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Background: The Biomarker Strategy Design has been proposed for trials assessing the value of a biomarker in guiding treatment
in oncology. In such trials, patients are randomised to either receive the standard chemotherapy treatment or a biomarker-
directed treatment arm, in which biomarker status is used to guide treatment.

Methods: Motivated by a current trial, we consider an adaptive design in which two biomarkers are assessed. The trial is
conducted in two stages. In the first stage, patients in the biomarker-guided arm are assessed using a standard and an alternative
cheaper biomarker, with the standard biomarker guiding treatment. An analysis comparing biomarker results is then used to
choose the biomarker to use for the remainder of the trial. The new biomarker is used if the results for the two biomarkers are
sufficiently similar.

Results: We show that in practical situations the first-stage results can be used to adapt the trial without type I error rate inflation.
We also show that there can be considerable cost gains with only a small loss in power in the case where the alternative biomarker
is highly concordant with the standard one.

Conclusions: Adaptive designs have an important role in reducing the cost and increasing the clinical utility of trials evaluating
biomarker-guided treatment strategies.

The existence of heterogeneity of the patient population in their
response to anti-cancer therapies has long been appreciated and is
a major feature of clinical research in this area. Chemotherapy
treatment is highly effective in some cases, but is unpleasant for all
and can lead to life-threatening treatment-induced toxicity and
long-term health problems. There is therefore considerable interest
in the development of methods for more accurately identifying
those patients most likely to respond to treatment and selecting or
targeting treatment accordingly. The aim is to avoid giving
potentially harmful therapies to patients for whom benefit from
the therapy is considered unlikely. Treatment decisions are often
made through the division of patients into subgroups using
biomarkers based on gene expression assays or immunohisto-
chemical assays. Assays to guide the use of targeted therapy such as
oestrogen receptor status in breast cancer (Early Breast Cancer
Trialists’ Collaborative Group (EBCTCG), 2005) and EGFR or
K-Ras mutation status in non-small-cell lung cancer (Zhou et al,

2008) generally have high specificity. Multi-parameter assays to
predict responsiveness to cytotoxic chemotherapy have also been
developed. Examples include the classification of breast cancers
into intrinsic subgroups (Perou et al, 2000; Sorlie et al, 2001),
which display differential sensitivity to chemotherapy (Parker et al,
2009), and the Oncotype DX test (Paik et al, 2006), which is widely
used to guide adjuvant chemotherapy decisions in early breast
cancer. Other tests that could potentially be used to predict
chemotherapy benefit in early breast cancer include MammaPrint
(Van De Vijver et al, 2002; Drukker et al, 2013), Mammostrat
(Ring et al, 2006; Bartlett et al, 2010), EndoPredict (Filipits et al,
2011), IHC4 and fluorescence IHC4 (Cuzick et al, 2011) and
PAM50 (Parker et al, 2009; Dowsett et al, 2013) assays.

The assessment of effectiveness and cost-effectiveness of anti-
cancer therapies is based on a phase III randomised controlled trial
(RCT). Conventional RCTs with no biomarker evaluation aim only
to estimate the treatment effect in the overall study population and
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do not enable evaluation of biomarker-guided therapy. For this
latter purpose, specific alternative trial designs are required
(Freidlin et al, 2010). One commonly used RCT design is the
Biomarker-Strategy Design (Sargent et al, 2005). In such trials,
patients are randomised to a control arm, in which case they
receive the standard treatment irrespective of biomarker status, or
a biomarker-directed treatment arm, in which case the biomarker
status is used to guide treatment, usually between the standard
treatment and some alternative. The primary comparison is then
between the two randomised groups. The biomarker-strategy
design has been shown to be less efficient than a marker-
by-treatment interaction design for evaluating whether there is a
difference in effectiveness (Mandrekar and Sargent, 2009; Simon,
2010). Nevertheless, the design remains popular with clinicians,
and provides a way to test the clinical utility of a validated
biomarker, including cost-effectiveness. In the case when there is
high-quality historical data, then a more efficient alternative to the
biomarker strategy design would be an enriched trial that only
recruits patients with the biomarker status that is to be randomised
between treatments. However, in the case that the historical data
may not be high quality or representative of the population being
investigated, the most robust evidence on the effect of the
biomarker-guided therapy in the entire population would come
from a trial that continues to recruit all patients.

Most RCT designs assessing biomarker-guided treatment focus
on a single biomarker chosen before the start of the trial. In
practice, a number of potential assays for patient selection may
exist so that the choice of a single biomarker may itself present a
challenge. In this setting, it may be desirable to conduct an RCT to
both compare different potential biomarkers and to assess the
effectiveness of biomarker-guided therapy. The aim of such a RCT
is to both identify the best of a set of possible biomarkers and to
assess the effectiveness of using this biomarker relative to the
approach in which all patients receive standard therapy. If assays
vary considerably in price, the cost-effectiveness of the use of
different biomarkers might also need to be considered. We propose
an adaptive design in which both assessment of the concordance
between biomarkers and the comparison between the strategy and
control arms can be done in one trial. Compared with first
conducting a trial assessing the concordance and then a RCT, this
saves time and allows first-stage patients to be included in the final
analysis (at least when the original biomarker is used, as discussed
later).

Our work is motivated by the OPTIMA (Optimal Personalised
Treatment of early Breast Cancer using Multi-Parameter Analysis)
trial of biomarker-guided adjuvant chemotherapy for oestrogen
receptor-positive, HER2-negative breast cancer patients who would
be given adjuvant chemotherapy as standard (Bartlett et al, 2012).
In this trial, patients are randomised to be either in the control arm
or in the test-guided arm. All patients in the control arm receive
chemotherapy and endocrine therapy as is standard in this
population. Patients in the test-guided arm all receive endocrine
therapy, but receive chemotherapy in addition only if the test
indicates that they are high risk. The trial will be conducted in two
stages. In the first stage (the preliminary study), 150 patients will be
randomised to each arm. All patients will have Oncotype DX
testing (Paik et al, 2004) but only those patients in the test-guided
arm will be allocated to treatment on the basis of the result of the
Oncotype DX test. In addition to this test, a number of other assays
will also be performed on all patients. The results from an analysis
comparing the different tests within the preliminary study will
determine which one (or possibly more) test(s) will be chosen to
guide treatment for the test-guided therapy arm in the main trial,
where a total of 1860 randomised patients are to be recruited to
each arm. The value of the Oncotype DX test has been
demonstrated in retrospective phase III trials in some populations
(Gianni et al, 2005; Paik et al, 2006; Mina et al, 2007; Chang et al,

2008; Albain et al, 2010; Dowsett et al, 2010), but there is a need for
further research to assess its true clinical value and cost-
effectiveness given the current cost of d2580 (around $4000) per
assay. There is considerable overlap between the methods and
markers included in this test and the other tests considered, so that
an alternative test might be used to guide treatment in the main
trial if the preliminary results indicated that it corresponded closely
to Oncotype DX and was simpler or more cost effective.

MATERIALS AND METHODS

Trial design. Considering a slightly simplified version of the
approach used for the OPTIMA trial, we assume that there are two
biomarker-based tests, which are available for guiding treatment.
Biomarker 1 is considered to be a gold standard that has previously
been validated as a predictive biomarker (i.e., the treatment effect
of the treatment being investigated depends on the biomarker
value) with biomarker 2 a cheaper potential alternative. The trial is
split into two stages. In the first stage, a total of 2n1 patients are
recruited to the trial, equally allocated between the biomarker-
directed arm and the control arm. All patients are assessed using
both biomarkers. In the biomarker-directed arm, patients who are
positive on biomarker 1 are allocated to chemotherapy, and
patients who are negative on biomarker 1 are allocated to an
alternative treatment. On the control arm, all patients are allocated
to chemotherapy.

An interim analysis occurs after all stage 1 patients have been
assessed on both biomarkers. At this analysis, the concordance
between the two biomarkers, as assessed by Cohen’s kappa statistic,
is measured. If this concordance is sufficiently high, biomarker 2 is
used in stage 2 of the trial, otherwise biomarker 1 is used. In the
second stage of the trial, 2n2 patients are recruited, and equally
allocated to the biomarker-directed arm and control arm. In the
biomarker-directed arm, the chosen biomarker is used to guide
which therapy patients receive, similar to stage 1. In the control
arm, all patients receive chemotherapy (and so no patients are
tested using the chosen biomarker). At the end of the trial, it is of
interest to compare the relative difference in outcome between the
control arm and the intervention arm. Figure 1 illustrates the trial
design.

We assume that the primary treatment outcome is observed
with significant delay, or is time to some event during long-term
follow-up and that there is no intermediate informative outcome
available. For example in OPTIMA, the outcome is invasive
disease-free survival during a 5-year follow-up period. Conse-
quently, at the interim analysis, very few patients are expected to
have primary outcome data. We first consider the case in which the
primary outcome is binary, and that the log odds ratio is used to
summarise the difference in effect between the control and
intervention arms. In this case, we can derive analytic expressions
to enable us to study the properties of the design. Similar analytic
formulae can be derived in the case of a normally distributed
outcome. We do not consider normally distributed outcomes in
this paper as they are rare in oncology trials. For time-to-event
outcomes, the analytic method is less feasible, so instead we use
simulation to assess designs.

Notation. The formula for Cohen’s kappa statistic, calculated at
the end of the first stage, is:

k ¼ po�pe

1�pe
;

where po is the observed probability of agreement between the
biomarkers, and pe is the expected agreement between the
biomarkers by chance, that is, if the assignments of the two
biomarkers were independent.
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We assume that the log odds ratio between the control and
biomarker-directed arm is used to assess the biomarker-guided
strategy at the end of the second stage. If biomarker 1 is selected at
the interim analysis, both stage 1 and stage 2 patients are included
in the final analysis; on the other hand, if biomarker 2 is selected,
only stage 2 patients are included for both arms. This is because
biomarker 1 is used to guide treatment in the first stage and it
would bias the final analysis to include only the first-stage
biomarker-directed arm patients on whom the two biomarkers
agreed. The issue of including stage 1 patients in the latter case will
be considered in the discussion.

The log odds ratio if biomarker 1 is selected is:

LOR1 ¼ log
p1

1�p1

� �
� log

p0

1�p0

� �
; ð1:1Þ

where p1 is the probability of an event (invasive disease recurrence
or death) in the biomarker-directed arm patients and p0 is the
probability of an event in the control arm patients. In this case,
both p1 and p0 are estimated from stage 1 and stage 2 patients. The
log odds ratio if biomarker 2 is selected is:

LOR2 ¼ log
p2

1�p2

� �
� log

p0

1�p0

� �
; ð1:2Þ

where p2 is the probability of an event in the biomarker-directed
arm patients from stage 2. In this case, both p2 and p0 are estimated
from just stage 2 patients.

We assume, as in the OPTIMA trial, that the trial aims to show
non-inferiority of the biomarker-guided arm. This requires
specification of a non-inferiority margin. Non-inferiority is
declared if the upper 95% confidence interval (CI) limit for the
odds ratio is below the non-inferiority margin; that is, if the 95% CI
is entirely below the non-inferiority margin. Different margins can
be used; we assume one of 1.3 (0.262 on the log odds-ratio scale),
which is a fairly stringent level to use (Rousson and Seifert, 2008).

The probability of invasive disease recurrence or death will
depend on the true biomarker status of the patient and whether
they were treated with chemotherapy or not. Thus there are, in
principle, four types of patients: (1) those who are biomarker
positive and treated with chemotherapy; (2) those who are
biomarker positive and not treated with chemotherapy; (3) those
who are biomarker negative and treated with chemotherapy; and
(4) those who are biomarker negative and not treated with
chemotherapy.

Hypotheses. The null hypothesis tested at the end of the trial will
depend on the biomarker chosen at the interim analysis. If the
gold-standard biomarker is selected, then the null hypothesis will
be:

H0 : LOR1p logð1:3Þ: ð1:3Þ

Similarly, if the second biomarker is selected, the null hypothesis is:

H0 : LOR2p logð1:3Þ: ð1:4Þ

The power of the trial to declare non-inferiority will be the
probability of the upper 95% CI of the respective
log odds ratio to be below log(1.3). The distribution
of the estimated upper 95% CI of LOR1 is asymptoti-

cally N LOR1þ1:96seðLOR1Þ; 1
n1þn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p1
þ 1

1�p1
þ 1

p0
þ 1

1�p0

q� �
, where

se(LOR1) is the standard error of the estimated log odds ratio. The
distribution of the estimated upper 95% CI of LOR2 is

asymptotically N LOR2þ1:96seðLOR2Þ; 1
n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p2
þ 1

1�p2
þ 1

p0
þ 1

1�p0

q� �
.

These formulae allow calculation of the power of the trial.

Joint distribution of Cohen’s kappa and the log odds ratio. The
observed values of k, LOR1 and LOR2 are all functions of the same
random variables, described further in the Supplementary Material.
Thus, a technique called the delta method (see, e.g., Agresti (2002))
can be used to approximate the joint distribution of the three
statistics. The joint distribution can be used to find the power (i.e.,
the probability of declaring non-inferiority) of the two-stage
procedure when different interim selection rules are used. The
process of finding the analytical joint distribution using the delta
method is described in detail in the Supplementary Material.

Specifically of interest is the level of correlation between the
estimated kappa statistic after the first stage and the log odds ratio
after the second stage. This is because a non-zero correlation will
mean that the distribution of the final test statistic is dependent on
the selection rule used in the interim analysis after the first stage.
This may cause operating characteristics of the main trial, such as
the type I error rate, to deviate from the planned values. Using the
delta method, we can obtain the correlation analytically (described
further in the Supplementary Material). If the second biomarker is
chosen at the interim analysis, the first-stage data are not used in
the final analysis so that there is no correlation between the two
stages. Thus, the correlation between kappa and the log odds ratio
only needs to be considered in the case that the first biomarker is
used in the second stage.

Time to event outcome simulation. Up to this point, we have
restricted our attention to a binary end point. However, time-
to-event outcomes such as overall survival or invasive disease-
free-survival are more commonly used in large trials such as
OPTIMA. The final analysis of OPTIMA will analyse invasive

Recruit 2n1 patients
Randomise 1:1

Control arm Experimental arm

Check both biomarkers Check both biomarkers

Chemotherapy Chemotherapy

Biomarker
1 positive

Biomarker
1 negative

Endocrine therapy

Interim analysis. Check concordance between biomarker 1 and 2 through 
kappa statistic. Choose biomarker 1 if kappa is below threshold, and 

biomarker 2 if kappa is above threshold

Recruit 2n2 patients
Randomisation 1:1

Control arm Experimental arm

Check chosen biomarker

Chemotherapy Chemotherapy

Biomarker  
positive

Biomarker 
negative

Endocrine therapy

Final analysis. Compare control arm to experimental arm. If biomarker 1 
chosen, use stage 1 and 2 patients. Otherwise just use stage 2 patients.

Figure 1. Schema of adaptive design with selection between a gold
standard (biomarker 1) and cheaper alternative (biomarker 2). .
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disease-free survival as a time-to-event outcome. Compared with
the binary case, deriving the analytic joint distribution of Cohen’s
kappa statistic and a suitable time-to-event test statistic is less
feasible. Therefore, we use simulations to evaluate the power of the
adaptive trial design. Full details of the methods used for
simulating data are described in the Supplementary Material.

RESULTS

Correlation between kappa and the log odds ratio. The extent of
the correlation depends on the sample sizes considered at the two
stages (i.e., n1 and n2), the probabilities of an event for each of the
four types of patients (biomarker positive and treated with
chemotherapy; positive and untreated; negative and treated;
negative and not treated), the proportion of patients who are
positive for biomarker 1, and the sensitivity and specificity of
biomarker 2. Generally, for realistic values, the correlation is very
near to zero. For example, if 150 patients per arm are recruited in
the first stage and 1500 per arm in the second stage, the
probabilities of an event are 0.3, 0.5, 0.25 and 0.2 for positive/
treated, positive/untreated, negative/treated and negative/untreated
patients, respectively, the proportion of biomarker 1 positives is
0.2, and both sensitivity and specificity are set to 0.95, the
correlation is 0.002. The correlation ranges between � 0.015 and
0.015 for a broad range of realistic scenarios (Supplementary
Table 1). Thus, basing the selection of a biomarker on the Cohen’s
kappa statistic will not typically affect the operating characteristics
of the trial design. The correlation appears to increase (in absolute
terms) as the proportion of biomarker 1 positives increases.
Interestingly, it increases as the sensitivity and specificity increases
up to a peak and then decreases again. The maximum correlation
found, for 150 and 1500 patients per arm in the first and second
stage, respectively, was 0.08. However, the correlation is only this
high when the probabilities of an event takes extremely implausible
values (i.e., that all patients who were negative for biomarker 1 but
treated with chemotherapy would recur, whereas patients who
were negative and not treated would never recur).

Impact of kappa threshold on power and cost of trial. The main
potential benefit of selecting between two biomarkers is to allow a
cheaper biomarker test to be used if it performs well. However, this
would be undesirable if the selection rule allows low-quality
biomarkers to be selected, and thus causes the power of the trial to
be too low. It is also undesirable if the potential cost saving is low.

Thus, assessing the selection rule with respect to the power of the
trial and the reduction in cost is of great importance.

It is possible to use the analytic formulae derived in the
Supplementary Material to get the power of the two-stage
procedure. We investigated the power of the procedure and the
expected cost of testing individuals. We varied the quality of
biomarker 2, considering: an excellent quality biomarker 2 with
sensitivity and specificity of 0.99; a good quality biomarker 2, with
sensitivity and specificity of 0.95; and a poor quality biomarker 2,
with sensitivity and specificity of 0.8. We consider a total of eight
scenarios, where the probability of a patient being positive for
biomarker 1 and the probabilities of an event for the four types of
patient (positive/treated, positive/untreated, negative/treated, and
negative/untreated) were varied. Scenario 1 assumes that biomarker-
positive patients have a large reduction in probability of recurrence
when treated, whereas biomarker-negative patients have no
reduction. Scenarios 2 and 3 vary this relative benefit. Scenario 4
is the same as scenario 1 except that biomarker-negative patients
receive a small benefit when treated. Scenario 5 assumes that
biomarker-negative patients receive a small benefit when not
treated. In scenario 6, biomarker 1 is purely prognostic, and
biomarker-positive and -negative patients receive the same relative
benefit from treatment; the probabilities of recurrence are chosen
so that the odds ratio when biomarker 1 is chosen is equal to the
inferiority margin. Scenarios 7 and 8 are the same as scenario 1
except the probability of a patient being positive for biomarker 1 is
varied. Table 1 shows the eight scenarios and the resulting log odds
ratio that would result from selecting biomarkers 1 and 2.

Figure 2 shows the power of the two-stage procedure for
different interim decision rules. It becomes more likely that
biomarker 1 will be used in the second stage as the kappa threshold
increases. With 300 patients recruited in the first stage, the estimate
of kappa has high precision, and therefore there is only a narrow
window of the kappa threshold, which results in non-negligible
uncertainty over which biomarker will be used in the second stage.
In all cases, using biomarker 1 results in a higher power. This is for
two reasons: (1) using biomarker 1 means that the first-stage
patients are included in the final analysis; (2) the sensitivity and
specificity of biomarker 2 are lower, implying that some patients
are treated suboptimally. Generally, the drop in power is small for
the excellent quality biomarker 2, medium for good quality
biomarker 2, but unacceptably high for poor quality biomarker 2.
The relative loss in power depends on the scenario, with an
increased probability of patients being positive for biomarker 1
resulting in a higher drop in power. These results show that it is
important to select a kappa threshold such that poor quality

Table 1. Summary of simulation scenarios

LOR2 biomarker 2 quality

Scenario p ptp LOR1 Excellent Good Poor

1 (0.2, 0.5, 0.2, 0.2) 0.2 0.000 0.004 0.019 0.073

2 (0.2, 0.8, 0.2, 0.2) 0.2 0.000 0.007 0.037 0.144

3 (0.2, 0.3, 0.2, 0.2) 0.2 0.000 0.001 0.006 0.025

4 (0.2, 0.5, 0.2, 0.21) 0.2 0.049 0.052 0.065 0.111

5 (0.2, 0.5, 0.2, 0.19) 0.2 �0.051 � 0.046 �0.029 0.035

6 (0.2, 0.5, 0.02, 0.04) 0.2 0.268 0.275 0.301 0.393

7 (0.2, 0.5, 0.2, 0.2) 0.1 0.000 0.008 0.009 0.037

8 (0.2, 0.5, 0.2, 0.2) 0.5 0.000 0.009 0.046 0.178

Abbreviation: LOR1¼ log odds ratio.
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biomarker 2 has a negligible chance of being selected in the interim
analysis. A kappa value of 0.8 appears suitable from the figures.

To quantify the loss of power because of decreased sample size
when biomarker 2 is selected, the power of scenario 1, when
biomarker 1 is selected but only second-stage data are used, is
around 82%. This implies that for scenario 1 most of the power loss
when an excellent biomarker 2 is selected was due to the lower
sample size, and only a small amount due to the imperfect
concordance. For a good biomarker 2, slightly more than half of
the power loss is due to the imperfect concordance.

It should be noted that in some cases, using biomarker 2 will result
in higher power, for example, if untreated positive patients have a
lower chance of an event than treated patients, but these situations
are unlikely if biomarker 1 is a validated predictive biomarker.

In Supplementary Figure 1, we show the power of the two-stage
procedure under the same scenarios but for n1¼ 50 and n2¼ 1650
(i.e., the overall sample size remains the same but the interim
analysis takes place earlier). There is more uncertainty in the
estimate of kappa, but the power loss is also smaller in each

scenario. Thus, it may be beneficial to reduce the number of
patients used in the first stage.

The expected cost of testing patients in the trial does not depend
on the probabilities of an event, only on the quality of biomarker 2,
and hence on how likely this biomarker is to be used in stage 2, and
the ratio of the cost of each biomarker. Figure 3 shows the expected
cost of testing patients if the gold standard biomarker costs $4000
per patient, approximately the current cost of Oncotype DX, and
the cheaper biomarker varies in cost, with $1000, $2000, $3000 and
$4000 per patient considered. The results show that if biomarker 2
is inexpensive, including it adds little to the maximum cost of the
trial, but could result in a large reduction in cost. For example, if
the cheaper biomarker is $2000, including it increases the
maximum cost of testing individuals by 8% compared with testing
everyone with the gold-standard but reduces the cost by around
35% (from $7 200 000 to $4 800 000) if the cheaper one is chosen.
This potential saving depends on the ratio of the cost of the two
biomarkers; if both tests cost the same, the two-stage procedure
will always be more expensive.
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Figure 2. Plots showing the power of the two-stage procedure to declare non-inferiority as the kappa threshold, at which biomarker 2 is
selected, changes. (A–H) Scenarios 1–8 in Table 1. The eight scenarios use different probabilities of an event for the four patient groups (i.e.,
positive/treated, positive/untreated, negative/treated, negative/untreated). These are listed in Table 1. In scenario 6, the null hypotheses are true,
so the lines give the type I error rate. Curves are shown for three possible performance characteristics of biomarker.
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Supplementary Figure 2 shows the same plots when n1¼50 and
n2¼ 1650. In this case, the potential savings from using the two-
stage procedure are higher. If the cheaper biomarker is $2000, then
choosing biomarker 2 at the interim analysis reduces the cost of
testing by 44% (from $7 200 000 to $3 900 000).

Time-to-event end points. Scenarios that were analogous to the
first four scenarios of Table 1 were used, except the hazard
parameters in each of the four patient groups varied. The hazard
rates are chosen so that, assuming the time-to-event is distributed
as an exponential random variable, the probability of invasive
disease before 5 years is equal to the probabilities in the scenarios
used in the previous section. The follow-up time is assumed to be
the time required for half of patients to have events. The remaining
patients are right censored. The quality of biomarker 2 is varied in
the same way as in the previous section.

Figure 4 shows results similar to Figure 2, except that the power
is generally higher. The lines are also less smooth as they are based
on a limited number of simulation replicates (25 000). The higher
power is to be expected as a time-to-event analysis is typically more
powerful than a binary analysis. We do not show plots of the
expected cost of the trial, because this depends only on
concordance between biomarkers, which is assumed to the same
here as it was in the previous section. Thus, the potential cost
savings will be the same as in the binary case.

DISCUSSION

In this paper, we have examined the potential advantages and
disadvantages of including an interim analysis to select between a
gold-standard and cheaper biomarker. The biomarkers are used
to decide whether patients should get a treatment that can greatly
benefit a small subgroup of patients, but has undesirable side

effects. This is based on the OPTIMA trial in which a relatively
small first stage is used to select between several biomarkers; the
chosen biomarker is then used to guide treatment in a larger
second stage. Although OPTIMA is the motivating trial, we have
explored a wider range of scenarios so that the work is
informative for other trials also. Although we have focused on
biomarker-strategy designs, the general concept of allowing for a
change in biomarker could be used in other biomarker designs
also, such as enrichment trials and marker-by-treatment interac-
tion designs.

Generally, if a considerably cheaper biomarker is available that
may be as good as the gold standard, there is considerable benefit
to including an interim analysis without many disadvantages. In
the case where the cheaper biomarker is highly concordant with
the gold standard, the expected cost of testing patients reduces
considerably with only a small loss in power. The advantage of the
adaptive design over a initial study assessing concordance and a
subsequent study assessing difference in treatment effect is that the
first-stage patients can be included when the original biomarker is
used, providing a higher power. One scenario in which the
adaptive design is likely to be inferior is when there is a high-
quality retrospective data set available, in which biomarker status is
available for patients who also have long-term follow-up data. In
this case, a separate retrospective first stage to decide on the
suitable biomarker would likely be more efficient, unless it is
thought the effect of treatment has changed since the patients were
observed.

In the case that the alternative biomarker is almost the same
price, or is unlikely to have high concordance with the gold-
standard biomarker, then there is less advantage to including an
interim analysis. In this paper, only the costs of the trial itself were
considered. There are other, longer term, advantages and
disadvantages of selecting a cheaper biomarker. On the plus side,
it will reduce the future cost of biomarker-guided treatment in the
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Figure 3. Plots showing the expected cost of the two-stage procedure as the kappa threshold, at which biomarker 2 is selected, changes for 150
patients per arm in the first stage. The four panels assume different costs of the cheaper biomarker: (A) $1000; (B) $2000; (C) $3000; (D) $4000.
The gold-standard biomarker is assumed to cost $4000. The black dashed line in the figures shows the cost of a trial that only used biomarker 1
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clinic. However, if the sensitivity or specificity of the chosen
biomarker is truly less than the gold-standard biomarker, it may
mean that future patients experience worse outcomes. This is
another reason to ensure that the alternative biomarker is only
chosen if it is highly concordant.

One of the reasons for the loss in power when the cheaper
biomarker is used is that the first-stage patients are not included in
the final analysis. It would be possible to include control patients,
as their treatment does not depend on which biomarker is chosen.
This would go some way to reducing the loss in power. However, it
is not straightforward to include the first-stage biomarker-directed
arm patients, unless the two biomarkers agreed perfectly. If there
are patients on whom the biomarkers disagreed, then one would
need to know whether those patients would have recurred if
treatment was assigned using biomarker 2. If only patients for
whom the two biomarkers agreed were included, then this would
ignore two subgroups of patients, which may bias the final results.
More sophisticated statistical methods that would allow inclusion
of the first-stage patients would be a useful area for future research.
In practice, if the concordance between biomarkers is extremely
high (40.95), then including the first-stage patients should not
cause many problems. Alternatively, the sample size of the second
stage could be increased when the second biomarker is chosen.
This would reduce the potential benefit in terms of cost, but would
mean the power loss was mitigated.

A complication that has been ignored in this paper is that
biomarker 1 itself may not perfectly discriminate between patients
who would benefit from treatment. In this case, it is possible that
biomarker 2 is actually a higher quality biomarker than biomarker 1,
but is not selected because the two have low concordance. In the
scenario, we have considered, there is little that can be done to
address this point. However, if there was final outcome

information at the interim analysis, or a correlated intermediate
outcome was available, then this, rather than the concordance of
the biomarkers, could be used to pick the higher quality biomarker.
The advantage of just considering concordance is that this is
measured immediately, so there is no delay between recruiting and
assessing patients. Delay can affect the efficiency of an adaptive
design considerably – there may be less to gain from using an
adaptive design if outcome information was used to assess which
biomarker should be used. The case of selecting a biomarker when
partial or complete outcome data are available is a problem that
deserves attention.

There are several other complexities that we did not consider in this
work. For example, missing data are a common problem in real trials.
In the case of a biomarker-strategy design, if biomarker data are
missing for a patient in the experimental arm, then they cannot be
assigned to treatment. Missing biomarker data in a control arm patient
are less problematic but may reduce the efficiency of the final analysis.
If a first-stage patient has missing biomarker data, they will not
contribute information to the concordance assessment at the interim
analysis, so the estimate of kappa will be less precise – the first-stage
sample size should be increased if missing biomarker data are common.
As we are considering non-inferiority trials (although the methodology
is equally applicable to superiority trials), there are issues over whether
patients receive the assigned treatment and whether a per-protocol
analysis is preferable to an intention-to-treat analysis – however, the
adaptive design does not exacerbate any of these issues.

We have considered an adaptive design that chooses between
two biomarkers, but it may be of interest to check many alternative
biomarkers. Assuming that the selected biomarker is based on the
kappa statistic, we have shown that this will not cause problems
with the final analysis, no matter how many are checked. In
addition, other metrics that measure concordance could be used
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Figure 4. Plots showing the power of the two-stage procedure to declare non-inferiority for a time-to-event end point as the kappa threshold, at
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other than the kappa statistic. As alternative metrics are generally
highly correlated with kappa, we consider it unlikely that basing
selection on any measure of concordance will lead to type I error
inflation. In practice, we would recommend several factors are used
to decide which biomarker should be chosen.

The work presented here shows that adaptive designs, such as
the one used in OPTIMA, have an important part to play in
reducing the cost and increasing the clinical utility of trials
evaluating biomarker-guided treatment strategies.
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