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Abstract

We report a precision medicine platform that evaluates the probability of chemother-

apy drug efficacy for canine lymphoma by combining ex vivo chemosensitivity and

immunophenotyping assays with computational modelling. We isolated live cancer

cells from fresh fine needle aspirates of affected lymph nodes and collected post-

treatment clinical responses in 261 canine lymphoma patients scheduled to receive

at least 1 of 5 common chemotherapy agents (doxorubicin, vincristine, cyclophospha-

mide, lomustine and rabacfosadine). We used flow cytometry analysis for immuno-

phenotyping and ex vivo chemosensitivity testing. For each drug, 70% of treated

patients were randomly selected to train a random forest model to predict the proba-

bility of positive Veterinary Cooperative Oncology Group (VCOG) clinical response

based on input variables including antigen expression profiles and treatment sensitiv-

ity readouts for each patient's cancer cells. The remaining 30% of patients were used

to test model performance. Most models showed a test set ROC-AUC > 0.65, and all

models had overall ROC-AUC > 0.95. Predicted response scores significantly distin-

guished (P < .001) positive responses from negative responses in B-cell and T-cell dis-

ease and newly diagnosed and relapsed patients. Patient groups with predicted

response scores >50% showed a statistically significant reduction (log-rank P < .05)

in time to complete response when compared to the groups with scores <50%. The

computational models developed in this study enabled the conversion of ex vivo cell-

based chemosensitivity assay results into a predicted probability of in vivo therapeu-

tic efficacy, which may help improve treatment outcomes of individual canine

lymphoma patients by providing predictive estimates of positive treatment response.
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1 | INTRODUCTION

Lymphoma is one of the most common cancers in dogs and represents

the most common haematopoietic malignancy.1 Dogs develop lym-

phoma at a higher incidence rate compared to people (114 per

100 000 dogs compared to 20 per 100 000 humans).1 The most com-

mon form of canine lymphoma is the multicentric form, which mani-

fests as generalized lymphadenopathy. Approximately 75% of canine

lymphoma cases develop as multicentric lymphoma, with other forms

being less common (6.9% alimentary and less than 5% mediastinal).2

In terms of the immunophenotype, the B-cell subtype comprises 58%

of newly diagnosed cases, and the T-cell subtype comprises 35%.3

Survival rates differ significantly between immunophenotypes—

approximately 9 and 6 months for the most common B- and T-cell

subtypes, respectively.1

Chemotherapy is considered the treatment of choice, and the

highest response rates and remission durations are achieved with

multi-agent chemotherapy. Treatment regimens typically combine

cyclophosphamide, doxorubicin, vincristine, and prednisone—

collectively known as CHOP—which results in a clinical remission rate

of 73% to 96% and overall survival time of 275 to 344 days for high-

grade lymphomas.4,5 Recently, a novel antineoplastic drug called

rabacfosadine (TANOVEA-CA1) has also become available; an overall

response rate of 87% and median progression free interval of

122 days were reported for naïve canine multicentric lymphoma

treated with single agent rabacfosadine.6 With the failure of first-line

protocols or relapse, rescue treatments are considered, with lomustine

being a key component of many rescue protocols.7,8 Rescue protocols

typically result in lower response rates and shorter remission dura-

tions than first-line protocols.7,9,10 Treatment outcomes also differ

between different subtypes of canine lymphoma, with most T-cell

subtypes having poorer treatment response than B-cell subtypes.11,12

The significant variance in treatment responses in various clinical

scenarios implies a critical need to predict treatment response accu-

rately, especially in patients with rare lymphoma subtypes or subtypes

with low remission rates. Addressing this need may improve treat-

ment outcomes by enabling clinicians to select the most effective

drugs and exclude ineffective ones for each patient.

Cell-based ex vivo drug sensitivity assays have been widely stud-

ied as a precision medicine tool to recapitulate the tumour micro-

environment in vitro and predict in vivo responses in human

lymphoproliferative disorders.13-17 For canine lymphoma, Pawlak

et al. reported an in vitro chemosensitivity assay that measures the

cytotoxicity of various anticancer reagents in high-grade primary lym-

phoma cells.18 This previous work showed that drug sensitivity varies

among individual patients and that a direct measurement of drug

response in primary cancer cells is a potential predictor of actual

response in the body. However, parameters derived from the out-

come of a drug sensitivity assay alone can be insufficient when

predicting in vivo response. Adding other phenotypic information

such as the immunophenotype of a patient's cancer cells as deter-

mined by flow cytometry may enhance the predictive value of ex vivo

drug sensitivity testing.18,19

Individualized patient outcome modelling is another core feature

of precision medicine. In human oncology, personalized predictive

modelling has many clinical applications, especially those related to

diagnostic and prognostic decisionmaking.20 Machine learning is a

particularly popular modern approach for predicting patient outcomes

in human oncology,21 and machine learning strategies have been suc-

cessfully applied to a variety of human cancers and treatment regi-

mens.22-24 One of the most promising avenues of this research is

related to direct prediction of drug response25; however, despite the

popularity and promise of predictive machine learning in human

oncology, it remains relatively uncommon in veterinary oncology.

Clinical models are typically assessed strictly on predictive accu-

racy. However, the choice of output format is critical for maximizing

clinical utility. Many traditional modelling approaches output some

categorical value such as “good response” because categorical model

outputs have a variety of convenient performance assessment

methods.26 However, these traditional models are not calibrated to

accurately assess the likelihood of a good response, meaning a patient

with a 55% likelihood of positive response and a patient with a 95%

likelihood of positive response would both be classified as “positive

responders”. Clearly, important information is lost in the conversion

from likelihood scores to categorical reporting.27 One less common

modelling approach that represents major gains in clinical utility is to

develop models that directly report the likelihood of positive response

for a patient.20,21,27 This is especially important when there may be

multiple treatment options available for a given case.

However, the development of probabilistic models that directly

and accurately report likelihood scores is associated with significant

challenges, such as more complex performance assessments.28

Because probabilistic models report both a response and the likeli-

hood of that response (eg, a 95% likelihood of positive response),

many traditional performance metrics used for categorical models,

such as sensitivity and specificity, must be extended to address this

likelihood. For example, in categorical models, a model that predicts a

positive response in a patient that fails to response is simply wrong,

whereas in probabilistic models, a model that predicts a 90% likeli-

hood of positive response in a patient that fails to respond must be

penalized more harshly than a model that predicts a 30% likelihood of

positive response in the same patient. This difference leads to natural,

if less well known, extensions of popular modelling metrics. Probabilis-

tic models can be assessed using metrics such as the Brier score,

which penalizes inaccuracy as in the example above, or calibration

curves (as seen in Figure 1), which graph the predictions of a probabi-

listic model against the actual frequency of positive or negative out-

comes in a dataset.28 For a likelihood model to have good

performance, among all patients predicted to have a 70% likelihood

score, roughly 70% of them would have positive responses and 30%

of them would have negative responses.

In this study, we present a machine learning approach for

predicting treatment response in canine lymphoma. Rather than

reporting discrete classifications of positive or negative response, we

sought to use random forest models29,30 to accurately predict the like-

lihood of positive responses to individual chemotherapies. We
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F IGURE 1 Performance metrics for probabilistic random forest models of drug responses. Sliding-window calibration graphs (left) of
predicted probability of positive response vs percentage of patients experiencing a positive response (window size = 20% of sample size; purple
line = prediction; shaded region = 95% prediction interval; black line = perfect calibration) and ROC curves (right) of probabilistic random forest
model for A, doxorubicin; B, vincristine; C, cyclophosphamide; D, rabacfosadine and E, lomustine [Colour figure can be viewed at
wileyonlinelibrary.com]
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hypothesized that the combination of direct drug sensitivity measure-

ments and flow cytometry data could accurately predict treatment

outcomes in a machine learning model of treatment response in

canine lymphoma.

2 | METHODS

2.1 | Case selection

The study included 261 canine patients with confirmed diagnosis of

lymphoma who received at least one dose of the modelled drugs

(Supplementary Table S1). All dog owners provided informed consent

for participation in this study. Cell and molecular assays were con-

ducted on fine needle aspiration (FNA) samples that were submitted

to a clinical laboratory (ImpriMed, Inc., Palo Alto, CA) between April

2018 and October 2019. A sample was considered neoplastic if it met

the following criteria: cytological or histological diagnosis of lym-

phoma plus flow cytometric findings that >80% of the lymphocytes

had either B- or T-cell immunophenotype or >60% of the lympho-

cytes had a single phenotype and positive clonality by PCR for antigen

receptor rearrangements. Data extracted from submitted medical

records included patient age, weight, sex, clinical stage, date of diag-

nosis, date of initiation of treatment, treatment protocol, time to

treatment response, time to disease progression and date of death.

2.2 | Flow cytometry

FNA samples from patient lymph nodes were shipped overnight in

Transport Media (ImpriMed, Inc., Palo Alto, CA) with ice packs, and

most samples arrived with high cell viability (Supplementary

Figure S1). Flow cytometry was performed within 48 hours of sample

collection. Directly conjugated antibody combinations consisting of

fluorescein isothiocyanate (FITC), phycoerythrin (PE), alexa fluor

647 (AF647) and allophycocyanin (APC) were used for surface

staining cell suspensions. When an abnormal lymphocyte population

was identified on routine analysis, the following antibodies (with spe-

cific clones in parentheses) were included in the flow cytometry panel

for immunophenotyping: anti-canine CD21 PE (CA2.1D6), CD3 FITC

(CA17.2A12), CD4 PE (YKIX302.9), CD8 AF647 (YCATE55.9), CD5 PE

(YKIX322.3), CD45 FITC (YKIX716.13), class II MHC APC

(YKIX.334.2), CD34 FITC (1H6), and anti-human CD14 AF647 (TUK).

The class II MHC antibody was purchased from Thermo Fisher Scien-

tific (Waltham, MA), and all other antibodies from Bio-Rad Laboratories

(Hercules, CA). Aliquots of cells at concentrations ranging from 0.2 to

1.0 × 106 cells/mL were labelled with antigen-specific antibodies or

isotype controls at a concentration of 2 to 10 μg/mL in phosphate-

buffered saline (PBS) with 1% bovine serum albumin. Labelled cells

were incubated at 4�C in the dark for 45 minutes and then washed

repeatedly. Cytometric analysis was performed using Guava easyCyte

8HT (Luminex, Austin, TX) and FCS Express 6 (De Novo Software, Pas-

adena, CA) was used to analyse data. Lymphocyte populations were

gated to exclude dead cells based on forward scatter vs side scatter

plots. When the antigen fluorescence was higher than that of an anti-

body isotype control, the antigen was considered positive.

2.3 | Drug sensitivity testing

Ex vivo drug sensitivity assays were conducted on freshly isolated pri-

mary cells derived from the patients' FNA samples. Red blood cells

(RBC) in the FNA samples were lysed in RBC Lysis Buffer (Thermo

Fisher Scientific, Waltham, MA). The RBC-lysed samples were washed

twice with PBS and resuspended in Optimum Culture Media

(ImpriMed), which maintained high cell viability over the timespan of

the assay (Supplementary Figure S2). Each well in a 384-well micro-

titre plate (Corning, Corning, NY) was seeded with 30 000 cells. The

tested chemotherapeutic drugs were purchased from commercial ven-

dors as follows: Selleckchem (Houston, TX) for doxorubicin, vincristine

sulfate, and lomustine, and Niomech-IIT GmbH (Bielefeld, Germany)

for mafosfamide cyclohexylamine. Chemically stable mafosfamide

cyclohexylamine was selected as a cyclophosphamide analog,

which does not require hepatic activation to produce its active

metabolite 4-hydroxy-cyclophosphamide in vitro.31 Rabacfosadine

(TANOVEA-CA1) was generously provided by the manufacturer

(VetDC, Fort Collins, CO). All drugs were prepared in PBS containing

10% DMSO. Cells in the micro-titre plates were treated in duplicate

with the drug compounds in seven different concentrations per drug,

covering approximately a 100 000-fold concentration range (1.3 nM

to 100 μM), in addition to seven untreated control wells. The cells

were incubated for 72 hours at 37�C in a 5% CO2-charged incubator.

After the incubation, cell viability was assessed using alamarBlue

(Thermo Fisher Scientific) and the plates were read with the Spark

multimode microplate reader (Tecan, Männedorf, Switzerland) follow-

ing the manufacturer's instructions. The dose-response curves were

analysed in GraphPad Prism 7 (GraphPad Software, San Diego, CA),

which was used to generate IC50 and AUC values. Maximum cytotox-

icity was defined as the maximum percentage of cells killed in any well

treated with a given drug.

2.4 | Response annotation

Patient responses were annotated using retrospective medical record

review and heuristics derived from the VCOG Response Evaluation

Criteria for Peripheral Nodal Lymphoma.32 For model training and test-

ing, an automated response annotation approach was used. If a patient

received multiple therapies in a combination regimen such as CHOP,

response to each drug was assessed individually at the most proximal

post-treatment visit, typically 1 to 2 weeks after administration.

Our weekly response annotations were further modified confi-

dence weighting approach, which was an attempt to address con-

founding factors related to multidrug regimens. Because patient

samples represent a “snapshot” of disease state, which changes over

time as a result of both mutation and selective forces exerted by
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chemotherapy, weekly responses were adjusted by a weighting factor

scaled by the time elapsed since the sampling date. This annotation

strategy was calibrated to assess the most likely “true” response

within 90 days of the sample acquisition date. In cases of pre-treated

patients (including relapse), responses were annotated both before

and after the sampling date, which allowed us to effectively annotate

patients who showed resistance to therapy before we received their

samples.

The base selection equation was:

R=max rCR, rPR, rSD, rPDf gð Þ

where R represents the final annotated response for a drug, and each

response category's weight was formulated as:

rRECIST =
Xn

i=0

1−
ti−14j j
76

where n is the number concordant weekly responses for a given drug

in a patient and ti is the time elapsed between the sample date and

response i, with t0 = 90 to ensure responses with no valid annotations

were assigned a weight of 0. In cases of discordant annotations within

a month of the sampling date, the later response was granted a fur-

ther upward weighting adjustment to deemphasize transient

responses. As an example, a patient that shows complete response

after a single dose of cyclophosphamide immediately after sampling is

weighted as a “more confident” response (ie, has a higher weighting

value) than a patient who achieves complete response after 3 weeks

of intermittent cyclophosphamide therapy, as in CHOP. Similarly, a

patient who maintained durable complete response over several

weeks of doxorubicin alone would be weighted as a “more confident”

than a patient who only received doxorubicin once or twice over a

period of months. The automated annotation was calibrated for a

95% concordance rate when compared to unanimous annotation con-

sensus among three blinded independent reviewers (Raghavendra

Sumanth Pudupakam, Hye-Ryeon Lee and Sungwon Lim).

2.5 | Predictive modelling

Models were trained and tested based on responses to single drugs.

The selected drugs represented some of the most common cytotoxic

drugs used for treatment of canine lymphoma and included doxorubi-

cin, vincristine, cyclophosphamide, lomustine and rabacfosadine.

Parameters included drug response variables (either area under the

drug response curve or IC50 and maximum cytotoxicity33) and the per-

centage of the sampled cell population expressing a variety of flow

cytometry markers, including percent of lymphocytes, percent of large

lymphocytes, forward scatter, side scatter, and percentages of cells

expressing CD21, class II MHC, CD3, CD8 and CD34. All variables

were formulated as continuous values, and the same input variables

were used for each model unless otherwise noted.

Each drug response cohort was split into model training and test-

ing cohorts using random selection, with 70% of samples being used

for training and 30% being used for testing. All data were centred and

scaled based on means and standard deviations derived from the

training set. In samples missing data for four or fewer variables, data

were imputed using a k-nearest neighbours approach with k = 5 and

all nearest neighbours derived from the training set.34

The pre-processed training data was used as input to tune and

train drug-specific random forest models.29 Tuning was performed

using repeated cross-validation with 10 repeats of 4 random folds

each and a log loss optimization function over 500 trees for each run.

Tuning parameters included minimum leaf node size, number of vari-

ables assessed per split, and splitting criteria (maximum Gini coeffi-

cient35 or random selection, otherwise known as extremely

randomized trees29). Expected model outputs were probability of a

positive response to a specific drug. Variable importance was assessed

using mean decrease in node impurity.35

2.6 | Model performance assessment

Model performance was assessed by applying the tuned and trained

models to the testing cohort for each drug and scored using a combi-

nation of ROC-AUC and Brier score. Because each model's training

set had a different rate of positive responses, we also assessed test

set performance using Brier skill score calibrated to a reference model

of the positive response rate in the entire cohort for a given drug.

Models were further assessed by visual inspection of their perfor-

mance across the whole dataset using rolling calibration curves with

binomial confidence intervals and boxplots.

2.7 | Time-to-response analysis

Response data for time to response analysis were collected from

patient medical records. Time to complete response was assessed

from the time of sample acquisition to the time of first documented

complete response for a patient. Patients that did not achieve a docu-

mented complete response were censored at the time of last follow-

up or death.

2.8 | Statistical methods

All machine learning models were developed in R 3.6.1. Data pre-

processing was performed using the caret package.36 The random for-

est model was generated using the ranger package.30 Performance

assessments were performed using the ROCR package37 and custom

R code. Time to complete response analyses were performed using

R's survival package.38 An unpaired t test was used to assess the sta-

tistical significance of the differences in the mean probability score

among various patient subgroups.
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2.9 | Cell line validation statement

No cell lines were used in this study.

3 | RESULTS

3.1 | Patient demographics

Table 1 presents the demographic information for all 261 dogs in the

study. Intermediate to large-sized B-lymphocytes expressing high

levels of class II MHC were the most common immunophenotype in

the study. CD4-positive lymphocytes with low levels of class II MHC

were the frequently identified immunophenotype among T-cell

lymphomas.

3.2 | Optimum model parameters varied despite
relatively consistent optimum input variables

Model tuning parameters were broadly comparable across drugs, but

there were slight differences between models. All models showed the

best tuning performance with minimum leaf node size equal to 1 and

the number of variables per split equal to 2. The doxorubicin and

cyclophosphamide models were most performant when splitting

criteria were based on the maximum Gini coefficient, whereas the

other three models were optimized using the extremely randomized

trees approach, which randomly selects splitting variables among a

selected subset.29 Most of the tested drugs showed better predictive

power when the drug response was formulated as a combination of

IC50 and maximum cytotoxicity rather than the area under the drug

response curve. The only exception was cyclophosphamide, which

TABLE 1 Patient characteristics

Parameter

Total study
population

(N = 261)

Doxorubicin study
population

(N = 159)

Vincristine
study population

(N = 163)

Cyclophosphamide
study population

(N = 166)

Rabacfosadine
study population

(N = 50)

Lomustine
study population

(N = 64)

Age

Median ± SD 9 ± 3.1 9 ± 3.1 9 ± 3.1 9 ± 3.1 9 ± 2.7 9 ± 3.2

Range 1 to 16 years 1 to 16 years 1 to 16 years 1 to 16 years 3 to 15 years 2 to 16 years

Weight

Median ± SD 27 ± 11.9 27 ± 12.4 27 ± 11.4 27 ± 11.7 25.5 ± 12.9 27 ± 11.5

Sex

Male 18 (6.9%) 13 (8.1%) 10 (6.1%) 9 (5.4%) 2 (4.0%) 5 (7.8%)

Female 8 (3.0%) 5 (3.1%) 4 (2.4%) 4 (2.4%) 2 (4.0%) 5 (7.8%)

Male neutered 127 (48.6%) 81 (50.9%) 79 (48.4%) 79 (47.5%) 24 (48.0%) 28 (43.7%)

Female spayed 97 (37.1%) 53 (33.3%) 62 (38.0%) 66 (39.7%) 19 (38.0%) 21 (32.8%)

Unknown 11 (4.2%) 7 (4.4%) 8 (4.9%) 8 (4.8%) 3 (6.0%) 5 (7.8%)

Clinical stage

2 6 (2.2%) 3 (1.9%) 2 (1.2%) 1 (0.6%) 0 (0.0%) 2 (3.1%)

3 97 (37.1%) 60 (37.7%) 62 (38.0%) 61 (36.7%) 16 (32.0%) 27 (42.2%)

4 48 (18.3%) 27 (17.0%) 26 (16.0%) 26 (15.7%) 15 (30.0%) 7 (10.9%)

5 15 (5.7%) 7 (4.4%) 6 (3.7%) 6 (3.6%) 3 (6.0%) 1 (1.6%)

NSa 95 (36.3%) 62 (39%) 67 (41.1%) 72 (43.4%) 16 (32.0%) 27 (42.2%)

a 101 (61.2%) 66 (68%) 57 (59.4%) 56 (59.6%) 25 (73.5%) 30 (81%)

b 34 (20.6%) 13 (13.4%) 17 (17.7%) 17 (18.0%) 8 (23.5%) 4 (10.8%)

NSSb 30 (18.2%) 18 (18.6%) 22 (22.9%) 21 (22.3%) 1 (3.0%) 3 (8.1%)

Immunophenotype

B 171 (65.5%) 103 (64.7%) 100 (61.3%) 101 (60.8%) 35 (70.0%) 29 (45.3%)

T 46 (17.6%) 27 (16.9%) 32 (19.6%) 29 (17.4%) 8 (16.0%) 26 (40.6%)

Othersc 30 (11.4%) 17 (10.6%) 19 (11.6%) 23 (13.8%) 2 (4.0%) 7 (10.9%)

Nd 14 (5.3%) 12 (7.5%) 12 (7.3%) 13 (7.8%) 5 (10.0%) 2 (3.1%)

aNot staged.
bNot substaged.
cDual immunophenotype, inconclusive, non-B/non-T, and immature phenotypes.
dNot immunophenotyped.
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showed significantly better performance when using the area under

the drug response curve.

3.3 | Model performance

Test set performance was measured using the area under the receiver

operating characteristic curve (ROC-AUC) for positive response (clini-

cal response or partial response), Brier score, and Brier skill score. The

doxorubicin predictive model showed the best performance with a

test set ROC-AUC of 0.702, Brier score of 0.188, and Brier skill score

of 0.09. The cyclophosphamide model was similarly performant with

an ROC-AUC of 0.697 but a less performant Brier score of 0.21 and

Brier skill score of 0.05. Vincristine had an ROC-AUC of 0.603, Brier

score of 0.239, and Brier skill score of 0.02. Rabacfosadine had an

ROC-AUC of 0.714, Brier score of 0.248, and Brier skill score of

0.008. Lomustine had an ROC-AUC of 0.63, Brier score of 0.246, and

Brier skill score of 0.032.

Most models showed good calibration across the entire dataset,

although the models tended to underforecast in samples with lower

probabilities of positive response (Figure 1, left). When models were

back-applied to the whole dataset for each drug, the ROC-AUC was

universally above 0.95, indicating high resolution (Figure 1, right).

Figure 2 indicates high sharpness in the drug response forecasts as

well. Finally, back-calculated Brier scores were also similarly low, with

all models below 0.095.

3.4 | Predictive scores accurately distinguish
between positive and negative responses among
different immunophenotypes and relapse status

We next assessed the model performance by analysing the distribu-

tion of the predictive scores, namely probabilities of positive response

for each drug, among different biological subgroups. The results dem-

onstrate a clear difference in the mean predictive score between the

patients with positive response (complete response or partial

response) and negative response (stable disease or progressive dis-

ease). P values were less than .001 for all drugs when the number of

patients was larger than 10 (Figure 2, left). Our models performed well

for both B- and T-cell subtypes; distributions were the most dichoto-

mized for rabacfosadine. The same level of significance was observed

when comparing the distribution and mean predictive scores of naïve

and relapsed patients for each drug (Figure 2, right). Notably, the

dichotomization was more pronounced among the relapsed patients.

3.5 | Time to complete response is significantly
better for patients with higher prediction scores

We also analysed time to complete response for each model when

samples were dichotomized into patients with predictive scores >50%

and patients with predictive scores <50% (Figure 3). The doxorubicin,

vincristine and cyclophosphamide models all showed significant differ-

ences in time to complete responses (log-rank P < .05), with patients

with higher scores responding more quickly. The rabacfosadine and

lomustine models did not show significant differences in time to com-

plete response (log-rank P = .2 for rabacfosadine and .3 for lomustine).

However, we note that both the rabacfosadine and lomustine

datasets contained significantly smaller numbers of patients than the

other three drugs.

4 | DISCUSSION

In this study, we showed that drug sensitivity data and flow cytometry

data acquired from primary canine lymphoma samples were sufficient

to generate accurate probabilistic models of positive responses to

individual chemotherapeutic agents. This finding addresses the cur-

rent need for predictive models of treatment response to minimize

the treatment burden in canine lymphoma. Our modelling approach

features a variety of strengths, including the ability to informatively

predict the likelihood of positive treatment response in individual

canine lymphoma patients as well as close association with improved

time to complete response in patients with positive predictions.

We modelled in vivo drug responses to five common chemother-

apeutic agents that have direct cytotoxic effects in canine lymphoma

cells: doxorubicin, vincristine, cyclophosphamide, lomustine, and

rabacfosadine.1,6 Model performance was evaluated with a variety of

measures, including ROC-AUC, representing a model's ability to dis-

criminate between positive and negative responses; Brier score, a

proper scoring function that represents the error between probabilis-

tic predictions and actual outcomes; and Brier skill score, which com-

pares the Brier score for a drug response model to the prevalence of

positive responses in our data set. Test set ROC-AUC was above 0.6

for all drugs, and overall ROC-AUC was above 0.95 for all drugs, indi-

cating good discrimination between positive and negative responses

in our data set.39 Brier scores varied between drugs, but because Brier

score is dependent on prevalence of positive responses, we also eval-

uated Brier skill score to normalize all Brier scores to the prevalence

of positive responses for a given drug in our data set. Brier skill scores

varied, but all models showed positive Brier skill scores, indicating

improved predictive value over positive response prevalence alone.

Probabilistic predictions of treatment response and survival in

human oncology represent powerful tools to improve patient out-

comes and have shown success in a wide variety of diseases.40-42 We

have applied the concept of probabilistic treatment response predic-

tion to canine lymphoma. However, the identification of relevant fea-

tures is a challenge in any biological model. Direct measurements of

treatment response in primary tumour samples are almost certainly

relevant to treatment response in patients.18 However, ex vivo

assessments of chemosensitivity may not fully capture the behaviour

of drugs or cells in vivo, which may render these measures insufficient

to fully predict individual treatment responses alone. Because many

immunophenotypic subtypes with diverse treatment response profiles

have been described in canine lymphoma,43 we sought to use
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common immunophenotypic markers as additional variables for our

models.

Although we used the same immunophenotypic markers for each

drug model in this study, response prediction values varied

significantly between drugs for each patient, which implies significant

differences in variable importance. Drug sensitivity parameters were

highly important for doxorubicin, vincristine, and rabacfosadine

models, whereas flow cytometry variables were more important in the

F IGURE 2 Discrimination
between positive and negative scores
among patient subpopulations.
Comparison of the predictive
probability scores for A,
doxorubicin; B, vincristine;
C, cyclophosphamide;
D, rabacfosadine and E, lomustine
across the patient subgroups (B- vs

T-cell patients [left] and naïve vs
relapse patients [right]) showing
positive responses (blue; complete
response or partial response) and
negative responses (red; stable
disease or progressive disease). Lines
indicate unpaired t-tests, and asterisks
represent significance levels
(****P < .0001; ***P < .001; **P < .01)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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cyclophosphamide and lomustine models. However, the importance

of IC50 vs maximum cytotoxicity varied depending on the model in

question. Percentage of CD21+ cells was also commonly in the top

three most important variables, and it was particularly important for

the cyclophosphamide and lomustine models. Although our cyclo-

phosphamide model was optimized by using AUC of the drug

response curve rather than IC50 and maximum cytotoxicity as vari-

ables, that variable was still only of moderate importance in the final

random forest. This may indicate that the AUC-based cyclophospha-

mide model's superior predictive accuracy was related to a reduction

of treatment-response variables among the total variable set rather

than any predictive superiority of AUC over IC50 and maximum

cytotoxicity. This difference seen in the cyclophosphamide model

may also be related to our response annotation strategy since

cyclophosphamide frequently occurs later in a variety of combination

chemotherapy regimens (eg, after doses of doxorubicin and vincristine

in CHOP).

The cases that were modelled in this study were broadly repre-

sentative of the cases seen in community practice, with similar distri-

butions of immunophenotypes and disease stage at presentation.1

We do note some differences between each individual drug cohort,

however. Most notably, patients treated with lomustine were more

likely to have T-cell disease (40% vs 16%-20% in the other treatment

cohorts; Table 1), which is representative of lomustine-based regi-

mens being a common alternative to CHOP chemotherapy in this

immunophenotype.7,44,45 Patients treated with rabacfosadine in our

study were also more likely to have stage 4 or higher disease (36% vs

19%-24% in other treatment cohorts; Table 1). This prevalence of

F IGURE 3 Cumulative incidence curves of time to complete response. All patients received at least one dose of A, doxorubicin;
B, vincristine; C, cyclophosphamide; D, rabacfosadine and E, lomustine after the ex vivo chemosensitivity assay sampling date. Patient groups
were dichotomized at 50% predicted probability of positive response. The bottom tables show number of patients who have not achieved
complete response or been censored at a given time point [Colour figure can be viewed at wileyonlinelibrary.com]
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high-stage disease in our rabacfosadine cohort translated to a positive

response rate lower than that reported in clinical trials (54% vs

74%-87%).6,9

A core assumption made in this study is the decision to ascribe

responses to individual drugs, even in the case of multi-agent chemo-

therapies. Although we recognize that there are likely significant inter-

actions between drugs in multi-agent regimens, the strength of these

synergistic or antagonistic interactions remains to be fully under-

stood.46,47 We have attempted to mitigate the effects of this assump-

tion using a confidence weighting approach that is heavily influenced

by rapid changes in response status, whether positive or negative. It is

difficult to derive any meaningful information from sustained

responses across multiple drugs in a chemotherapy regimen (ie, there

is little meaningful information regarding response to cyclophospha-

mide if a patient is in complete response, receives cyclophosphamide,

and remains in complete response), but the combination of weekly or

biweekly response assessments and a confidence weighting scale

does allow our method to capture any sudden changes in response

status, such as a patient with complete response to CHOP after

receiving vincristine and doxorubicin suddenly experiencing progres-

sive disease after receiving cyclophosphamide. Despite this, we do

note that it is especially difficult to fully dissect the role of individual

therapeutic agents in survival analyses for patients treated with multi-

agent regimens.

Although our modelling approach reliably distinguished between

positive and negative responses and showed clear advantages in time

to complete response for drugs with larger sample sizes, we note that

there were differences between test set performance depending on

the drug in question. This may indicate that drugs with different

mechanisms of action necessitate different measures of treatment

response or secondary model variables or it may be related to a con-

founding factor between drugs that are commonly combined

(eg, cyclophosphamide is often administered in the second week of a

CHOP protocol, which may influence in vivo drug sensitivity in a way

that is not captured by individual drug sensitivity measurements). The

incorporation of additional variables, such as genomic sequencing data

or interaction terms between combination therapies, into our models

may increase predictive performance. For example, certain breed-

specific mutations, such as MDR1, can have significant impacts on

chemotherapy efficacy and patient outcomes.48 These data are not

currently captured in our models, and their addition may enhance the

predictive accuracy of the models presented here. Furthermore, the

models of rabacfosadine and lomustine showed relatively good per-

formance by a variety of metrics and clearly dichotomized positive

and negative treatment responses in all the tested subgroups, but

there was no significant difference in time to complete response. This

observation may be the result of relatively small sample sizes for these

drugs in our study, and more patients may be necessary to completely

model treatment responses in these patients.

Our results show that drug sensitivity parameters and common

flow cytometry markers used for immunophenotyping are sufficient

to develop probabilistic models of chemotherapy response in canine

lymphoma. It is highly likely that larger sample sizes and the inclusion

of other variables may enhance the predictive power of the models

described here. We believe that these and other predictive models of

treatment outcome may empower veterinarians to make personalized

therapy recommendations for canine lymphoma, which may lead to

reduced treatment burden and increased survival.
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