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With the deepening of the power market reform on the retail side, it is of great significance to study the economic optimization of
the microgrid cluster system. Aiming at the economics of the microgrid cluster, comprehensively considering the degradation cost
of energy storage battery, the compensation cost of demand-side controllable loads dispatch, the electricity transaction cost
between the microgrids, and the electricity transaction cost between the microgrid and the power distribution network of the
microgrid cluster, we establish an optimal dispatch model for the microgrid cluster including wind turbines, photovoltaics, and
energy storage batteries. At the same time, in view of the problem that the population diversity of the basic sparrow search
algorithm decreases and it is easy to fall into local extremes in the later iterations of the basic sparrow search algorithm, a chaos
sparrow search algorithm based on Bernoulli chaotic mapping, dynamic adaptive weighting, Cauchy mutation, and reverse
learning is proposed, and different types of test functions are used to analyze the convergence effect of the algorithm, and the
calculation effects of the sparrow algorithm, the particle swarm algorithm, the chaotic particle swarm, and the genetic algorithm
are compared. .e algorithm has higher convergence speed, higher accuracy, and better global optimization ability. Finally,
through the calculation example, it is concluded that the benefit of the microgrid cluster is increased by nearly 20%, which verifies
the effectiveness of the improvement.

1. Introduction

With the current energy shortage and environmental
problems in power supply becomingmore andmore serious,
the microgrid composed of renewable energy sources has
been widely used [1–3], which can not only improve the
energy efficiency but also protect the environment, reduce
costs, and meet the requirements of economy, environ-
mental protection, and stability [4–10]. However, due to the
poor antidisturbance capacity of a single microgrid, multiple
microgrids in a local area are interconnected to form a
microgrid cluster system. By coordinating the energy output
of each microgrid in the cluster, the dynamic balance of
supply and demand within the cluster is achieved, and the
reliability and economy of the system is effectively improved.
However, due to differences in the capacity configuration
and load characteristics of each microgrid, when electric
energy is exchanged between microgrids, it will affect the

operation of microgrids [11]. .erefore, considering the
exchange of electricity between microgrids, how to coor-
dinate and optimize the microgrid cluster according to the
supply and demand characteristics of each microgrid is very
important.

At present, research on coordination and optimization
of a microgrid cluster has achieved certain results. Literature
[12] proposed a multi-microgrid coordinated and optimized
dispatching model based on double auction to optimize the
sum of interactive power between each microgrid and other
microgrids and power distribution network. Although this
model optimized the electricity transaction volume between
microgrids, it did not take into account the influence of
demand-side controllable loads on the electrical energy
interaction between microgrids. Literature [13] established a
market transaction model based on cooperative game theory
and carried out research on the benefit distribution and
settlement rules of the microgrid cluster cooperative
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alliance. Although the electricity transaction price between
microgrids was optimized, the influence of the demand-side
controllable loads on the microgrids was not considered.
Literature [14] studied the optimal dispatching problem of
photovoltaic microgrid based on the consideration of time-
of-use electricity price, with the goal of minimizing the
exchange volume of the grid. Although the time-of-use
electricity prices and optimized transaction volumes were
considered, only the optimal dispatch of a single microgrid
was considered, and the optimization of the microgrid
cluster system was not considered. Literature [15] consid-
ered the installation cost, operating cost, and environmental
benefits of the multi-microgrid system to establish an
economic dispatch model and used a particle swarm opti-
mization algorithm combined with Monte Carlo simulation
to solve it. Although a centralized optimization algorithm
was adopted, each microgrid needed to fully share internal
privacy information, which requires higher communication
and makes it difficult to optimize dispatch. Literature [16]
achieved minimum operation cost through a few iterations
by combining the Newton-type second-order algorithm and
a consensus-based information exchange. Literature [17]
took the adjustment cost of each microgrid as the consensus
variables and used the consensus algorithm to solve the
power distribution problem of island microgrid clusters.
Although literature [16] and [17] had realized the economic
operation of microgrid clusters, they only considered peak
shaving and valley filling from the power generation side,
without considering the response effect of electricity load.
Literature [18] was based on the particle swarm algorithm to
study the economic optimization dispatch of the microgrid.
Although the optimal solution of the microgrid operating
cost was obtained, the particle swarm algorithm had limited
global optimization capability and is easy to fall into the local
optimal solution. Literature [19] proposed a chaotic starling
particle swarm optimization algorithm. .e additions of the
inertial weights and the chaotic logistic mapping strategy
improved the algorithm to have better convergence and
stronger global search capabilities. However, when applied
to multiple local optima, it may fall into local optima and
cause stagnation. Literature [20] proposed a new type of
swarm intelligence optimization algorithm, the sparrow
search algorithm. Compared with other algorithms, its so-
lution efficiency was better; however, it was also easy to fall
into the problem of local extremum in the later iteration.

Based on the abovementioned problems, this paper
improves the optimization model of the microgrid cluster
and comprehensively considers the degradation cost of
energy storage battery, the compensation cost of demand-
side controllable loads dispatch, the electricity transaction
cost between the microgrids, and the electricity transaction
between the microgrid and the power distribution network
of the microgrid cluster, establishes a dynamic energy
trading model for the microgrid cluster, promotes the
balance of supply and demand within the cluster by con-
tinuously coordinating the electricity transaction volume
between microgrids, and reduces system operating costs. At
the same time, taking into account the Bernoulli chaotic
map, dynamic adaptive weights can effectively avoid the

algorithm from falling into the local optimum and improve
the algorithm’s global optimization ability, and the Cauchy
mutation and reverse learning can effectively jump out of the
local optimum. .is paper proposes a chaotic sparrow
search algorithm (ISSA). We use different types of test
functions to analyze the convergence effect of the algorithm
and compare them with sparrow algorithm (SSA), particle
swarm algorithm (PSO), chaotic particle swarm algorithm
(CPSO), and genetic algorithm (GA)..e effectiveness of the
improvement of the proposed ISSA algorithm is verified,
and the algorithm is applied to solve the operating cost of the
microgrid cluster system. Finally, a calculation example is
used to verify the operating economy of the microgrid
cluster with demand-side controllable loads participating in
the dispatch.

.e organization structure of this paper is as follows.
Section 2 introduces the basic structure of the microgrid
cluster and demand-side response model. In Section 3, the
optimal dispatch model of the microgrid cluster is intro-
duced. In Section 4, the improved sparrow algorithm is
introduced. Section 5 uses the test function analysis to verify
the effectiveness of the algorithm improvements. In Section
6, the microgrid cluster composed of three microgrids is
taken as an example, and the ISSA algorithm is used to
conduct simulation experiments. Section 7 gives the con-
clusion and describes the future of the proposed algorithm.

2. Microgrid Cluster Structure and Demand-
Side Response Model

2.1. Electric Energy Trading Structure of theMicrogrid Cluster.
.emicrogrid cluster electric energy transaction structure is
shown in Figure 1; nmicrogrids are interconnected to form a
microgrid cluster system, and each microgrid in the com-
munity contains different types of distributed power gen-
eration units and loads. .e energy flow in Figure 1
represents the power interaction between the microgrid
and the power distribution network, and the information
flow represents the two-way interaction of information
between the microgrid and the cluster adjustment/cluster
control system. It can be seen from Figure 1 that, in the
process of optimal dispatch of the microgrid cluster, the
cluster adjustment/cluster control system conducts two-way
information interaction with the microgrid and continu-
ously optimizes the electric energy transaction volume by
adding controllable loads to realize the optimal dispatch of
the microgrid cluster.

2.2. Demand-Side ResponseModel. .ere are many different
forms of loads in the microgrid. .e classification of loads is
helpful for energy management and dispatch. .e demand-
side management model of this paper mainly takes con-
trollable loads as the research object. Based on the reliability
of power supply, it is divided into three types: shiftable load,
transferable load, and interruptible load.

2.2.1. Shiftable Load. .e microgrid can flexibly change the
operating period of the shiftable load, so that it can choose to
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use electricity in the appropriate electricity price time pe-
riod. .e microgrid can control the shiftable load from the
peak period of power consumption to the general period,
thereby reducing the pressure of dispatching and reducing
the operating cost. .e mathematical model is as follows
[21]:

C
shift
i,k,t � C

Pshift
i P

shift
i,k di,k,t, (1)

where C
Pshift
i represents the dispatch compensation cost of

unit power of the shiftable load in MGi, Pshift
i,k represents the

power of the k-th translatable load in MGi, dshift
i,k,t represents

the state of the k-th translatable load of MGi in period t, if
t ∈ [tshifti,k , tshifti,k + Dshift

i,k ], then when the value is 1, it means it
is in the running state; when the value is 0, it means it is in
the interrupt state, tshifti,k represents the original power
consumption period of the k-th shiftable load in MGi, and
Dshift

i,k represents the continuous power consumption period
of the k-th shiftable load in MGi.

2.2.2. Transferable Load. .e transferable load has a certain
degree of flexibility in the way of power supplies, its con-
trollability is very strong, and the power supply time can be
changed as planned. .e power sector estimates the
transferable load capacity and signs contracts with users to
increase the economy of the microgrid. .e mathematical
model is as follows:

C
trans
i,k,t � C

Ptrans
i P

trans
i,k ui,k,t, (2)

where C
Ptrans
i represents the dispatch compensation cost of

unit power of the shiftable load in MGi, Ptrans
i,k represents

the power of the k-th transferable load in MG I, ui,k,t

represents the state of the k-th transferable load of the
MGi in the period t, if t ∈ [ttransi,k , ttransi,k + Dtrans

i,k ], then when
the value is 1, it means it is in the running state; when the
value is 0, it means it is in the interrupt state, t

Ptrans
i,k

represents the original power consumption period of the
k-th shiftable load in MGi, and Dtrans

i,k represents the total

power consumption period of the k-th shiftable load in
MGi.

2.2.3. Interruptible Load. .e microgrid can cut off the
interruptible load at any time without any negative impact
on its operation, thus making the microgrid’s energy
management system more flexible. Cutting off the inter-
ruptible load requires consideration of the user’s wishes and
carries on certain compensation to the user. When the
compensation cost for removing the interruptible load is
lower than the cost of dispatching other units, it can choose
to remove the interruptible load. .e mathematical model is
as follows:

C
inter
i,k,t � 1 − fi,k,t C

Pinter
i P

inter
i,k , (3)

where fi,k,t represents the state of the k-th interruptible load
of the MGi in the t period, when the value is 1, it means it is
in the running state, when the value is 0, it means it is in the
interrupt state, and C

Pinter
i and Pinter

i,k , respectively, represent
the dispatch compensation cost of unit power of the
interrupted load in MGi and the power of the k-th inter-
ruptible load.

When the user side participates in demandmanagement,
the power department should provide economic compen-
sation to the user..is article comprehensively considers the
dispatch compensation cost of the three controllable loads:
shiftable load, transferable load, and interruptible load. .e
specific mathematical model is as follows:

C
CL
i,t � 

i∈Nshift
i

C
shift
i,k,t + 

i∈Ntrans
i

C
trans
i,k,t + 

i∈Ninter
i

C
inter
i,k,t ,

(4)

where Cshift
i,k,t represents the dispatch compensation cost of the

k-th shiftable load of MGi in period t, Ctrans
i,k,t represents the

dispatch compensation cost of the k-th shiftable load of MGi
in period t, Cinter

i,k,t represents the dispatch compensation cost
of the k-th interruptible load of MGi in period t, Nshift

i

represents the set of translatable load of MGi, Ntrans
i
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Figure 1: Electricity transaction of the microgrid cluster.
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represents the set of transferable load of MGi, and Ninter
i

represents the set of interruptible load of MGi.

3. Optimal Dispatch Model of the
Microgrid Cluster

3.1. Operating Cost Model

3.1.1. Degraduation Cost of the Energy Storage Battery.
.e degradation cost of the energy storage battery is the cost
of life reduction caused by the battery being recycled due to
discharge, which is determined by the depth of discharge
and the price of the battery. When the energy storage battery
is deeply discharged, its recycling will lead to a reduction in
life and an increase in degradation costs. In this paper, the
battery discharge depth function [22] is used to express the
degradation cost of the energy storage battery. .e specific
function can be expressed as

C
BD
i,t � 10− Smax

i
− Si,t( ) − 10− Smax

i
− Si,t−1( ) Ci,bat,

Si,t � Si,t−1 +
P
ch
i,tΔtη

ch
i,t

N
ESS
i

−
P
dis
i,t Δt

N
ESS
i ηdisi,t

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where Smax
i represents the maximum state of charge of the

energy storage battery of MGi, Si,t represents the state of
charge of the energy storage battery of MGi in the period t,
Ci,bat represents the initial investment cost of the energy
storage battery of MGi, Pch

i,t represents the charging power of
the energy storage battery of the MGi in the period t, Pdis

i,t

represents the discharge power of the energy storage battery
of the MGi in the period t, NESS

i represents the rated capacity
of the energy storage battery of the MGi, ηchi,t represents the
charging efficiency of the energy storage battery of the MGi
in the period t, ηdisi,t represents the discharge efficiency of the
energy storage battery of the MGi in the period t, and Δt is
the time interval.

From equation (5), it can be seen that the initial in-
vestment cost of the energy storage battery is constant.
.erefore, as long as the charge and discharge power of the
energy storage battery are optimized to obtain the battery
state of charge, the degradation cost of the energy storage
battery can be obtained.

3.1.2. Electricity Transaction Cost between Microgrids.
.e electricity transaction cost between microgrids refers to
the cost incurred when multiple microgrids exchange
electricity, which is generally expressed as

C
MN
t,k � P

MN
i,t λMN

i,t Δt, (6)

where PMN
i,t represents the power of MGi interacting with

other microgrids in period t, the purchase of electricity is a
positive value, the sale of electricity is a negative value, and
λMN

i,t represents the electricity price of MGi in period t.

3.1.3. Electricity Transaction Cost between the Microgrid and
Power Distribution Network. .e electricity transaction cost
between the microgrid and the distribution network refers to
the cost generated when the microgrid and the power dis-
tribution network interact with electricity, which is generally
expressed as

C
DN
i,t � −P

DN
i,t λDNt Δt, (7)

where PDN
i,t is the interactive power between the MGi and the

power distribution network in t period, the purchase of
electricity is a negative value, the sale of electricity is a
positive value, and λDNi,t is the electricity price of the power
distribution network in t period.

3.2. Optimal Dispatch Objective Function of the Microgrid
Cluster. .is paper takes the lowest operating cost of the
microgrid cluster as the optimization goal and establishes
the optimal dispatch model of the microgrid cluster. During
the operation of the microgrid cluster, the costs are mainly
composed of the compensation cost of the demand-side
controllable load dispatch, the degradation cost of the energy
storage battery, the electricity transaction cost between the
microgrids, and the electricity transaction cost between the
microgrid and power distribution network. .e optimiza-
tion objective function can be expressed as

minf(x) � 
t∈T

C
CL
i,t + 

t∈T
C
BD
i,t + 

t∈T
C
MN
i,t + 

t∈T
C
DN
i,t , (8)

where CCL
i,t represents the dispatch compensation cost of the

controllable loads of the MGi in period t, CBD
i,t represents the

degradation cost of the energy storage battery of the MGi in
period t, CMN

i,t represents the electricity transaction cost
between the microgrids of the MGi in period t, CDN

i,t rep-
resents the electricity transaction cost between the microgrid
and the power distribution network of MGi in period t, and
T is the dispatch period.

3.3. Constraints

3.3.1. Constraints of Power Balance. .e power balance
constraint of the microgrid clusters system is generally
expressed as

P
DN
i,t + P

IL
i,t + P

ch
i,t + 

k∈Nshift
i

P
shift
i,k di,k,t + 

k∈Nrans
i

P
trans
i,k ui,k,t + 

k∈Ninter
i

P
inter
i,k fi,k,t � P

RE
i,t + P

dis
i,t + P

MN
i,t ,

(9)
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where PIL
i,t is the electric power of the key load of MGi in t

period and PRE
i,t is the renewable energy output of MGi in t

period.
.e interactive power balance constraint between

microgrids is expressed as


i∈I

P
MN
i,t � 0. (10)

3.3.2. Constraints of Energy Storage Battery Operation.
Since the energy storage battery cannot be charged and
discharged at the same time, the energy storage battery
charge and discharge power constraint is expressed as

0≤P
ch
i,t ≤P

max
i ,

0≤P
dis
i,t ≤P

max
i ,

P
ch
i,t · P

dis
i,t � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where Pmax
i represents the maximum charge and discharge

power of the energy storage battery of the MGi.
For energy storage battery, their initial and final ca-

pacities should be consistent (excluding charge and dis-
charge power constraints) and the energy storage capacity of
each period needs to be controlled within a reasonable range.
.e following is the specific expression:

S
min
i ≤ Si,t ≤ S

max
i ,

Si,0 � Si,24,

⎧⎨

⎩ (12)

where Smin
i is the minimum state of charge of the energy

storage battery of MGi.

3.3.3. Transaction Constraints of the Microgrid Cluster.
(1) Trading electricity price constraints between microgrids:
when directly trading electrical energy between microgrids,
the price should be above the purchase price of the power
distribution network and remain below the sale price of the
power distribution network, so it is expressed as

λEBt ≤ λ
MN
i,t ≤ λ

ES
t , (13)

where λEBt and λESt are the electricity purchase and sale prices
of the power distribution network.

(2) Constraints on the balance of electricity transaction
costs between microgrids: the balance constraint of elec-
tricity transaction cost between microgrids is expressed as


i∈I

P
MN
i,t λMN

i,t Δt � 0. (14)

(3) Interactive power constraints between microgrids:
the interactive power constraint between microgrids is
expressed as

−P
MN
max ≤P

MN
i,t ≤P

MN
max, (15)

where PMN
max is the maximum value of interactive power

between microgrids.

(4) Interactive power constraints between the microgrid
and power distribution network: the interactive power
constraint between the microgrid and the power distribution
network is expressed as

−P
DN
max ≤P

DN
i,t ≤P

DN
max, (16)

where PDN
max is the maximum value of the interactive power

between the MGi and the power distribution network.

3.3.4. Constraints of Demand-Side Controllable Loads.
.e shiftable load needs to be translated as a whole to
maintain the continuity of its electricity consumption, so the
shiftable load constraint is expressed as



t
Eshift
i,k

t�t
Sshift
i,k

di,k,t � D
shift
i,k ,

di,k,t + 

Dshift
i,k

−1

p�1
di,k,t+p � D

shift
i,k ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where t
Sshift
i,k represents the initial dispatch period of the k-th

shiftable load in MGi and t
Eshift
i,k represents the end dispatch

period of the k-th shiftable load in MGi.
.e dispatch period of the transferable load is within the

acceptable range, indicating that its operation has high
flexibility, so the transferable load constraint is expressed as



t
Etrans
i,k

t�t
Strans
i,k

ui,k,t � D
trans
i,k , (18)

where t
Strans
i,k and t

Etrans
i,k , respectively, are the beginning and end

dispatch periods of the k-th transferable load of MGi.
According to different degrees of importance, the

maximum interruptible duration constraint of the inter-
ruptible load is implemented. In addition, the maximum and
minimum duration constraints are also included in the
interruptible load [23], and the constraints are expressed as



t
Einter
i,k

t�t
Sinter
i,k

1 − fi,k,t ≤D
inter
i,k , (19)

where t
Sinter
i,k represents the initial operating period of the k-th

interruptible load in MGi, t
Einter
i,k represents the end operating

period of the k-th interruptible load in MGi, and Dinter
i,k

represents the k-th maximum interruptible duration in MGi
in a day.

4. Improved Sparrow Algorithm

4.1. Basic Sparrow Search Algorithm. .e sparrow search
algorithm is a swarm intelligence optimization algorithm
that simulates the foraging behavior of sparrows. It contains
three types of individuals, discoverer, follower, and alerter,
and updates their locations according to their own rules.

.e location of the discoverer is updated as follows:
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X
t+1
i,j �

X
t
i,j · exp

−i

ξ · MaxIter
 , R2 < ST,

X
t
i,j + Q · L, R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

where t represents the current iteration number,
j � (1, 2, . . . , d), and Xt+1

i,j represents the position of the i-th
sparrow of the t+ 1 generation in the j-th dimension,
MaxIter represents the maximum number of iterations, ξ is a
random number in the range of (0, 1), R2 ∈ [0, 1] represents
the warning value, ST ∈ [0.5, 1] represents the safety value,
Q is a random number and obeys [0, 1] normal distribution,
and L is a row ofmultidimensional matrix where all elements
are 1. If R2 < ST, it means that there are no natural enemies
nearby, the search environment is safe, and the discoverer
implements an extensive search mode; if R2 ≥ ST, it means
that sparrows detect natural enemies, and the entire pop-
ulation adjusts its search strategy and quickly moves to a safe
area.

.e follower’s location update formula is as follows:

X
t+1
i,j �

Q · exp
X

t
w,j − X

t
i,j

i
2

⎛⎝ ⎞⎠, i>
N

2
,

X
t+1
b,j + X

t
i,j − X

t+1
b,j



 · A
+

· L, i≤
N

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where Xt
w,j represents the worst position of the sparrow in

the j-th dimension at the t-th iteration, Xt+1
b,j represents the

best position of the sparrow in the j-th dimension at the t+ 1
iteration, and A is a 1 × d matrix with randomly assigned
values of 1 or −1 for each element. If i>N/2, it means that
the i-th follower did not get food and has low adaptability
and needs to fly to other areas to find food to obtain energy.
If i≤N/2, it means that the i-th follower will randomly select
a location nearby Xt+1

b,j for foraging.
.e position update formula of the alerter is as follows:

X
t+1
i,j �

X
t
b,j + β · X

t
i,j − X

t
b.j



, fi >fg,

X
t
i,j + k ·

X
t
i,j − X

t
w,j





fi − fw(  + ε
⎛⎝ ⎞⎠, fi � fg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

where Xt
b,j represents the optimal position of the sparrow in

the j-th dimension at the t-th iteration, β is the step size
control parameter, k is a random number within [−1, 1], fi

is the fitness value of the current sparrow, fg represents the
current global optimal fitness value, fw represents the
current global worst fitness value, and ε is a very small
constant to avoid denominator becoming 0. If fi >fg, it
means that the sparrow is on the edge of the population and
is easily attacked by natural enemies; iffi � fg, it means that
the sparrow is in the center of the population and, due to

being aware of the threat of being attacked by natural en-
emies, approaches other sparrows in time to avoid danger.

4.2. Improved Sparrow Algorithm

4.2.1. Initial Population of the Bernoulli Chaotic Map.
Chaotic variables are ergodic, which can effectively improve
the algorithm’s global optimization capability. .e chaotic
map used in this paper is the Bernoulli equation [24].

Xn+1 �

Xn

(1 − λ)
, Xn ∈ (0, 1 − λ],

Xn − 1 + λ( 

λ
, Xn ∈ (1 − λ, 1),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where λ � 0.3.

4.2.2. Improved Finder Update Formula. Introducing the
global optimal solution of the previous generation and the
dynamic weight factor ω into the discoverer update formula
can avoid the algorithm falling into local optimal and im-
prove the convergence speed [25]. .e improved formula is
as follows:

ω �
ωmin + ωmax( 

2
+ ωmax − ωmin( cos

tπ
MaxIter

 , (24)

X
t+1
i,j �

X
t
i,j + ω f

t
j,g − X

t
i,j  · rand, R2 < ST,

X
t
i,j + Q, R2 ≥ ST.

⎧⎪⎨

⎪⎩

(25)

In formula (24), ωmax and ωmin are the inertia weights at
the beginning and end of the iteration, respectively, t is the
current iteration number, MaxIter is the maximum number
of iterations, and when ωmax � 0.95 and ωmin � 0.4, the
algorithm optimization performance is the best. As the
number of iterations increases, the inertia weight will
gradually decrease nonlinearly because at the beginning of
the iteration, using a larger inertia weight can improve the
search ability of the algorithm and at the end of the iteration,
using a smaller inertia weight can enhance the development
ability of the algorithm.

In formula (25), ft
j,g is the optimal solution of the

sparrow in the j-th dimension at the t-th iteration.

4.2.3. Improved Alerter Update Formula. .e improved
alerter update formula is shown in equation (26), which
means that if the sparrow is in the optimal position, it will
randomly fly to any position between the optimal position
and the worst position. If the sparrow is not in the optimal
position, then it will randomly fly to any position between
the current position and the optimal position.

6 Computational Intelligence and Neuroscience



X
t+1
i,j �

X
t
b,j + β X

t
i,j − X

t
b,j , fi ≠fg,

X
t
b,j + β X

t
w,j − X

t
b,j , fi � fg.

⎧⎪⎨

⎪⎩
(26)

4.2.4. Combining the Cauchy Mutation and Reverse Learning
Strategy. Gaussian mutation has a weak ability to guide
individuals out of better local solutions, which is not con-
ducive to global convergence; therefore, this paper uses the
Cauchy mutation [26–28]. .e Cauchy mutation comes
from the Cauchy distribution, and the standard Cauchy
distribution function formula is as follows:

f(x) �
1
π

1
x
2

+ 1
 . (27)

Introducing the Cauchy mutation into the target posi-
tion update method and exerting the perturbation ability of
the Cauchy operator can improve the global optimization
ability of the algorithm.

X
t+1
i,j � Xb,j(t) + cauchy(0, 1)⊕Xb,j(t), (28)

where cauchy(0, 1) is the standard Cauchy distribution. .e
Cauchy distribution random variable generating function is
η � tan[(ξ − 0.5)π].

Reverse learning can effectively improve the efficiency of
the algorithm in solving the global optimum. .e solution
idea is: in the search process, based on the current solution,
the reverse learning strategy is used to calculate the reverse
solution relative to the center, and then, a better solution is
selected after the corresponding comparative evaluation,
thereby improving the global optimization capability of the
algorithm, and the calculation formula is as follows:

Xb,j
′ (t) � ub + r⊕ lb − Xb,j(t) , (29)

X
t+1
i,j � Xb,j

′ (t) + k1⊕ Xb,j(t) − Xb,j
′ (t) , (30)

where Xb,j
′ (t) is the reverse solution of the optimal solution

of the t-th generation, ub, lb are the upper and lower bounds,
r is a 1∗d random number matrix, which obeys the (0, 1)
standard uniform distribution, and k1 represents the in-
formation exchange control parameters. .e formula is as
follows:

k1 � MaxIter −
t

MaxIter
 

t

. (31)

.e reverse learning strategy can expand the global
optimization ability of the algorithm, and the Cauchy
mutation strategy can improve the algorithm to avoid falling
into the local optimal solution..erefore, in order to further
improve the algorithm optimization performance, the
Cauchy mutation strategy and the reverse learning strategy
are exchanged under the condition of selection probability
Ps, and the target position is dynamically updated. .e
calculation formula is as follows:

Ps � −exp 1 −
t

MaxIter
 

20
+ θ, (32)

where θ is the adjustment parameter, and its value can be
0.05.

.e process of selecting strategy 1 is as follows:

(1) If rand<Ps

(2) Select the reverse learning strategy of formulas
(29)–(31) to update the position

(3) If rand≥Ps

(4) Select the Cauchy mutation strategy of formula (28)
to update the target position

.e Cauchy perturbation strategy and reverse learning
strategy can improve the ability of the algorithm to jump out
of local space; however, it is impossible to compare whether
the fitness value of the new position obtained after these two
disturbance strategies is better than the fitness value of the
previous position. .erefore, the greedy rule is added to
compare the fitness value of the new position after the
disturbance mutation with the fitness value of the previous
position. If the fitness value of the new location is better than
the fitness value of the old location, the location is updated;
otherwise, it is not updated.

.e process of selecting strategy 2 is as follows:

(1) If f(Xt+1
i,j )<f(Xb,j)

(2) Xb,j � Xt+1
i,j

(3) If f(Xt+1
i,j )≥f(Xb,j)

(4) Xb,j � Xb,j

4.2.5. ;e Steps of the Algorithm. .e steps of the chaos
sparrow algorithm are as follows:

(1) Initialize the parameters, and use the Bernoulli
chaotic map of equation (23) to initialize the sparrow
population

(2) Calculate the fitness value of each sparrow and sort it
to find the current optimal and worst fitness value
individual

(3) According to equations (25), (21), and (26), the
positions of the finder, follower, and alerter are
updated, respectively

(4) According to selection strategy 1, the current optimal
solution is disturbed and a new solution is generated

(5) According to strategy 2, compare the pros and cons
of the fitness values before and after the disturbance
to determine whether the location is updated

(6) Iteration termination judgment: if it meets the it-
eration termination condition, then jump out of the
loop and output the optimal result; if not, then jump
to step (2) and continue the iteration until it meets
the iteration termination condition and output the
optimal result.

Computational Intelligence and Neuroscience 7



5. Function Test

5.1. Parameter Setting. Based on 12 benchmark test func-
tions, we compare the performance of the improved sparrow
algorithm, sparrow algorithm, particle swarm algorithm,
chaotic particle swarm algorithm, and genetic algorithm.
.e test function is shown in Table 1, and the parameters of
each algorithm are shown in Table 2. .e parameter se-
lection was based on the parameters used by the original
author in the article or the parameters widely used by
various researchers..e simulation is written and completed
by MATLAB2018a. In the test, the population size of each
algorithm is set to 50, the number of iterations is set to 400,
and each algorithm runs independently 50 times.

5.2. Comparison and Analysis of Algorithm Performance
Results. .e average values and standard deviations ob-
tained by optimizing 12 benchmark test functions by five
algorithms are shown in Table 3. It can be seen that, for the
unimodal function F1–F7, the ISSA algorithm has the best
optimization effect, and the average value and standard
deviation reach the global optimal solution. For the mul-
timodal function F8–F12, ISSA algorithm and SSA algo-
rithm have the same optimization effect and are better than
PSO, CPSO, and GA algorithm. When solving F8 and F10,
ISSA and SSA can reach the theoretical optimal solution
stably. When solving F9, F11, and F12, although ISSA and
SSA cannot converge to the theoretical optimal solution,
their convergence effect and convergence accuracy are better
than those of PSO, CPSO, and GA.

5.3. Comparison and Analysis of Algorithm Convergence
Curves. .e convergence curve obtained by optimizing 12
benchmark test functions by five algorithms is shown in
Figure 2. It can be seen that when solving different test
functions, the convergence speed of ISSA is better than SSA,
PSO, CPSO, and GA algorithms, and it has better conver-
gence speed and convergence accuracy. .e horizontal axis
represents update algebra, and the vertical axis represents
the logarithm of fitness value log.

6. Case Analysis

6.1. Basic Data. .is article takes the microgrid cluster
system constructed by the three microgrids shown in Fig-
ure 1 as an example. .e renewable energy output of each
microgrid is shown in Figure 3, and the load curve is shown
in Figure 4..e power of the controllable loads is 25 kW, and
the dispatch compensation prices for the shiftable load, the
transferable load, and the interruptible load, respectively, are
0.05 Yuan/kWh, 0.08 Yuan/kWh, and 0.3 Yuan/kWh. .e
initial operating period and allowable scheduling period of
the controllable loads are shown in Table 4. .e rated ca-
pacity of the microgrid energy storage system is 300 kWh,
the maximum allowable charge and discharge power is
100 kW, and the maximum and small states of charge are
divided into 0.9 and 0.2. .e purchase and sale price of the
power distribution network is shown in Table 5. .e

scheduling period of the calculation example is 24 hours a
day, divided into 24 time periods, and the scheduling time is
selected as 00 : 00–24 : 00.

6.2. Analysis of the Results of Electricity Trading between
Microgrids. .e electric energy exchange between micro-
grids is shown in Table 6. It can be seen that when the market
is in equilibrium, electricity can be purchased and sold in
various periods of time through the trade of electricity
between microgrids.

It can be seen from Table 6 that when controllable loads
participate in dispatching, at 14 : 00, 15 : 00, and 17 : 00, since
the power generation of the microgrid cluster cannot meet
the load demand, the power interaction between the
microgrids in the cluster cannot be carried out, and elec-
tricity needs to be purchased from the power distribution
network. From 10 : 00 to 13 : 00, MG1 sells electricity toMG2
that has insufficient power at the target time due to its own
renewable energy output to meet its own load demand while
still having electricity surplus. During the time periods of 08 :
00–09 : 00, 11 : 00–12 : 00, and 18 : 00, MG2 cannot meet its
own load demand due to its insufficient output. .erefore,
MG2 needs to purchase electricity from MG1 or MG3 that
has too much power at the target time. During the time
period from 19 : 00 to 24 : 00, MG3 sells electricity to the
MG1 whose power is insufficient at the target time due to its
own renewable energy output to meet its own load demand
while still having electricity surplus.

6.3. Analysis of the Results of Electric Energy Trading between
the Microgrid and Power Distribution Network. .e electric
energy exchange between the microgrid and the power
distribution network is shown in Table 7. It can be seen that
when MG1, MG2, and MG3 exchange electric energy, the
interactive electric energy between each microgrid and the
power distribution network can be reduced.

It can be seen from Table 7 that when controllable loads
participate in the dispatch, during the time period of 14 :
00–18 : 00, MG1 cannot meet its own needs due to its in-
sufficient output; therefore, it needs to purchase electricity
from the power distribution network. During the time pe-
riod of 01 : 00–05 : 00 and 19 : 00–24 : 00, MG2 has been
selling electric energy to the power distribution network due
to its overcapacity. During the time period of 10 : 00–17 : 00,
MG3 cannot meet its own needs due to its insufficient
output, and needs to purchase electricity from the power
distribution network to meet its own needs. It can be seen
from the abovementioned phenomenon that electricity
trading between microgrids can completely eliminate excess
renewable energy and balance the supply and demand of the
system.

6.4. Analysis of the Results before and after Controllable Loads.
.e controllable load scheduling results are shown in Fig-
ure 5. It can be seen from Figure (a–c) that the overall loads
of MG1 increase from 09 : 00 to 15 : 00, the loads of MG2
decrease from 10 : 00 to 15 : 00, and the loads increase from
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Table 2: Parameter settings of the algorithm.

Algorithm Parameter settings
GA PX � 0.65,PM � 0.05
PSO c1 � c2 � 1, w � 0.6
CPSO c1 � c2 � 1, w � 0.6
SSA PD � 20%, R2 � 0.8, SD � 10%
ISSA PD � 20%, R2 � 0.8, SD � 10%, θ � 0.05

Table 3: Comparison results on test functions.

F Statistics GA PSO CPSO SSA ISSA

F1 Ave 1.5885e+ 04 0.0557 6.3925e− 40 6.9803e− 134 0
Std 3.5365e+ 03 0.2323 1.0020e− 39 4.9358e− 133 0

F2 Ave 50.2661 7.2639 2.3988e− 20 3.5405e− 71 1.0603e− 219
Std 8.8456 5.1873 1.5270e− 20 2.5035e− 70 0

F3 Ave 3.1834e+ 04 1.8163e+ 03 22.9941 4.3294e− 107 0
Std 9.0644e+ 03 1.4864e+ 03 81.9827 2.3121e− 106 0

F4 Ave 53.4554 11.8072 11.4627 4.0192e− 76 6.4391e− 208
Std 5.7831 3.7901 3.3974 2.8420e− 75 0

F5 Ave 2.0631e+ 07 114.0382 1.7179e+ 03 0 0
Std 8.4778e+ 06 202.1385 1.1891 0 0

F6 Ave 1.6195e+ 04 0.0209 5.7585e− 22 0 0
Std 4.4542e+ 03 0.1128 1.6550e− 21 0 0

F7 Ave 8.7427 0.1611 9.4820e− 68 1.4052e− 258 0
Std 4.5183 0.6440 5.2353e− 67 0 0

F8 Ave 210.7998 76.9175 77.3060 0 0
Std 28.4726 23.9501 24.3339 0 0

F9 Ave 17.0921 6.5281 2.1541e− 10 8.8818e− 16 8.8818e− 16
Std 0.7411 1.3035 9.4122e− 20 0 0

F10 Ave 151.2605 0.0943 0.0043 0 0
Std 33.9782 0.0976 0.0069 0 0

F11 Ave 1.4287e+ 07 5.5806 1.4205e− 31 1.5705e− 32 1.5705e− 32
Std 1.0079e+ 07 3.6888 1.2059e− 31 5.5294e− 48 5.5294e− 48

F12 Ave 5.6904e+ 07 25.0058 3.9269e− 31 1.3498e− 32 1.3498e− 32
Std 3.0359e+ 07 10.7048 5.9462e− 31 1.1059e− 47 1.1059e− 47
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Figure 2: Continued.
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18 : 00 to 24 : 00, the loads of MG3 increase during the time
period of 00 : 00–08 : 00 and 18 : 00–24 : 00, and the loads
decrease from 09 : 00 to 15 : 00. .e total loads of the
microgrid cluster can be seen from Figure (d), after adding
the demand-side controllable loads schedule; the loads in the
low period of 23 : 00–07 : 00 increase, and the loads in the
peak period of 11 : 00–15 : 00 decreases. .e peak-valley
difference of the loads is reduced.

6.5. Economic Analysis of the Microgrid Cluster. .e costs of
the microgrid cluster in the two cases where the microgrid
cluster has demand-side controllable loads participating in

the dispatch and the uncontrollable loads participating in the
dispatch are compared, as shown in Table 8.

It can be seen from Table 8 that, in the two cases where
there are controllable loads participating in the dispatch and
the uncontrollable load participating in the dispatch, the cost
change of energy storage system is relatively small. When
controllable loads are involved in dispatching, the total cost
of MG1 is 1067.4864 Yuan, the total revenue of MG2 is
520.6545 Yuan, and the total cost of MG3 is 107.4852 Yuan.
Compared with when there is no controllable load involved
in dispatching, the economic cost of MG1 is reduced by
87.0533 Yuan, the revenue of MG2 is reduced by 33.1091
Yuan, and the revenue of MG3 is increased by 109.9848
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Table 4: Controllable loads parameters.

Time period Shiftable load Transferable load Interruptible load
Initial operating period 11 : 00–15 : 00 19 : 00–22 : 00 10 : 00–21 : 00
Scheduleable period 11 : 00–22 : 00 00 : 00–24 : 00 10 : 00–21 : 00

Table 5: Time-of-use price.

Transaction form Timetable Electricity price (Yuan/(kwh))

Sell electricity

Peak time 10 : 00∼15 : 00
18 : 00∼21 : 00 1.2

Normal time
07 : 00∼10 : 00
15 : 00∼18 : 00
21 : 00∼23 : 00

0.8

Valley time 23 : 00∼07 : 00 0.4
Purchase electricity 0 : 00∼24 : 00 0.39
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Figure 4: .e original load of each microgrid.

Table 6: Transaction electricity between microgrids.

Time
Transaction power (kwh) (controllable load) Transaction power (kwh) (no controllable load)

MG1 MG2 MG3 MG1 MG2 MG3
1 57.0021 −49.0573 −7.9448 56.9146 −48.9979 −7.9167
2 30.5244 −33.5049 2.9805 30.4912 −22.5127 −7.9785
3 30.2046 −18.1475 −12.0571 30.1978 −18.1446 −12.0472
4 84.6933 −62.3520 −22.3413 84.3783 −62.1016 −22.2767
5 47.1775 −30.4015 −16.7760 47.8766 −30.8375 −17.0391
6 63.5587 −63.7779 0.2192 69.7560 −63.0511 −6.7049
7 70.0852 −47.4771 −22.6081 70.3143 −42.3144 −27.9999
8 16.1676 12.6786 −28.8465 15.9683 12.7390 −28.7072
9 41.2814 89.3333 −130.6147 41.0727 89.6763 −130.7490
10 −0.0712 −21.2586 21.3298 −57.9441 −18.2874 76.2315
11 −91.1144 7.7568 81.3576 −65.6829 13.3159 52.3669
12 −110.2000 59.1433 51.0568 −134.7312 71.2757 63.4555
13 −6.6502 −25.2724 31.9226 −66.1035 0.9295 65.1741
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 16.9902 −43.1368 26.1467 17.3261 −43.7299 26.4038
17 0 0 0 0 0 0
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Table 7: Transaction electricity between the microgrid and power distribution network.

Time
Transaction power (kwh) (controllable load) Transaction power (kwh) (no controllable load)
MG1 MG2 MG3 MG1 MG2 MG3

1 0 185.9288 30.1110 −7.1054e− 15 185.8260 30.0244
2 0 188.2493 0 0 198.6898 70.4152
3 0 207.5529 137.8976 0 206.9558 137.4090
4 0 226.2737 81.0761 0 225.9525 81.0524
5 0 247.9922 136.8463 0 247.2298 136.6060
6 −13.6186 0 −0.0470 −7.6627 −7.1054e− 15 0
7 0 19.1792 9.1329 0 23.7368 15.7069
8 −39.8650 −31.2620 0 −40.3733 −32.2086 0
9 −31.2095 −67.5377 0 −31.2378 −68.2033 0
10 0 0 −54.9251 5.7801 1.8242 0
11 1.4211e− 14 −3.3936 −36.4689 0 −23.6277 −92.9195
12 0 −39.3185 −33.9426 0 −53.7049 −47.8125
13 0 0 −7.0099 0.6195 0 0
14 −56.9322 −61.8237 −47.6179 −82.3522 −87.8662 −73.1322
15 −93.0122 −164.1142 −118.7230 −93.4173 −164.3346 −118.9401
16 −62.0762 0 −95.5308 −62.2867 0 −94.9206
17 −45.9460 −174.8343 −12.8887 −46.5703 −173.2011 −11.2288
18 −73.2103 −40.7362 0 −71.2530 −38.2621 0
19 0 67.3300 0.5899 −22.2530 0 −4.3334
20 0 93.5763 0.0065 −13.1720 0 −5.2915
21 0 1.5837 11.2581 −33.3161 0 0
22 0 263.2646 54.2685 0 248.6835 66.7652
23 0 84.8327 18.9430 0 95.0723 55.2418
24 0 0.1539 0.0572 0 89.9630 10.1462

Table 6: Continued.

Time
Transaction power (kwh) (controllable load) Transaction power (kwh) (no controllable load)

MG1 MG2 MG3 MG1 MG2 MG3
18 26.8221 14.9465 −41.7686 28.1474 15.1149 −43.2623
19 71.8018 −71.1782 −0.6236 97.1128 −116.1794 19.0666
20 60.0222 −60.0180 −0.0042 93.7188 −131.3682 37.6494
21 49.2324 −6.0715 −43.1609 64.2092 −33.1416 −31.1416
22 52.5377 −43.5587 −8.9790 104.5194 −82.3977 −22.1217
23 58.5305 −47.8465 −10.6840 58.7109 −37.1341 −21.5768
24 68.5343 −49.9633 −18.5710 69.4401 −62.4023 −7.0378
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Figure 5: Continued.
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Table 8: Operating costs of the microgrid cluster.

Types
Controllable load No controllable load

MG1 MG2 MG3 MG1 MG2 MG3
ESS 2.6302 2.5927 3.0154 3.7120 5.1049 3.1601
Loadshift 2.5000 2.5000 2.5000 0 0 0
Loadtrans 8 8 8 0 0 0
Loadinter 30 0 6 0 0 0
MG and MG 637.1300 −489.1636 −147.9664 655.6866 −609.4750 −46.2116
MG and DN 387.2262 −44.5836 235.9362 495.1411 50.6059 260.5215

Total cost 1067.4864 −520.6545 107.4852 1154.5397 −553.7642 217.4700
654.3171 818.2455
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Figure 5: Before and after load shift. (a) MG1; (b) MG2; (c) MG3; and (d) microgrid cluster.
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Figure 6: Algorithm comparison. (a) Controllable loads; (b) no controllable loads.
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Yuan. .erefore, the economic cost of the entire microgrid
cluster is reduced by 163.9284 Yuan. It can be seen that when
the controllable loads participate in dispatching, the
microgrid cluster can effectively reduce the operating cost of
the system.

6.6. Analysis of Optimization Algorithm Results. .is paper
proposes a chaotic sparrow search algorithm..is algorithm
is used to optimize the operating cost of the microgrid
cluster system, and it compares with sparrow algorithm,
particle swarm algorithm, chaotic particle swarm algorithm,
and genetic algorithm..e basic parameters of the algorithm
are shown in Table 2.

It can be seen from Figure 6 that the objective function
values of the five algorithms of GA, PSO, CPSO, SSA, and
ISSA decrease continuously and become stable as the
number of iterations increases, indicating that these five
algorithms are all moving towards the optimal cost. It can be
found by comparing GA, PSO, CPSO, SSA, and ISSA that
when the demand-side controllable loads participate in
dispatching, the number of iterations for ISSA algorithm to
converge to the optimal solution is similar to CPSO algo-
rithm, and its optimal solution is better than the conver-
gence solutions of GA, PSO, CPSO, and SSA algorithms.
When there is no demand-side controllable load partici-
pating in dispatching, the number of iterations for ISSA
algorithm to converge to the optimal solution is higher than
GA, PSO, CPSO, and SSA, and its optimal solution is better
than the convergence solution of GA, PSO, and SSA
algorithm.

7. Conclusions

.is paper sets the optimization goal as the operating cost of
the microgrid cluster system, constructs the microgrid
cluster operation optimization model considering demand-
side response, and discusses the costs of the microgrid
cluster with and without controllable loads dispatch. .en a
chaos sparrow search algorithm based on Bernoulli chaotic
mapping, dynamic adaptive weighting, Cauchy mutation,
and reverse learning is constructed, which is used to opti-
mize the operating cost of the microgrid cluster system and
compare with the optimized results of sparrow algorithm,
particle swarm algorithm, chaotic particle swarm algorithm,
and genetic algorithm.

(1) .rough the proposed strategy, electric energy
transactions between microgrids and between
microgrids and power distribution networks are
realized. On the one hand, the impact caused by the
connection between the microgrid cluster and power
distribution networks is minimized, and on the other
hand, it ensures the safety and stability of system
operation.

(2) When there is demand-side controllable loads par-
ticipating in dispatching, on the one hand, the level
of energy mutual benefit between microgrids is

improved, and the excess renewable energy can be
completely absorbed; on the other hand, due to the
controllable loads participating in dispatching, the
operating cost of the microgrid cluster dropped from
818.2455 Yuan to 654.3171 Yuan, the cost was re-
duced by 163.9284 Yuan, and the overall benefit has
increased by nearly 20%, which effectively improved
the economic benefits of the microgrid cluster.

(3) .is paper proposes a chaos sparrow search algo-
rithm based on Bernoulli chaotic mapping, dynamic
adaptive weighting, Cauchy mutation, and reverse
learning. Based on 12 benchmark test functions, it
shows that ISSA algorithm is superior to SSA, PSO,
CPSO, and GA algorithms in terms of solution
quality, which proves the effectiveness of the algo-
rithm improvement. At the same time, ISSA algo-
rithm has better performance when solving
microgrid cluster optimization problems. .e global
optimization ability is stronger than SSA, PSO,
CPSO, and GA algorithms, and the optimization cost
is lower than SSA, PSO, CPSO, and GA algorithms.
In future works, the ISSA algorithmwill be applied to
other fields, such as energy storage capacity con-
figuration optimization, and face recognition. It can
also be combined with other algorithms to form a
hybrid algorithm to improve algorithm
performance.

Abbreviation

BD: Battery degradation
CL: Controllable load
MN: Microgrid network
DN: Distribution network
ch: Charge
dis: Discharge
ESS: Energy storage battery
IL: Important load
RE: Renewable energy
EB: Electricity buy
ES: Electricity sell
Min: minimum
max: Maximum.
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