in the cell, it has been 
proposed as a pivotal effector in many biological processes such 
as platelet activation and aggregation, smooth muscle relaxation, 
immune response, and heart muscle contraction.71

Three PDE isoenzymes are expressed in platelets, PDE2, PDE3, 
and PDE5, and while PDE2 hydrolyzes cAMP, and PDE3 both cAMP 
and cGMP, PDE5 is a cGMP- specific enzyme.32 The high expression 
of PDE5 in platelets leads to rapid cGMP hydrolysis, allowing plate-
lets to promptly activate and aggregate when the endothelium is 
injured.21

2.4  |  cGMP effectors

The basal cGMP level in platelets is reported to be around 0.5 μM. 
NO- mediated activation of sGC results in a rapid 10- fold increase in 
cGMP levels.72 This transient elevation is mirrored by activation and 
subsequent phosphorylation of PDE5.73 Phosphorylation of PDE5 
has been suggested to enhance cGMP hydrolysis in vitro.74,75

Since its discovery in rat urine about six decades ago,76 various 
studies have been conducted to better understand cGMP's effect 
on platelet function. cGMP intracellular levels in platelets are tightly 
controlled by the activity of sGC and cGMP- hydrolyzing PDEs. 

The main effector of cGMP is PKG that inhibits platelet activation 
by phosphorylating multiple substrates. One of its targets is IP3R- 
associated PKG substrate (IRAG) that results in the inhibition of IP3- 
dependent Ca2+ release from the intracellular stores.77 By blocking 
Ca2+ mobilization, cGMP negatively regulates all aspects of plate-
let activation, from integrin activation to cytoskeleton remodeling 
and granule release. In addition, phosphorylation of regulatory pro-
teins of Ras- like guanine- nucleotide- binding protein (Rap1GAP2)78 
and of RhoA (Myo9b and GEF- H1) contributes to the inhibition of 
platelet aggregation and of cytoskeletal dynamics. Additionally, 
PKG was shown to inhibit the platelet procoagulant response (PS 
exposure, mitochondrial membrane depolarization)79 but its impact 
on platelet lifespan is yet to be determined. A cross- talk between 
cGMP and cAMP has been reported in many tissue and cell types 
including platelets. Most notably, cGMP inhibits PDE3, which de-
grades cAMP,80 and stimulates PDE2, which degrades both cGMP 
and cAMP, with the final effect of increasing cAMP. Thus, cGMP 
inhibits platelet activation in a PKG- dependent (NO/cGMP/PKG) 
and PKG- independent (NO/cGMP/PDE3A/cAMP/PKA) manner 
(Figure 1).77,81 Moreover, PKA is able to phosphorylate and activate 
PDE5 on the PKG site (Ser92), but with 10- fold lower efficiency than 
PKG.82 Only a few substrates are known to be selectively phosphor-
ylated by PKA (i.e., PDE3, IP3R, TRPC, MLCK) and PKG (i.e., PDE5 
and IRAG),83 while PKA and PKG can phosphorylate both the same 
substrates including the vasodilator- stimulated phosphoprotein 
(VASP),84 LIM and SH3 domain protein (LASP),85 and heat shock pro-
tein 27 (HSP27).86 The NO/sGC/cGMP pathway plays an important 
role in the activity of different cell types, organs, and tissues, most 
importantly in the brain, the corpus cavernosum, and the cardiovas-
cular system.87 In platelets, studies in humans and genetically modi-
fied animal models have demonstrated that upregulating the cGMP/
PKG pathway is critical for reducing platelet aggregation and the risk 
of myocardial infarction.88

3  |  THE THER APEUTIC POTENTIAL OF 
PDE5 INHIBITORS IN PL ATELET DISORDERS

PDE5 inhibitors reached their breakthrough at the end of 
the last century and are currently used as first- line therapy in 
patients with ED, PAH, and LUTS.21 The most widely used PDE5i, 
sildenafil, commonly known as Viagra, was discovered in 1989.89 
Its ameliorating outcomes in patients with ED depend on its 
vasodilating properties, which are beneficial also in other clinical 
settings including cardiovascular disease (CVD).90– 93 In preclinical 
studies, PDE5 inhibitors’ effects on thrombosis have been examined 
in an experimental rat model of thrombotic suture suggesting a 
benefit in applying sildenafil in the anastomosis with already present 
thrombogenic disease.94 The same effect is shown in clinical studies 
in which sildenafil reduced thrombosis, thromboembolic events, and 
the risk of thrombotic strokes in patients during low- level hemolysis 
(LLH) on HeartMate II support.95 Moreover, a retrospective 
analysis of clinical studies assessing the potential effect of PDE5i 
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in ED suggests that use of sildenafil improves the outcome of CVD 
patients96 and that there should be no safety concerns in the use of 
this drug in CVD patients.97

An analysis of a Dutch registry (INTERMACS) of patients that 
used PDE5i after left ventricular assist device placement demon-
strates that PDE5 inhibition improves survival and reduces throm-
botic events.98 Thus, the reduction in CVD risk is not only due to the 
vasodilating effect of PDE5i but also to their ability to inhibit platelet 
function.99 Even though sildenafil shows several beneficial effects, 
its short half- life100 has led to the development of other PDE5 in-
hibitors, such as tadalafil, vardenafil, and avanafil with longer half- 
lives.21 Tadalafil has shown promising results in ex vivo studies and 
clinical trials, where its administration inhibits platelet activation, 
increases cGMP levels,101 and reduces inflammation after treatment 
with 5 mg/day tadalafil.102

Vardenafil is not only more effective than sildenafil in extending 
NO- induced relaxation of trabecular smooth muscle cells, but can 
also inhibit Ca2+ flux, thereby inhibiting platelet activation.103

4  |  PDE5 INHIBITORS COMBINED WITH 
NO DONORS COULD HAVE A SYNERGIC 
EFFEC T ON PL ATELET INHIBITION

PDE5 inhibitors alone have displayed limited effect as platelet 
aggregation inhibitors.32 It has been demonstrated that in platelets, 
the presence of NO is able to induce an increase of cGMP content 
promoting the intracellular accumulation of PDE5i raising their affinity 
for PDE5.104 Moreover, a synergic effect of PDE5i in combination 
with NO for the treatment of COVID- 19 has been proposed28 and 
sildenafil has been shown to prompt the anti- aggregatory effect of 
NO donors that inhibit platelet activation and aggregation through 
cGMP- dependent and - independent pathways.105,106

A more recent study107 has shown very promising outcomes on 
ED patients by combining low- dose tadalafil with dietary nutritional 
supplements that can boost the endothelial NO production, such 
as Panax ginseng, traditionally used for its properties as a vascular 
endothelial cell- derived NO secretion promoter; moringa oleifera, 

F I G U R E  1  Nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) transduction signaling pathway in platelets. 
NO is produced by oxidation of L- arginine by the NO synthase (NOS) enzymes, and acts as an activator for soluble guanylyl cyclase (sGC), 
which induces cGMP production through guanosine- 5′- triphosphate (GTP) phosphorylation. Many NO donors, endogenous and exogenous 
ones, augment NO bioavailability, thus leading to a major activation of the cGMP pathway. cGMP can both inhibit and enhance cyclic 
adenosine monophosphate (cAMP) production in platelets, by allosterically inhibiting phosphodiesterase 3 (PDE3)— a cAMP inhibitor, and 
by stimulating phosphodiesterase 2 (PDE2) that degrades cAMP, so NO/cGMP can inhibit platelet activation either in a cGMP- dependent 
PKG– dependent (NO- cGMP- PKG) or – independent (NO- cGMP- PDE3A- cAMP- PKA) pathway. cGMP binds to the three different effector 
proteins, PKGs, PDEs, and the cyclic nucleotide- gated cation channels (CNG channels) that mediate sensory transduction in cells. 
Phosphodiesterase 5 (PDE5) is a cGMP- specific phosphodiesterase that targets it and inhibits the crucial NO/cGMP/PKG signaling pathway. 
In presence of PDE5 inhibitors (PDE5i), PDE5 cannot exert its hydrolyzing function, by allowing cGMP to continue its platelet inhibitory 
function through PKG. AMP, adenosine monophosphate; ATP, adenosine triphosphate; PS, lipopolysaccharide; PKA, protein kinase A.
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known for its anticoagulant properties; and rutin, which possesses 
anticoagulant and antithrombotic properties.108

Another study has shown that the use of compounds that 
augment NO levels and eNOS activity, such as endocannabinoid 
anandamide, shows an effect on platelet NO/cGMP pathway, by 
increasing in a dose-  and time- dependent manner NO and cGMP 
levels in human platelets and stimulating eNOS activity, contributing 
to an extended platelet survival.109

All together, these data suggest a potential beneficial effect of 
PDE5 inhibitors combined with NO donors in platelets. However, 
dedicated studies deeply assessing this concern are missing.

5  |  WHO SHOULD TAKE PDE5 
INHIBITORS A S ANTI-  PL ATELET THER APY?

The inhibitory effect of PDE5i on platelet aggregation suggests that 
these drugs alone or in combination with other therapies could be 
employed in the setting of CVD to reduce the risk of thrombosis 
and minimize the infarct size.110 However, randomized clinical trials 
examining the safety and efficacy of PDE5i in CVD are still lacking.

The TARDIS trial111 showed that combining aspirin, clopidogrel, 
and dipyridamole, a pan- PDE inhibitor, did not reduce the incidence 
and severity of recurrent stroke compared to clopidogrel alone or 
aspirin and dipyridamole combined, but significantly increased the 
chance of bleeding. Thus, further trials are needed to find the clin-
ical setting, modalities, and timing of administration in which these 
drugs could be most beneficial. Another recent study shows how the 
differential reactivity of platelets in males and females is at least in 
part due to differences in the NO– sGC signaling pathway, and that 
women are indeed prone to benefit from larger doses of antiplatelet 
drugs that block the P2Y12 receptor.112

The L- arginine/NO/cGMP pathway is impaired in platelets from 
obese adults, associated with reduced superoxide dismutase (SOD) 
activity, resulting in reduced NO bioavailability that supports plate-
let hyper aggregation.113 Thus, among obese patients, combination 
therapy with NO donors and PDE5 could be preferable. In addition 
to their ability to form thrombi, platelets can also foster pathological 
conditions through their capacity to sense the activated endothe-
lium, release chemokines, and bind leukocytes. In the setting of the 
arteries, platelets participate in the initial stages of atherosclerosis 
by arresting leukocytes114 and facilitating their transmigration at 
sites of endothelial activation.115 In veins where the endothelium is 
activated by flow stagnation and hypoxia platelets activate neutro-
phils to release neutrophil extracellular traps, which in turn promote 
thrombosis.116 After stroke, platelets contribute to ischemia reper-
fusion injury and stroke progression through the recruitment of T 
cells. The common feature of these pathological states is endothe-
lial dysfunction that results in reduced bioavailability of the platelet 
antagonists NO and PGI2 and decrease of the platelet activation 
threshold.

Notably, a recent study117 demonstrated that tadalafil does 
not affect platelet adhesion to collagen and thrombus formation 

(platelet functions required for hemostasis) but significantly re-
duces platelet adhesion to inflamed endothelial cells and release 
of chemokines from activated platelets (platelet functions that 
foster inflammation). Because tadalafil also reduces inflamma-
tion30 one could envision the use of this drug to prevent the pro-
gression of thrombo- inflammatory disease without undermining 
hemostasis. However, these studies need confirmation among 
human subjects.

6  |  CONCLUSIONS

This review dissects the NO/cGMP/PKG/PDE5 pathway and its 
relevance in platelet physiopathology, and summarizes recent 
findings coming from preclinical studies that might shed light on the 
therapeutic potential of PDE5i as anti- platelet treatment. From the 
analysis of available studies, the increase of cGMP levels through 
PDE5i or sGC stimulation emerge as a promising therapeutic tool in 
platelet disorders. However, randomized controlled trials are needed 
to assess efficacy and safety of these treatments.
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