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Abstract

Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only

after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is

a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is cata-

lyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme

(DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM

cycles function like on-off switches when the substrates are at saturating concentrations.

Although this finding has had profound implications for the understanding of switch-like

behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis

and degradation has not been studied. Using a mathematical modeling approach, we found

that simply introducing protein turnover to a standard modification cycle has profound

effects, including significantly reducing the switch-like nature of the response. Our findings

suggest that many classic results on PTM cycles may not hold in vivo where protein turnover

is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related

changes in their expression levels. These results imply that it may be difficult to interpret

experimental results obtained from either overexpressing or knocking down protein levels,

since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding

crosstalk and competition for E3 ligases will be key in ultimately developing a global picture

of protein homeostasis.

Author summary

Previous work has shown that substrates of Post-Translational Modification (PTM) cycles

can have coupled responses if those substrates share enzymes. This implies that modifica-

tions leading to substrate degradation (e.g. ubiquitylation by an E3 ligase) could introduce

coupling in concentrations of substrates sharing a ligase. Using mathematical models, we

found adding protein turnover to a PTM cycle diminishes both sensitivity and ultrasensi-

tivity, particularly in models admitting long ubiquitin chains. We also found that proteins

sharing an E3 ligase can indeed have coupled changes in both expression and sensitivity
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to signals. These results imply that accounting for crosstalk in protein degradation net-

works is crucial for the interpretation of results from a wide variety of common experi-

mental perturbations to living systems.

Introduction

All proteins undergo some form of turnover. For instance, proteins can become damaged via

deamidation or some other process and must be degraded in order to prevent unfolding and

aggregation. Turnover is also important in signaling and the regulation of protein function. A

classic example is the degradation of IκB proteins, which bind the NF-κB protein complex and

sequester it in the cytoplasm. During response to different stimuli, IκBs are phosphorylated by

IκB kinases, ubiquitylated, and tagged for degradation, which allows NF-κB to translocate to

the nucleus [1]. In the cell, synthesis and degradation (i.e. protein turnover) act in concert to

maintain an appropriate concentration of active protein (i.e. protein homeostasis). Given the

centrality of protein turnover to all cellular processes, it is not surprising that dysregulation

of protein homeostasis has been implicated in a vast array of neurodegenerative diseases and

cancers [2,3]. In eukaryotes, degradation is often achieved through the ubiquitin-proteasome

system, where proteins are tagged with polyubiquitin chains that are recognized by the protea-

some, ultimately leading to protein degradation [4]. Polyubiquitylation represents a form of

post-translational modification (PTM) cycle where ubiquitin subunits are covalently linked to

substrates by E3 ligases and removed by deubiquitylating (DUB) enzymes [5].

Over 35 years ago, Goldbeter and Koshland studied the general properties of a PTM cycle

comprised of a modifying and demodifying enzyme. They found that reversible cycles of pro-

tein modification, such as a kinase enzyme adding a phosphoryl group and a phosphatase

enzyme removing it, work like on-off switches when the enzymes are saturated [6]. This phe-

nomenon, known as “0th-order ultrasensitivity”, has had profound implications for under-

standing how biochemical networks can exhibit switch-like behavior. Despite decades of

progress in understanding 0th-order ultrasensitivity and other aspects of PTM function [7–12],

to date there have been few attempts to systematically characterize the general behavior of

PTM cycles that drive protein degradation.

The only exception to this has been the study of ubiquitylation in the context of cell cycle

oscillations and bistability [13,14]. While these studies have provided key insights about cell

cycle control, they have not investigated how ubiquitylation controls the steady-state expres-

sion levels of proteins not involved in the cell cycle. It has also been shown that adding protein

synthesis and degradation to models of gene expression and cell signaling can have dramatic

effects on system dynamics, but the detailed impact of turnover on PTM cycles remains

unclear [15–17].

In addition to a general lack of understanding of the influence of protein homeostasis on

PTM cycle behavior, we recently discovered that substrates in such cycles can have coupled

steady-state responses if those substrates share modification/demodification enzymes. In

particular, if one substrate is at saturating levels, or if the substrates collectively saturate the

enzymes, then all substrates of that pair will respond in a coupled, switch-like manner [18–20].

This implies that modification leading to substrate degradation (e.g. ubiquitylation by an E3

ligase) could introduce coupling in the concentrations of substrates sharing a ligase. Interest-

ingly, Mather and colleagues have shown that substrate concentrations can be coupled through

saturation of the downstream degradation machinery [21,22]. It is currently unclear, though,
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whether such coupling can arise due to “crosstalk” in the upstream mechanisms that tag pro-

teins for degradation.

In this work, we used a set of mathematical models to show that perturbing a standard

PTM cycle by simply adding synthesis and degradation has profound effects on the response

of the system. Specifically, we found that the sensitivity of the system to incoming signals and

the ultrasensitivity of the response are dramatically muted when the substrate is at saturating

concentrations. When the modification in question drives protein degradation at a higher rate,

these effects are even more pronounced. Furthermore, more realistic models allowing for long

ubiquitin chains exhibit qualitatively similar behavior to the case with a single modification

state, but with further decreases in sensitivity and ultrasensitivity. These findings are robust to

changes in the specific mechanisms utilized by the E3 and DUB enzymes. Interestingly, we

found that distinct modes of enzyme saturation (i.e. increasing substrate production rate vs.

decreasing the Michaelis constant of the enzyme) also generate different substrate responses.

This indicates that many classic results on PTM cycles, including the extremely ultrasensitive

response they exhibit when the substrates are at saturating concentrations, may not hold in
vivo where protein turnover is inevitable. We also found that proteins sharing an E3 ligase can

indeed have closely related expression profiles. Moreover, the sensitivity of protein concentra-

tion to changes in E3 activity for any given protein is largely dependent upon the total expres-

sion level of the other proteins. This suggests that it may be difficult to interpret experimental

results obtained from either overexpressing or reducing protein concentrations, since changes

in protein expression can be coupled via E3 ligase crosstalk. Further experimental characteri-

zation of E3-ligase/DUB enzyme/substrate relationships will thus be vital to developing a

global understanding of protein regulation within the cell.

Results

Competition among E3 ligases

As mentioned in the introduction, shared E3 ligases have the potential to induce coupling in

substrate responses. It is currently unclear, however, how widespread such “crosstalk” among

E3 ligases might be. We searched the E3Net database [23] for statistics of E3-substrate interac-

tions in human cells. For sake of comparison, we also obtained E3-specific statistics from the

hUbiquitome database [24]. As of this writing, the total number of E3 ligases documented in

E3Net was 415 and the total number of their substrates was 873, making the average ‘substrate

load’ (substrate-to-ligase ratio) 2.10. Similarly, there are a total of 138 ligases and 279 substrates

annotated in the hUbiquitome database, yielding a comparable ratio of 2.02. Thus, on average,

most E3 ligases will ubiquitylate around two substrates.

In addition to providing the numbers of ligases and substrates, E3Net also captures infor-

mation on specific E3-substrate interactions. We found that 54% of the E3 ligases in the data-

base have no substrates listed; however, of the remaining E3 ligases, 52% have at least 2

substrates and 11% have more than 10 substrates (Fig 1A). Also, the maximum number of sub-

strates for any ligase is 92. Given that the database is incomplete, it is likely that these numbers

represent significant underestimates of E3 ligase crosstalk. Regardless, the phenomenon of E3

ligases acting on multiple substrates is likely widespread, and little is presently known about

what influence crosstalk might have on the responses of these substrates to changes in E3 ligase

activity.

Adding synthesis and degradation to a PTM cycle

Even though E3 ligases generally attach long ubiquitin chains to their substrates [4], in order

to simplify the problem to an analytically tractable form, we first considered a case with just a
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single modification state. Because ubiquitylation actively effects protein degradation, any

investigation of the interplay between substrates competing for a protein and post-transla-

tional modifications (PTMs) leading to degradation must account for protein turnover. We

thus focused first on studying how synthesis and degradation influence the behavior of the

standard Goldbeter-Koshland loop (Fig 1B).

The first model, which we call the ‘Intermediate’ model, involves one substrate that can

exist in two forms: modified and unmodified, denoted by S� and S respectively (Fig 1C). In

this model, the modification (e.g. phosphorylation) does not lead to higher rates of degrada-

tion, so the modified and unmodified substrates are both degraded at the same first order rate

δ1. Unmodified substrate is also synthesized at a constant rate Q. There is a modification

enzymeM that catalyzes the addition of the PTM in question, and a demodification enzyme D

Fig 1. Crosstalk among E3 ligases & schematic diagrams of single-substrate models. (A) Probability distribution (on log-log

scale) of E3 ligase-substrate specificity as recorded in the E3Net database. The average “substrate load” on a given E3 ligase is 2.1. In

Panels B-D, the general representation of the canonical Goldbeter-Koshland (GK) loop is shown, with protein turnover included.

(B) The case of the traditional GK loop, with no synthesis and degradation; (C) The “Intermediate” model, which introduces

synthesis (at a rateQ> 0) and degradation (at a rate δ1 > 0); (D) The “Full” model, which includes synthesis (Q> 0) and to different

degradation rates: δ1 for the unmodified substrate and δ2 for the modified substrate. Since the modification in this model is meant to

represent a tag that drives degradation, the rate of degradation for the modified substrate is higher than that of the unmofied

substrate (i.e. δ2 > δ1 > 0). Here “M” denotes modifying enzyme and “D” denotes demodifying enzyme. Modified substrate is

indicated by the dark, filled circle.

https://doi.org/10.1371/journal.pcbi.1008492.g001
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that catalyzes removal of the modification. Since these are enzymes, they form enzyme-sub-

strate complexes: D forms a complex with S� andM with S. To simplify the model, neitherM
nor D are subject to synthesis and degradation. We assume that the enzyme-substrate com-

plexes are subject to “degradation” at the same rate δ1, but degradation in this case simply

removes the substrate, essentially freeing the enzyme (note that relaxation of this assumption

has no impact on our results, see S1 Text, Sec. 1).

The enzymatic reaction scheme corresponding to this model can be used to obtain a system

of ordinary differential equations (ODEs) with the binding, dissociation, and catalysis steps

treated explicitly (full details are in S1 Text, Sec. 1.1). We have denoted the kinetic rates of

complex formation, complex dissociation, and catalysis by kx,y, where x represents the reaction

step and y represents the enzyme—modifying (M) or demodifying (D) (S1 Text, Sec. 1.1). For

example, kcat,D denotes the catalytic rate of the reaction catalyzed by the demodifying enzyme.

Traditional analyses of post-translational modification cycles (i.e. the GK loop) have exam-

ined the response of molar fraction of modified protein at steady-state (S� � [S�]/[S]T, where

[S]T = [S] + [S�] + [MS] + [DS�]) to changes in the input parameter r � kcat;M ½M�T
kcat;D ½D�T

¼
Vmax;M
Vmax;D

, which

quantifies the activity of theM enzyme relative to that of the D enzyme [6,18]. We varied r by

simply changing [M] and numerically integrated the system to extract the steady-state solu-

tions for unmodified and modified substrate ([S] and [S�]) at each value of r. Note that, for the

Intermediate model, [S]T = Q/δ1, regardless of the values of other parameters (S1 Text, Sec.

1.3). Here, we focus on the case where the Michaelis constants of the enzymes are equal (KM,M

= KM,D). We should note that our models only consider the standard Michaelis-Menten case

where enzyme concentrations are significantly lower than substrate concentrations. Relaxing

this assumption could have an influence on the behavior of the models when the concentration

of the enzymes is similar to that of the substrates. That being said, analysis of such a scenario is

beyond the scope of this work, and we leave exploration of that case to the future [25].

One key feature of GK loops is their capacity to exhibit 0th-order ultrasensitivity, which

manifests as a switch-like transition in [S�] vs. r when the modification and demodification

enzymes are saturated (i.e. [S]T� KM) [6,9,18,25]. To explore this phenomenon in the Inter-

mediate model, we initially increased Q to change saturation levels, since [S]T = Q/δ1. In order

to conduct these simulations, we chose a set of reasonable values for the kinetic rate constants

in the model (Table 1). In particular, kcat’s and KM’s were taken from experimentally observed

ranges (S1 Text, Sec. 1.4, [26]) and δ1 was set based on the average observed half-life for pro-

teins in living human cells [27]. The value for δ1 is also very similar to the shortest observed

protein half-life in mouse C2C12 cells [20,28]. As can be seen from Fig 2A, there are dramatic

differences between a GK loop and the Intermediate model upon saturation. For instance,

Table 1. Parameter values used for Fig 2A and 2B. Fig 2A: chosen on the basis of d1 ¼
log ð2Þ

10 hours, which is the average

reported protein half-life in human cells; Fig 2B: KM = 101 × [S]T (unsaturated) and KM = 10−1 × [S]T (saturated).

Parameter Fig 2A Fig 2B Units

Q(unsat.) 2.00 × 10−2 2.00 × 10−2 [nM] � [s]−1

Q(sat.) 2.00 2.00 × 10−2 [nM] � [s]−1

k+(unsat.) 1.00 × 10−4 1.00 × 10−4 [nM � s]−1

k+(sat.) 1.00 × 10−4 1.00 × 10−2 [nM � s]−1

k_ 1.00 × 10−3 1.00 × 10−3 [s]−1

kcat 9.99 × 10−1 9.99 × 10−1 [s]−1

δ1 2.00 × 10−5 2.00 × 10−5 [s]−1

δ2 2.00 × 10−4 2.00 × 10−4 [s]−1

https://doi.org/10.1371/journal.pcbi.1008492.t001
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defining r50 as the r-value when [S�] is half-maximal (i.e. S� = 0.5), we see that the curve of S�

vs. r shifts to the right, indicating a higher r50. Secondly, the ultrasensitivity (i.e. the effective

Hill coefficient neff) of the system under the Intermediate model is reduced. Since the Interme-

diate model is simply a GK loop with synthesis and degradation (Q and δ1, compare Fig 1B

and 1C) added, these results indicate that adding synthesis and degradation to a PTM can have

a dramatic effect on 0th-order ultrasensitivity.

While increasing the expression level of S (e.g. increasing Q) is a natural way to achieve sat-

uration, one can also saturate the enzymes by decreasing KM, keeping Q fixed. In a standard

GK loop, varying [S]T and varying KM are mathematically equivalent; in the Intermediate

model, however, the effects of decreasing KM (with a lower bound of 100 nM for experimen-

tally observed KM’s, S1 Text, Sec. 1.4) are dramatically different from the effects of increasing

Q. In particular, the changes in r50 and neff are negligible (Fig 2B).

The findings above were obtained for just a single set of parameters, and this raises the

question of whether or not our observations are robust to parameter variation. Since this

model is relatively simple, we were able to characterize this parameter dependence analytically

by solving the system of ODEs at steady state. We obtained the following equation relating r50

to Q and KM when corresponding kinetic rate parameters for the modifying and demodifying

Fig 2. Effects on various single-substrate models of varying Q or KM as the measure of enzyme saturation. (A) Modulating the

rate of protein synthesis (Q) results in dramatic reduction of both sensitivity of the system to incoming signals and ultrasensitivity of

the response, in the regime where the enzymes are saturated. This is indicated by the rightward shift of the r50 and the reduction in

the Hill coefficient (neff) from GK to Full. Note the logarithmic axis used for r. (B) Varying the Michaelis-Menten constant (KM)

results in a smaller reduction of r50 and neff, as compared to varyingQ, in the regime of saturated enzymes. In Panels A-B, dashed

lines and solid lines correspond to the unsaturated and saturated cases, respectively. Also, for all of the cases in these panels, [D]T =

10−1 nM and [M]T is varied in order to vary r. In Panel A, [S]T = 103 nM for the unsaturated cases and [S]T = 105 nM for the

saturated cases. In Panel B, [S]T = 103 nM for all cases. (C) Increasing [S]T does not change the r50 for the GK model, but the

reduction in sensitivity is highly pronounced for the Intermediate model, and even more so for the Full model. Axes are on a log

scale. (D) Increasing KM results in a dramatic reduction of neff for the GK model. For systems that incorporate protein turnover (i.e.

the Intermediate and Full models), the effect of reduction occurs for sufficiently large KM.

https://doi.org/10.1371/journal.pcbi.1008492.g002
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enzymes are identical (S1 Text, Sec. 1.6):

r50 ¼ 1þ
d1

kcat;D

 !

þ
1

2kcat;D � ½D�T

 !

Qþ
d1

kcat;D � ½D�T

 !

KM

Considering the endpoints of the plots in Fig 2C and the equation above, it is clear that as

the rate of substrate production is made arbitrarily large, the r50 grows without bound. Thus

the system described by the Intermediate model always becomes less and less sensitive to

incoming signals as Q increases, regardless of the value of the other parameters. However,

when we make KM as small as possible with all other parameters fixed (i.e. KM! 0), we see

that r50 ! 1þ 1

kcat;D
d1 þ

Q
2�½D�T

� �
, which is a constant. Note that this constant value is neverthe-

less always larger than r50 = 1 for the GK model, independent of the choices of the other

parameters (S1 Text, Sec. 1.6).

In a similar fashion we can analyze the effective Hill coefficient (neff) for the Intermediate

model. Note that the S� vs. r curves do not precisely follow the form of a Hill function; as such,

we use the standard definition neff ¼ log ð81Þ=log r90

r10

� �
[6,29]. Our analytical results establish

a lower bound on neff for the Intermediate model (which we will refer to as neff(I)), indicating

that the Intermediate model always exhibits positive cooperativity (i.e. neff(I) > 1, S1 Text, Sec.

1.7). As with r50, we also find that varying saturation levels by changing total substrate concen-

tration (i.e. changing Q) vs. changing KM results in opposing effects on neff (Fig 2D). While

neff(GK) grows without bound as saturation increases, neff(I) increases only modestly and is

generally smaller by several orders of magnitude. For instance, when Q is increased, neff(I)
evaluates to exactly 2, regardless of the values of the other parameters.

The above results clearly demonstrate that changing saturation by varying Q and varying

KM have very different consequences for the steady-state response of the PTM cycle in the

Intermediate model. Specifically, increasing saturation of the enzymes by increasing total sub-

strate levels (in other words, by increasing Q) results in responses that are much less sensitive
(i.e. r50 increases, requiring greaterM activity in order to achieve an appreciable response) and

much less ultrasensitive (i.e. lower neff) than would be predicted by a traditional GK loop (Fig

1B) [6,7]. The intuitive reason behind this has to do with the ultimate source of extreme ultra-

sensitivity in the original GK model. In that case, there is neither synthesis nor degradation, so

steady state can only be achieved when the flux of S� production byM precisely matches the

flux of S production byD. If substrate is at high concentration ([S]T� KM), then both enzymes

can theoretically operate at their Vmax. If Vmax,M 6¼ Vmax,D (i.e. r 6¼ 1), this means that one of

the enzymes can operate faster than the other. Say that Vmax,M> Vmax,D. In that scenario, the

only way for the enzymatic fluxes to be balanced is for theM enzyme to operate below its Vmax.
In other words, theM enzyme must convert so much of the substrate from the S to the S� state

that it becomes unsaturated, meaning [S]� KM. Since we are in a condition with [S]T� KM,

this directly implies that [S]/KM� 1, and as a result S� will be close to 1. When the D enzyme

has a higher Vmax (r< 1), then the situation is reversed, and S� will be close to 0 at steady state.

This leads to a very switch-like behavior in S� as r is increased in the original GK loop (Fig 2).

In the Intermediate model, however, additional fluxes have been added, namely synthesis

and degradation. In particular, steady state is not achieved when the flux of S� production

byMmatches the flux of de-modification by D, but rather when the flux of S� production

matches the flux of de-modification plus the flux of degradation of S�. In this model, degrada-

tion is first-order, so it can never be saturated; as [S�] increases, so will the flux of degradation.

As more and more substrate is added to the system, the velocity of substrate modification

must thus increase in order to match this increasing flux of degradation, if [S�] is to be
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relatively high at steady-state. Under such conditions, theM enzyme will be operating at Vmax,
and so the only way to increase the rate of modification of the substrate is to increase Vmax,M,

thus increasing r. This leads to the increase in r50 as the steady-state levels of [S]T increase. Sim-

ilarly, since degradation helps balance Smodification at steady-state, there is no longer an

extreme switch-like response in S� vs. r (Fig 2). Because varying KM changes saturation without

altering the steady-state level of substrate, the effect of changing KM is very different from vary-

ing Q in the Intermediate model.

We should note that since the value of KM depends on the underlying rate constants for

the enzyme-substrate interaction, it is unlikely to vary on short, cellular time scales. In other

words, it is hard to imagine how a cell would increase the saturation of an enzyme by dynami-

cally lowering the KM of one of its enzymes during the course of a response to an environmen-

tal fluctuation. On evolutionary time scales, however, an enzyme’s KM can change, subject to

reasonable physical and biological constraints. So, it is more likely that saturation will change

by changing the production rate Q in vivo. Certainly, experimental manipulation of saturation

generally occurs through changes in protein expression (e.g. by “overexpressing” the protein,

which would correspond to increasing Q in this model). Thus, even for cases like phosphoryla-

tion where the PTM does not directly influence degradation rate, the steady-state responses of

PTM cycles in vivomay thus be quite different from the standard predictions that have been

made in the absence of any consideration of protein turnover [7–12].

Driving protein degradation: The “Full” model

While the results described above hold for any PTM cycle subject to turnover, we are ulti-

mately interested in PTMs like ubiquitylation that drive protein degradation. This corresponds

in our case to δ2 > δ1, which we term the “Full” model. For the purposes of display, we kept δ1

close to the average degradation rate of human proteins and set δ2 close to the fastest degrada-

tion rate observed in human cells (i.e. δ1 = 2 × 10−5s−1 and δ2 = 2 × 10−4s−1) [27]. The point

here is to focus our analysis on a case where the PTM drives rapid degradation, as is often

thought to be the case when a substrate is ubiquitylated in vivo [4].

We first considered how changes in E3 ligase activity relative to DUB activity would influ-

ence the modification state of the substrate. To facilitate comparison with the Intermediate

and GK models, we initially focused our analysis on the steady-state level of substrate modifi-

cation, S�. We found that transitions in S� are even less sensitive to incoming signals in the full

model, as compared to the Intermediate model (Fig 2A and 2B). Indeed, the r50 for the full

model is always greater than that for the Intermediate model as Q is increased (Fig 2C), and

we have shown analytically that this is true for any reasonable set of kinetic parameters (S1

Text, Sec. 1.6). Intuitively, in the Full model, the modified substrate has a higher degradation

rate than the unmodified state, so that the system needs to be driven harder towards the

modified state (i.e. by increasing r) in order to appreciably increase its concentration at steady

state. Interestingly, although neff(I) is always less than neff(GK) as discussed above, we find that

neff(Full) is less than neff(I) only for very small Q. For instance, when Q is increased without

bound neff(Full) evaluates to exactly log ð81Þ= log ð9Þ þ log 9d1þd2

9d2þd1

� �h i
, or approximately 7 in

our case, which is larger than limQ!1 neff (I) = 2.

Since E3 ligase activity drives higher levels of protein degradation in the full model, changes

in the r parameter will change not only [S�] but also the total concentration of substrate ([S]T).

Perhaps not surprisingly, we found that [S]T also exhibits an ultrasensitive transition in r. As

with the transitions in [S�] discussed above, there is a rightward shift in r50 for the [S]T vs. r
curve as Q is increased in the full model (S1 Text, Sec. 1.8). This phenomenon can generate

interesting behaviors, as shown in Fig 3A. Suppose that we systematically increase the
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Fig 3. Effects of varying Q on the r50 and neff in the Full model and its representative analog for multiple modification states.

(A) The shift in r50 for the transition in total substrate at increasing values ofQ is clearly evident here. Each dashed curve indicates a

different value forQ. The maximum and minimum values of [S]T for each curve is Q/δ1 andQ/δ2, respectively. (B) The effective Hill

coefficient neff is relatively unaffected by increase in protein synthesis rate in the Full model. (C) Schematic diagram for one substrate

with multiple modification states. Shown here is the model corresponding to the Processive E3, Distributive/Sequential DUB case.

Each of the first three units is degraded at the rate δ1, which is smaller than the rate δ2 for the remaining units. The maximum length

of the polyubiquitin chain is denoted by ℓ. (D) In the Processive E3, Distributive/Sequential DUB model, much more E3 ligase

activity is necessary for a maximal response in the saturated regime. (E) Compared to Panel (A), the rightward shift is more

pronounced in the presence of polyubiquitin chains.

https://doi.org/10.1371/journal.pcbi.1008492.g003
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expression level of the protein while keeping the concentrations of the modifying/demodifying

enzymes constant, which corresponds to a constant r in this model. As Q increases, the r50

of the curve increases from a point less than this constant value of r to a point greater than r.
This leads to nonlinear changes in total substrate as Q increases (see below). The [S]T vs. r
curve has a number of other similarities to the S� vs. r curve; for instance, we see that the effec-

tive Hill coefficient for total substrate in the full model does not change significantly when Q is

increased, and never exceeds a value of 2 (Fig 3B).

So, in the Full model, as in the Intermediate model, increasing substrate levels by increasing

Q results in a decrease in sensitivity (increase in r50) and limited ultrasensitivity in the

response, regardless of whether we consider the response parameter to be S� or [S]T (which is

likely the more relevant response parameter in vivo). The similarities in this case all arise from

the fact that, in these models, steady state can only be achieved when the flux of theM enzyme

matches the sum total of the fluxes due to the D enzyme and the degradation process (note

Eq. 8 in S1 Text, Sec. 1.3). This gives rise to a fundamentally different phenomenology than is

observed in the standard GK loop (Figs 2 and 3).

Adding multiple modification states to the full model

While the full model is suggestive, it abstracts a number of details of the biological systems that

control protein homeostasis. For instance, E3 ligases, rather than adding just a single ubiquitin

to their substrates, instead tend to attach polyubiquitin chains of varying lengths. Most of the

available literature suggests that this ubiquitin chain needs to be at least four units long in

order for the proteasome to efficiently recognize and degrade the substrate [13,30,31]. While

the specific details of both the requisite length of the chain and the E3/DUB enzyme mecha-

nisms are still being elucidated, it is fairly clear that a single ubiquitin is not sufficient to drive

effective degradation by the proteasome.

To capture these effects in our models, we surveyed available literature and found that

multiple enzymatic mechanisms have been proposed for both E3 ligases and DUB enzymes

[13,30–38]. E3 ligases may be “processive”, in the sense that the ligase adds an ubiquitin unit to

the polyubiquitin chain at each catalytic step and stays attached to the substrate while multiple

ubiquitins are added sequentially. Alternatively, they may be “distributive”, meaning that the

ligase disassociates from the substrate at the end of each catalytic reaction. In the one case that

has been extensively studied experimentally, a form of E3 called a RING ligase works with the

E2 Cdc34 to build polyubiquitin chains on substrates in a processive manner [37]. Of course,

this does not mean that other E3 ligases might not display distributive kinetics. Regarding the

DUB enzyme counterpart, 3 such enzymes have been found in 26S proteasomes: Rpn11,

Usp14, and Uch37 [32–34,38]. Rpn11 functions by truncating at the base of the chain (in a dis-

tributive manner), whereas Usp14 and Uch37 serve primarily to trim the ubiquitin chains

sequentially (in a processive manner). Interestingly, more than one DUB might act on a given

chain [32].

Although there are experimentally characterized examples for several of these possible

mechanisms, little is actually known about how widespread each mechanism may be in nature.

We thus employed an exhaustive approach, examining all combinations of the enzyme mecha-

nisms and creating models of those scenarios. In our initial analysis, the parameter values we

used for the distributive cases correspond to the values in the previous section (i.e. Single Sub-

strate, Single Modification State). However, we used parameter values directly from literature

for the processive cases [37].

While we have analyzed all 6 possible combinations of enzyme mechanisms (see S1 Text,

Sec. 2), given the available experimental data [37], we focus our discussion in the main text on
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a reasonable and representative case (Processive E3 and Distributive/Sequential DUB) from

this set of models. We have depicted this scheme in Fig 3C. As mentioned above, current con-

sensus indicates that a polyubiquitin chain typically requires at least four ubiquitin units to be

efficiently degraded by the proteasome [4]. We thus assumed that each of the first three modi-

fication states (0–3 ubiquitins) is degraded at a uniform rate, δ1, which is smaller than the cor-

responding (higher) rate δ2 for each of the remaining states (4 or more ubiquitins). In theory,

the ubiquitin chain could reach an infinite length, though of course in practice the action of

DUBs and degradation will limit the largest chain typically observed in the system. Denoting

this maximum length of the ubiquitin chain by ℓ, we enumerated the chemical reaction net-

works for all of the possible mechanistic scenarios described above (S1 Text, Sec. 2). Due to the

inherent complexity of the models, we could not obtain closed-form analytical solutions, and

thus focused on numerical simulations.

Recall that in the full model, which has a single modification state, we found a significant

reduction in both sensitivity and ultrasensitivity of the transition in S� when compared to the

Intermediate model. To compare our more complex model with the full model, we defined S�

for the case with multiple modification states as follows: S� �
P�

k¼4

½SðkÞ�=½S�T , where k indexes the

substrate modification state. To choose a reasonable value for ℓ, we systematically increased

this parameter and found a threshold value such that changes in r50 and neff were negligible

beyond that threshold. Using this approach, we chose a value of 50 for ℓ heuristically by visual

inspection. In Fig 3D and 3E, we see that the inclusion of ubiquitin chains magnifies the afore-

mentioned effects in both the S� vs. r and [S]T vs. r curves. Specifically, much more E3 ligase

activity is necessary to achieve a maximal response in saturated regimes.

As described above, numerical integration of the ODEs for all of the multiple modification

state models necessitated the definition of a maximum possible length for the ubiquitin chain

(ℓ). To determine if this truncation has any influence on the results, we developed an “agent-

based” stochastic simulation (see S1 Text, Sec. 2.8). Rather than representing the system as a

set of concentrations for each species, in these simulations we consider a finite population of

explicit substrate “agents.” Each of these substrate molecules has associated with it the length

of its ubiquitin chain, which ranges from 0 (no ubiquitin) to the largest number we can repre-

sent as a floating point number, allowing the length to be essentially arbitrary. Because of their

discrete representation of the substrates, these simulations are stochastic, and we parameter-

ized these simulations so that the stochastic rates correspond exactly to the parameters we

used for our deterministic simulations (see S1 Text, Sec. 2.8) [39–42]. We found excellent

agreement between the deterministic results and the agent-based simulations for all of the

enzyme mechanisms we considered, suggesting that truncating the system at ℓ = 50 yields a

reasonable approximation.

Interestingly, all of the models that we examined, arising from the various mechanisms pro-

posed for the E3 ligase and DUB enzymes, generated similar qualitative behavior (S1 Text, Sec.

2.8–2.9). Thus, while the quantitative details of the response (e.g. the value of r50 and neff) vary

somewhat between the models, our general findings are largely invariant with respect to the

catalytic mechanisms utilized by the E3 ligase and DUB enzymes [4]. The results presented

above, however, all focus on a single set of parameters; while these parameters are reasonable,

it is not clear how reasonable variation in the parameters might affect our findings. We focused

on how variation in the KM and δ parameters might influence our findings, sampling these

parameters from log-uniform distributions across two orders of magnitude centered on the set

of parameters considered above. Again, while changes in these parameters influence the quan-

titative details of the response, the qualitative behaviors of these models are all consistent with
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our original observations. In particular, we found that saturation increases the value of r50 in

the transition of both S� and [S]T in all cases (S1 Text, Sec. 2.8–2.9).

As in the case of the Full model, the fundamental reason we observe similar behavior in

these multiple modification state models, regardless of the specific enzyme mechanism, has

to do with the fact that all of those details simply modify the relationship betweenM enzyme

activity and the flux of degradation of the substrate. In other words, regardless of the kinetic

scheme, there are two populations of molecules: those degraded more slowly (δ1) and those

degraded more rapidly (δ2). In order to reach a steady state, the flux of theM enzyme that pro-

duces these rapidly degraded species must match the flux of degradation plus the flux of de-

modification by the D enzyme. As substrate concentration increases, moreM activity is

required to do this, leading to the increase in r50 and the overall lower level of ultransensitivity

that we observe. Thus, while modification of both the parameters and the enzymatic scheme

change some of the quantitative features of the response, the fundamental behavior is similar

in all cases.

One interesting thing to note here is that PTM systems with multiple modifications can

readily lead to multistability, with distinct stable steady-states corresponding to different distri-

butions of the concentration of the various modification states [43–44]. We did not observe

this kind of phenomenon in any of our models, most likely because we assumed that the rates

of the enzymatic reactions do not depend on the modification state itself (see S1 Text, Sec. 2.1–

2.6). Relaxation of this assumption may lead to multistability in ubiquitylation states, which

could have important consequences for the function of the ubiquitin-proteasome system. To

our knowledge, there has been no experimental observation of multistability in ubiquitylation,

likely due in part to the fact that no one has to date designed an experiment aimed at testing

this idea explicitly. We leave the exploration of the potential for multistability in these systems

to future work.

Adding multiple substrates to the full model

As mentioned above (Fig 3A), there is an increase in r50 for the [S]T vs. r curve asQ is increased

in the full model. As a consequence, increasing Q while keeping r fixed at a value of 100 results

in the curve seen in Fig 4A. For low values of Q, the transition in r50 occurs before this fixed r-
value, so [S]T� Q/δ2; for large Q, the transition in r50 occurs after this fixed r-value, so [S]T�

Q/δ1. For intermediate Q, however, there is a distinct transition between these two regimes. In

other words, as Q increases, the system will naturally transition between a point “after” the

transition in [S]T to one “before” the transition in [S]T, due to the impact that saturation has

on r50. The result in Fig 4A implies that if two substrates share an E3/DUB enzyme pair, the

r50’s of the transitions in total substrate concentrations for these two proteins will be coupled.

In other words, overexpression of one substrate could shift the total saturation, and thus the

r50, of all the substrates coupled to that E3/DUB pair.

To test this, we introduced more than one substrate in the context of the full model. For the

sake of display, we have taken the total number of substrates N in our model to be 2. As shown

in Fig 4B, each E3 ligase and DUB now acts on two substrates with one modification state per

substrate. The set of ODEs describing the model is given in S1 Text, Sec. 3. In contrast to the

case of just one substrate, here we are interested in capturing the response of ½S1�T ¼ ½S1� þ ½S�1�
to changes in the synthesis rate of the second substrate, denoted by Q2. In Fig 4C, we see that

increasing Q2 yields an increase in [S1]T for the Full model, as expected. The general behavior

is similar in the Processive E3 and Distributive/Sequential DUB model, with the transition in

[S1]T occurring at lower values of Q2.
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Interestingly, r50([S1]T) also depends on Q2 (Fig 4D). Specifically, when Q2 is large enough

in the Full model, r50 increases linearly with respect to Q2. In a similar manner to Fig 4C, a

lower value of Q2 is sufficient to obtain a linear increase in r50 in the presence of multiple mod-

ification states. Note the excellent agreement in the Full model between the r50 values extracted

empirically from simulation output and the analytical expression for r50([S1]T) (Fig 4D and S1

Text, Sec. 3.3). In fact, when we make Q2 arbitrarily large, we obtain:

r50 ½S1�T
� �

¼
d2

Vmax; D

1

a2

� 1

� �

d1 þ d2

� �" #

Q2

where α2 is the molar fraction of modified S2 at steady-state when [S1]T is half-maximal. In

other words, as the concentration of the second substrate is increased, more and more activity

of the E3 ligase (i.e.M) is needed to drive the transition in S1 concentration. Interestingly, all

of these results can be readily generalized for any number of substrates, independent of sub-

strate identity (S1 Text, Sec. 3.2–3.3). Thus, crosstalk in PTMs can lead to coupling of not only

modification states [18,19], but also of overall protein levels.

Fig 4. Effects of protein overexpression on total protein in single-substrate and multiple-substrate models. (A) There is a non-

linear transition in the [S]T vs. Q curve whenQ is comparable in magnitude with the measure of saturation (in this case, [M]). The

slope of the curve approaches 1 on either side of the transition, which is consistent with the maximum and minimum values of [S]T.

(B) Schematic diagram for multiple substrates with one modification state each. Shown here is the model corresponding to two

substrates, for simplicity. Here “M” denotes modifying enzyme and “D” denotes demodifying enzyme. Modified substrate is

indicated by the dark, filled circle. (C) Plot of total concentration of first substrate vs. synthesis rate of the second substrate, for the

multiple-substrate analogs of the Full model and the representative multiple modification state model. Axes are on a log scale. (D)

Sensitivity to signal for first substrate vs. synthesis rate of the second substrate, for the multiple-substrate analogue of the Full model.

The semi-analytical curve was obtained by substituting values for S�
2

obtained empirically from simulation into α2 in the analytical

expression for r50 ([S1]T). Axes are on a log scale.

https://doi.org/10.1371/journal.pcbi.1008492.g004
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Discussion

It has been over 35 years since Goldbeter and Koshland discovered the phenomenon of

0th-order ultrasensitivity. Since then, there has been extensive characterization of PTM

cycles with 0th-order ultrasensitivity, both experimentally [45–47] and computationally

[18,20,25,48,49]. Until now, however, the properties of PTM cycles that drive protein degra-

dation have not been studied in a systematic way. Using a mathematical modeling frame-

work, we found that adding synthesis and degradation to a PTM cycle suppresses both

sensitivity to signal and ultrasensitivity of the response, even when the PTM in question

does not serve as a signal for protein degradation (Fig 5). Thus switch-like behaviors in vivo
may or may not be the consequence of 0th-order ultrasensitivity, depending on the stability

of the protein substrate. Although there are exceptions [15–17], most models of signaling

networks ignore protein turnover [50,51]. Our findings indicate that incorporating turn-

over, especially turnover based on actual protein stabilities, is key to capturing the global

PTM dynamics of signaling systems.

Interestingly, we found the general trend of decreasing sensitivity and ultrasensitivity holds

for PTMs that drive protein degradation, even when accounting for many of the complicated

mechanisms that describe polyubiquitylation by E3 ligases and deubiquitylation by DUB

enzymes (Fig 5 and S1 Text, Sec. 2). By adding E3 ligase crosstalk, we demonstrated that over-

expressing one protein can elevate the concentration of another, and can also reduce the sensi-

tivity of other proteins to incoming signals that would drive their degradation (Fig 4C and

4D). In other words, if one protein is overexpressed, it becomes more difficult to degrade any

of its counterparts sharing the same E3/DUB enzyme pair.

Although there is some data available about the specificity of E3 ligases [34,52,53], this

information is very far from complete. Consider the highly common experimental scenario

where a primary aim is to characterize the function of a protein by manipulating its expression

level. Our findings indicate that the interpretation of overexpression data in eukaryotic cells

may be very difficult because some of the observed phenotypic or molecular effects could be

directly due to the higher concentration of the protein that was expressed, but other effects

could be due to E3 ligase coupling (Fig 4C). Additional complications could appear due to

the change in sensitivity to the shared E3 ligases for other substrates in the system (Fig 4D).

For instance, if a protein is being actively regulated by its E3 ligase and a degradation signal

appears, then a high concentration of other proteins in the system would potentially inhibit

the signal. This could have unforeseen large-scale effects on the overall system.

Fig 5. A summary of the key features and results for each model considered here.

https://doi.org/10.1371/journal.pcbi.1008492.g005
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A global picture of E3-ligase/DUB enzyme specificity will thus likely be essential to compre-

hending the regulation of protein levels within cells. This will allow us to begin determining

how to isolate direct effects of changes in protein expression levels from indirect effects.

Equally necessary are mathematical or computational models of signaling dynamics, gene

regulatory networks, and other cellular processes that describe the interplay between PTMs

that do not lead to degradation and those that drive degradation. Incorporating the coupled

dynamics of protein levels into our understanding of cell signaling and cellular physiology

thus represents a grand challenge for both experimental and computational systems biology.

Materials and methods

Experimental methods

Our model behaviors can be described deterministically by systems of ordinary differential

equations (ODEs). Numerical integration of the systems was performed by the stiff solver

ode15s in MATLAB. All analyses were performed at steady-state. In parallel, agent-based

stochastic simulations of the systems [39–41] were conducted using custom-built software

implemented in C++. Parameter values were chosen to ensure equivalence between the deter-

ministic and stochastic systems. See the supporting information for full details regarding all of

the models considered here.

Supporting information

S1 Text. This appendix contains further details about the models studied here, as well as

additional mathematical and numerical results.

(PDF)
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