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Alzheimer’s disease (AD) is associated with well-established macrostructural and cellular
markers, including localized brain atrophy and deposition of amyloid. However, there is
growing recognition of the link between cerebrovascular dysfunction and AD, supported
by continuous experimental evidence in the animal and human literature. As a result,
neuroimaging studies of AD are increasingly aiming to incorporate vascular measures,
exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is
rooted in clinical practice, and as non-invasive CVR-mapping techniques become more
widely available, routine CVR mapping may open up new avenues of investigation into
the development of AD. This review focuses on the use of MRI to map CVR, paying
specific attention to recent developments in MRI methodology and on the emerging
stimulus-free approaches to CVR mapping. It also summarizes the biological basis for
the vascular contribution to AD, and provides critical perspective on the choice of CVR-
mapping techniques amongst frail populations.

Keywords: cerebrovascular reactivity (CVR), Alzheimer’s disease, APOE, magnetic resonance imaging (MRI),
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BACKGROUND

The brain’s energy needs are mainly met by neurovascular regulation of cerebral blood flow (CBF)
(Roy and Sherrington, 1890; Duling and Berne, 1970), realized by the neurovascular unit (NVU).
The NVU consists of arterial/arteriolar vascular smooth-muscle cells (VMSCs), endothelial cells,
neuroglia (notably astrocytes), and pericytes. Pericytes play a crucial role in the formation and
functionality of the selectively permeable space that is the blood–brain barrier (BBB), and BBB
disruption is a classic marker of vascular dysfunction. Neurovascular dysfunction leads to failure
to meet neuronal energy needs, which leads to oxidative stress and eventual neuronal death.

VASCULAR ROLE IN ALZHEIMER’S DISEASE

While the ε4 allele of the apolipoprotein E (APOE) gene is an acknowledged genetic risk factor
found in 40–80% of Alzheimer’s disease (AD) patients (Strittmatter et al., 1993), and amyloid
plaques are a hallmark of AD, an approximated 60–90% of AD patients also exhibit cerebrovascular
pathologies (Bell and Zlokovic, 2009), supporting the vascular theory of AD. In brief, the current
understanding is that genetic, environmental, and lifestyle factors may all predispose individuals
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to damage to the NVU (Figure 1). Soluble amyloid beta (Aβ),
which predates Aβ plaques, deregulates cerebrovascular function
by activating a free-radical cascade (Park et al., 2008), leading
to compromised microvascular integrity (Dorr et al., 2012),
and reduced CBF. Aβ is known to interact with endothelin-
1 (Kawanabe and Nauli, 2011) and myocardin (Ramanathan
et al., 2015) to promote vascular hypercontractility. Moreover,
the cholinergic deficit in AD can result in a reduction of
cholinergic input to cortical blood vessels (Claassen and Zhang,
2011). Furthermore, Aβ-mediated pericyte degeneration leads
to BBB breakdown, increasing the perivascular accumulation of
neurotoxins. The various pathways of vascular dysfunction can
lead to increasing vascular tortuosity and decreasing vascular
reactivity (Black et al., 2009), compromising Aβ clearance and
eventually lead to neuronal death. Paradoxically, tau pathology
has been associated with an increase in regional vascular
reactivity (Wells et al., 2015), a controversy that is still under
investigation.

Irrespective of the specific disease mechanism, vascular
deficits have been demonstrated as a promising early indicator
of AD. Non-invasive functional magnetic-resonance imaging
(MRI) has provided strong evidence that CBF can be used
to distinguish between at-risk individuals, patients and normal
controls (Johnson et al., 2005). In addition, perfusion deficits
have been associated with decreased functional connectivity
despite maintained glucose metabolism (Göttler et al., 2018).
Interventions to re-establish perfusion have been advocated as a
promising preventative treatment (de la Torre, 2016). However,
perfusion is a mixture of neuronal and vascular contributions,
and unraveling the vascular mechanisms of AD etiology requires
a more vascularly specific and routinely adoptable vascular
marker. In this respect, there is early evidence that deficits in
cerebrovascular reactivity (CVR) are detectable before those in
CBF (Yezhuvath et al., 2012). Indeed, this was demonstrated
through quantitative cerebrovascular resistance, defined as the
ratio of mean-arterial blood pressure to CBF (Yew et al., 2017).
Compared to CBF, resistance was found to be more sensitive
at distinguishing amyloid-positive from amyloid-negative older
populations as well as being more predictive of dementia
conversion.

CVR AND MEASUREMENT TECHNIQUES

A recent review by Glodzik et al. (2013) provides an excellent
overview of CVR measurement in AD using carbon-dioxide
(CO2) challenges with various imaging modalities. CVR is a
vasodilatory or constrictive reaction of a blood vessel to a
stimulus. CVR is a well-established indicator of vascular reserve
and autoregulatory efficiency. CVR decline has been associated
with normal aging (Lu et al., 2011), and is the most reliable
neuroimaging predictor of impending cerebrovascular disease
(Pillai and Mikulis, 2015).

Vascular Stimulus and CVR
Qualitative CVR information can be gleaned from the functional
MRI (fMRI) response to any task (Dumas et al., 2012), but when

quantitative CVR values are desired, vascular agents are generally
required. Strong CBF responses can be induced by intravascular
CO2 alterations, with CO2 inspiration thought as the optimal
form of stimulus (Fierstra et al., 2013). While breathing and
blood flow can both be regulated through the midbrain CO2
chemoreceptors, CO2-related blood pH changes are also actively
regulated as part of maintaining homeostasis. Thus, hypercapnic
challenges, in which the arterial CO2 content is increased, activate
VMSC potassium channels (Ainslie and Duffin, 2009), leading to
large CBF increases without a significant concomitant increase
in metabolic rate (Chen and Pike, 2010; Jain et al., 2011). In
addition, nitric oxide, which is synthesized locally following
glutamate receptor activity, has also been implicated in the
modulation of vasodilatory effects produced by CO2 (Iadecola
et al., 1994).

End-tidal CO2 pressure (PETCO2) is an easily measured
surrogate for arterial CO2 (PaCO2) (Battisti-Charbonney et al.,
2011). PETCO2 is measured as the peak expired CO2, typically
35–40 mmHg in healthy individuals, and directly reflects alveolar
CO2. CBF increases by 3–4% per mmHg increase in PETCO2,
reaching its highest level when PETCO2 is elevated by 10–
20 mmHg above normal resting value (Brugniaux et al., 2007).
PETCO2 reductions result in CBF decline by approximately 3%
per 1 mmHg change (Ito et al., 2005).

CO2-Based CVR Mapping Using MRI:
Methods
The clinical utility of CO2-based CVR quantification was
established using transcranial Doppler ultrasound (TCD)
(Ainslie and Duffin, 2009), positron-emission tomography (Ito
et al., 2001) and dynamic X-ray computed tomography (Chen
et al., 2006). While fMRI is not the most established method
of assessing CVR, it offers marked advantages including richer
spatial information and minimal invasiveness (Iannetti and
Wise, 2007). CVR has been reliably assessed using CO2 fMRI
in both gray and white matter (Thomas et al., 2014). In the
absence of a CO2 delivery apparatus, breathing challenges such
as breath-holding (Bright and Murphy, 2013; Pinto et al., 2016)
and cued deep breathing (Bright et al., 2009) have been proposed
as alternative ways to modulate intravascular CO2 (see Table 1).
A comparison of breath-holding and inhaled-CO2 approaches
reveals important CVR dependence on methodology (Tancredi
and Hoge, 2013), but the reproducibility of both approaches has
been established in healthy young controls (Kassner et al., 2010;
Bright and Murphy, 2013).

CO2-based CVR measured using fMRI has been widely
applied and extensively cross-validated (Herzig et al., 2008).
Robust hypercapnia can be induced through manually adjusted
administration of blended gases (Cohen et al., 2004), end-tidal
forcing (Poulin et al., 1996) or more recently, computerized
PETCO2 targeting (Slessarev et al., 2007; Mark et al., 2010). The
latter method entails the most lengthy set up but also provides
immediate and robust PETCO2 suppression (hypocapnia)
(Blockley et al., 2011), and has been proposed as part of a rapid
CVR-mapping protocol for routine use (Blockley et al., 2011,
2017).
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FIGURE 1 | Vascular involvement in AD, as depicted in a “2-hit model” of neurovascular dysfunction. Genetic risk (including due to APOE ε4) predispose individuals
to amyloid deposition. Modified from Kisler et al. (2017) with permission.

In the clinical realm, the main considerations in choosing
a CVR-mapping methodology are: (1) How to assess CVR in
the most non-invasive manner? (2) How to interpret the CVR
information?

Consideration for Non-invasiveness
As one of the earliest ways to induce PETCO2 elevation
(Ratnatunga and Adiseshiah, 1990), breath-holding typically
does not allow the calculation of quantitative CVR, as
all participants are assumed to perform breath-holds in
similar manners and the actual PETCO2 cannot be monitored
during the challenge. The lack of PETCO2 monitoring is
particularly concerning, as the actual change in PETCO2
achieved by a breath-hold depends on multiple factors, including
the resting metabolic rate of the subject, lung size, recent
ventilation history and whether the breath-hold is post-
inspiration or post-expiration. Moreover, as typical breath-holds
last 15–20 s, there are reports of poor subject compliance

(Jahanian et al., 2017), particularly when elderly participants
are involved. Despite these drawbacks, breath-holding-based
CVR mapping has a key advantage of requiring the least
instrumentation, thus allowing it to be implemented in almost
any MRI scan session. Ongoing research aims to improve
the robustness of breath-hold CVR mapping (Bright and
Murphy, 2013), although clinical validation remains far from
extensive.

Even less invasive than breath-holding, resting-state fMRI has
offered a unique window to glean CVR information. Notably,
Kannurpatti et al. (2014) reported a comparison of the resting-
state fMRI fluctuation amplitude (voxel-wise temporal standard-
deviation) as a CVR surrogate. This type of “unconstrained”
or “task-free” CVR protocol does not require cooperation from
participants, and is thus a promising direction of research that
will likely attract tremendous attention from clinical studies.
This topic will be further discussed as part of a proposed future
trend.
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TABLE 1 | Strengths and weaknesses of various CO2-based CVR protocols.

Approach Strengths Weaknesses

End-tidal forcing • Accurate targeting of PETCO2

• Can be used to produce complex PETCO2 shapes
• Produces quantitative CVR

• Requires complex instrumentation
• Feedback mechanism reduces response speed
• The hypercapnic challenge may induce discomfort

Prospective targeting • Accurate targeting of PETCO2

• Feed-forward mechanism enhances response speed
• Can be used to produce complex PETCO2 shapes
• Produces quantitative CVR

• Requires complex instrumentation
• Requires estimation of VO2max
• The hypercapnic challenge may induce discomfort

Manually blended
gases

• Requires simple instrumentation and set up
• Produces quantitative CVR

• PETCO2 response rate depends on ventilation level and cannot be
controlled
• PETCO2 not actively targeted, so resulting challenge may vary by individual

Breath-holding • Requires no additional instrumentation • Actual PETCO2 cannot be measured, so CVR not quantitative
• Relationship between breath-hold and PETCO2 depends on numerous
factors
• Requires active subject cooperation, may vary

Cued deep breathing • Requires no additional instrumentation • Actual PETCO2 cannot be measured, so CVR not quantitative
• Relationship between deep breathing and PETCO2 depends on numerous
factors
• Requires active subject cooperation, may vary

Resting state • Requires little to no additional instrumentation
• Requires minimal subject cooperation
• Does not induce discomfort
• CVR estimated from multiple PETCO2 values instead of
block averages

• MRI response to CO2 is more sensitive to contamination by motion and
other artifacts, given the low PETCO2 fluctuation amplitude

Consideration for Data Interpretation
Currently, the de-facto standard protocol to quantitative CVR
mapping with MRI remains CO2 inhalation, notably controlled
using computerized targeting (Kassner et al., 2010; Fierstra
et al., 2013; Sobczyk et al., 2014, 2015; Poublanc et al., 2015;
Sam et al., 2016; Fisher et al., 2017). Despite the complex
set up, this approach has been extensively used and validated
clinically. The use of modern breathing circuits also allows
the CO2 challenge to follow nearly any shape. However,
there has yet to be a consensus as to the level, duration
and pattern of PETCO2 perturbation. As different stimulus

designs likely have different vaso-stimulating capacities and
hence may reveal different CVR patterns, the choice of challenge
will be critical, not only in comparing across studies but
also across the same individuals over time (Fierstra et al.,
2013).

Based on prospective targeting of stepwise PETCO2 changes,
researchers at Toronto Western Hospital (TWH) pioneered
the use of an uneven task design – one short block followed
by longer block (Spano et al., 2013), both typically elevating
PETCO2 by 10 mmHg. This design is motivated by the desire
to derive more accurate estimates of CVR response time, and

FIGURE 2 | A summary of designs for various PETCO2 challenges in the literature.
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(Duffin et al., 2015; Poublanc et al., 2015), which may reflect
regional arterial-transit time. Additionally, the same group
proposed the use of progressive hypercapnia (CO2 ramps) (Fisher
et al., 2017), in which both hypercapnia and hypocapnia are
progressively induced through a ramp stimulus. It has been
demonstrated that different segments of the ramp, which resulted
in PETCO2 values of 30–50 mmHg, reveal different spatial
patterns in CVR that could complement the conventional CVR
information (Fisher et al., 2017). Alternatively, the use of a
sinusoidal pattern allows direct estimation of response delay
(as the phase in the corresponding sinusoidal CVR response),
and has allowed the development of a CVR protocol as short
as 5 min (Blockley et al., 2017). Such a design makes use
of both hypercapnia and hypocapnia for CVR estimation,
rendering estimates more robust against biases due to basal
vascular tone (Halani et al., 2015). Further reducing scan time
is a 1-min blended-gas protocol with 5% CO2 (Yezhuvath
et al., 2009; Blockley et al., 2017), which has compared
favorably against longer designs. These stimulation designs are
summarized in Figure 2, and research is ongoing to validate
the unique utility of each design, and it is likely that CVR
measurements produced by these various methods are not
directly comparable.

Concurrently, the emergence of arterial-spin labeling (ASL)
MRI for CBF-based CVR mapping has added a new dimension
to the choice of methods. In particular, CBF-based maps, while
lower in signal-to-noise ratios (SNRs), can in fact provide
more vascular-driven and thus less biased CVR quantification
than BOLD fMRI (Halani et al., 2015), as demonstrated
by comparisons with TCD (Gao et al., 2013). Great strides
have been made in extending the use of ASL-based CVR
mapping into aging research (Leoni et al., 2017), and ASL
is now ubiquitously used in the study of AD (Alsop et al.,
2014).

AD-ASSOCIATED FINDINGS IN HUMAN
CVR MAPPING USING MRI

Cerebrovascular reactivity compromises in the middle-cerebral
artery in AD, mainly measured using blended-CO2 method, is
a well-established TCD-based finding (Lee et al., 2007; Sabayan
et al., 2012; Viticchi et al., 2012; Hajjar et al., 2015). While
the use of MRI-based CVR mapping in AD is still limited, its
adoption is on the cusp of expansion due to rapid methodological
developments.

Using MRI, such CVR reductions have been localized to the
prefrontal, anterior cingulate and insular regions (Yezhuvath
et al., 2012). Interestingly, while this pattern overlapped little
with that of CBF deficits (found in the temporal and parietal
regions), it agreed with the localization of amyloid deposition
(Yezhuvath et al., 2012), suggesting that CVR has unique
sensitivity to AD pathology (Figure 3A). Moreover, cortical and
white-matter CVR deficits have been linked to the incidence of
leukoaraiosis (Yezhuvath et al., 2012; Sam et al., 2016). Such
reductions in CVR echo postmortem observations of vascular
dysfunction (Chow et al., 2007), and can be the result of

FIGURE 3 | MRI-based CVR maps in AD and APOE gene carriers. (A) Frontal,
cingular, and insular CVR deficits are found in AD patients. Figure is modified
from Yezhuvath et al. (2012) with permission. (B) Young ε4 carriers manifest
widespread CVR deficits compared to ε3 homozygotes. Figure is modified
from Suri et al. (2014) with permission.

a number of structural changes in the vasculature, including
cerebral amyloid angiopathy (CAA), astrocytic end-feet swelling,
pericyte degeneration, basement-membrane hypertrophy and
endothelial-cell metabolic abnormalities (Hashimura et al., 1991;
Miyakawa et al., 1997).

Cerebrovascular reactivity deficits have been discovered
amongst young APOE ε4 gene carriers (Hajjar et al., 2015), even
when compared to ε3 homozygotes (Suri et al., 2014) (Figure 3B).
Such deficits are found to be widespread, notably in the prefrontal
and parahippocampal regions, bolstering the hypothesis that
genetic predisposition to vascular disease contributes to the
vulnerability of ε4-carriers to late-life pathology (Kisler et al.,
2017).

It is increasingly recognized that vascular deficits may be the
most accessible physiological treatment target in the effort to
delay dementia onset, and approaches that enhance perfusion
have demonstrated potential therapeutic value (de la Torre,
2016). Predicting progression of preclinical AD amongst mild-
cognitive impaired (MCI) individuals has been a key research
focus. Using breath-hold TCD, the predictive value of CVR (Sato
and Morishita, 2013) in terms of MCI-to-AD conversions has
been demonstrated (Buratti et al., 2015).

In light of the overwhelming influence of vascular risk factors
in AD progression, the lines between vascular deficits in AD and
other types of dementia can become blurred in later stages of
the disease, as will be discussed in later sections. As a case in
point, given the rampant occurrence of CAA amongst suspected
AD patients, the vascular dysfunction can produce deleterious
oxidative stress that can promote ischemia and accelerate AD
progression (Girouard and Iadecola, 2006; Bookheimer and
Burggren, 2009). Furthermore, CVR may be a more sensitive
early marker of AD severity (Yezhuvath et al., 2012). It is
conceivable that a diseased vasculature may sustain normal
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perfusion but reveal an abnormal response to a stress test such
as used in CVR mapping (Fierstra et al., 2013). Nonetheless, as
an increasing amount of CVR data is generated using BOLD
fMRI, it is also important to note that microvascular CVR is more
reflective of AD severity (Jellinger and Attems, 2006), while the
BOLD fMRI signal is generally dominated by large-vessels. This
is true at clinical field strengths (1.5 or 3 Tesla) and using either
gradient- or spin-echo BOLD. ASL, on the other hand, is likely
more sensitive to capillaries and arterioles, and should be the
most natural alternative for CVR mapping.

There are numerous fMRI studies that report age-related
differences in the BOLD response amplitude or extent, but as
the BOLD response to neuronal stimuli is intrinsically modulated
by CVR, one must be cautioned against interpreting age-related
BOLD differences as neuronal differences. This is also true of
resting-state fMRI, where functional connectivity has been found
to vary with CVR (Golestani et al., 2016a; Lajoie et al., 2017; Chu
et al., 2018).

RESEARCH GAPS AND EMERGING
TOPICS

As stated earlier, the most commonly reported challenge in
acquiring CVR maps in clinical research pertains to the
need for subject cooperation. This is true for all of the
stimulus designs described thus far, imposing a fundamental
limitation on the routine use of CVR mapping amongst patients.
Very recently, resting-state methods that do not require CO2
perturbation have flourished (Golestani et al., 2016b; Jahanian
et al., 2017; Liu et al., 2017). Resting-state CVR methods rely
on intrinsic fluctuations in the BOLD fMRI signal, and may
significantly broaden the accessibility of CVR mapping to clinical
researchers. Additionally, beyond the magnitude of CVR, the
dynamic features of the fMRI response can also provide useful
information. A slowing of the CVR response has been shown
to characterize vascular lesions (Poublanc et al., 2015), adding a
dimension to the utility of CVR mapping.

The response of the cerebral circulation to a changing arterial
CO2 concentration is not linear – the circulatory response
follows a sigmoidal shape, and is greater for hypercapnia than
to hypocapnia (Ogoh et al., 2008; Peebles et al., 2008; Rodell
et al., 2012). Moreover, it is critical to note that while CVR
is traditionally defined as a blood-flow response (as is the
case in TCD, PET, and CT), the BOLD signal is not a direct
measure of CBF. Rather, BOLD is modulated by CBF, CBV,
and baseline oxidative metabolism, not to mention a series of
field-dependent physical variables. Thus, the assumption of a
linear relationship between the BOLD and CBF responses to

CO2 is likely tenuous. Specifically, it is widely known that the
BOLD response varies with CBF in a non-linear fashion (Hoge
et al., 1999). This non-linearity is superimposed in the inherently
sigmoidal vascular response to CO2 (Battisti-Charbonney et al.,
2011). Such non-linear CVR changes have been demonstrated
through a comparison with CBF-based CVR measurements at
various vascular baselines (Halani et al., 2015), and may in a
small part underlie the BOLD response behavior in the “vascular
steal” phenomenon (Sobczyk et al., 2014). This limitation will
require careful consideration in the presence of known vascular
dysfunction (Battisti-Charbonney et al., 2011).

A critical assumption for CVR mapping is that PETCO2
represents PaCO2. However, PaCO2 is determined by both
inhaled CO2 and the minute ventilation. Low cardiac output can
increase alveolar dead space, which would increase the difference
between PaCO2 and PETCO2 (Shibutani et al., 1992), leading to
underestimations of PETCO2-based CVR. In addition, PETCO2
is shown to overestimate PaCO2 during exercise in young adults,
but not in older adults (Williams and Babb, 1997). Moreover,
PETCO2-related CVR is known to follow a circadian rhythm,
increasing with the level of alertness (Ainslie and Duffin, 2009).
These factor contribute to inter-cohort, inter-sessional and inter-
subject variability in CVR estimates that must be accounted for
when assessing true differences in CVR.

In this regard, an emerging research direction is building
normative CVR atlases that allow the significance of CVR
deviations to be assessed (Sobczyk et al., 2015). Such atlases
would ideally encompass not only quantitative CVR values but
also CVR-timing information (van Niftrik et al., 2017). This is a
critical step in expanding the clinical utility of CVR maps, and
atlases will likely need to be specific to the CO2 delivery method,
stimulation design, study objectives and MRI system used.

The above research gaps pertain not only to AD but to other
cerebrovascular diseases also. The increasing awareness of the
vascular etiology of various forms of dementia will highlight these
limitations and prompt more focused validation studies.
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