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Single cell defense against diseases defines “epimmunity.” Epimmunity is complemen-
tary to the immune system and can neither be substituted by innate nor by acquired 
immunity. Epimmunity, the proposed new branch of immunity, is further explored and 
analyzed for enucleated mature mammalian erythrocytes and nucleated erythrocytes of 
non-mammalian vertebrates leading to the development of “The Epimmunity Theory.” 
Enucleation of mammalian erythroblast and inactivation of nuclei in erythrocytes of 
non-mammalian vertebrates are major contributors to the collective immunity: epimmu-
nity, innate, and acquired. The fact that diseases of mature erythrocytes (MEs) are rare 
supports the notion that a single cell can resist microbial and genetic diseases; MEs are 
refractory to malaria and cancer. Nucleated cells, such as B-cells, T-cells, hepatocytes, 
and cell developmental stages are susceptible to genetic and specific microbial diseases 
depending on their nuclear activities and the receptors they express; such cells show 
lower epimmunity relative to MEs. Epimmunity is important as a disease insulator that 
prevents the spread of diseases from an infected tissue to the majority of other tissues. 
Breakdown of epimmunity may lead to disease development.

Keywords: erythrocytes, Cd71 receptor, malaria, enucleation, cancer, extravasation, metastasis, reticulocyte

introdUCtion

The immune system of vertebrates indirectly protects tissues and cells against diseases. However, 
when cells are in direct contact with pathogens, the immune system is helpless and cannot prevent 
colonization, infection, invasion, or mutation of target cells. Yet, single cells may resist or evade 
colonization, infection, invasion, and can repair DNA breaks and mutations as well. Although  
DNA repair mechanisms have been reported in prokaryotes and eukaryotes, there have been no 
reports on cell evasion or defense against diseases. Hence, this report on single cell defense against 
disease is presented as “The Epimmunity Theory.”

Hypothesis and the “epimmunity theory”
Hypothesis
Cell susceptibility to diseases is directly related to its nuclear activity, whereas cell epimmunity 
(single cell defense against disease) is inversely related to its nuclear activity.

Epimmunity describes single cell defense against genetic and infectious diseases. These defenses 
include nuclear activities, metabolic behavior, structural components, and other cellular activities 
including intracellular immunity. This report will focus on the role of enucleation and nuclear 
inactivation in the epimmunity of mature erythrocytes (MEs) of vertebrates against genetic and 
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infectious diseases; the mature enucleated mammalian erythroblast  
(the erythrocyte; mME) and the nucleated non-mammalian 
mature erythrocytes (nME). It should be emphasized here that 
individual cells have differential abilities to defend themselves 
and may utilize different strategies in doing so; these strategies 
are dictated by cell genetic response to its microenvironment; 
Section “Viral Attachment, Agglutination, Hemadsorption, and 
Cell Fusion” (1).

Due to the critical biological function of erythrocytes and 
their large numbers, vertebrates will die shortly if their eryth-
rocytes were to malfunction due to an infectious or genetic 
disease; hence they must be epimmune and refractory to dis-
eases. Achieving this task requires the termination or suppres-
sion of nuclear function as illustrated in Section “ME Have to  
be Refractory to Genetic Diseases” on genetic diseases and 
Section “Infectious Diseases” on parasitic, bacterial, viral, and 
fungal diseases. Termination of nuclear activity is achieved in 
mME by enucleation or by nuclear inactivation in nME, leading 
to maximum protection of ME against all diseases. On the other 
hand, microbes may exploit cellular weaknesses to mount suc-
cessful infections.

According to the literature, there is no single disease that 
directly afflicts ME; diseases of erythrocytes including sickle 
cell anemia, thalassemia, genetic or viral pure-red-cell aplasia 
(PRCA), and malaria are known to originate in erythrocyte pro-
genitor cells. Although, viruses may interact with erythrocytes, 
yet they are incapable of replicating inside erythrocytes (1–3).

Incomplete or partial epimmunity can be observed in all cells 
showing differential gene expression (i.e., different cell surface 
receptors). Cells expressing one receptor or more jeopardize their 
own epimmunity; they become susceptible to genetic and infec-
tious diseases depending on their nuclear activities. Differential 
gene expression of tissues is a reflection of nuclear activity in each 
tissue, leading to differential cell surface structures and receptors. 
Tissue variations provide a barrier that confines an infectious 
disease to a particular tissue(s) preventing it from spreading to  
other tissues, i.e., quarantine a disease to that tissue. Host specific-
ity, host range, and tissue tropism (4) of microbes are caused by 
variations among tissue receptors of an individual and by varia-
tions among similar tissues in different individuals especially in 
reference to cell-surface receptors. These terms are rooted in 
epimmunity. Partial epimmunity renders a cell susceptible to 
some infections, it is exemplified by tissue tropism of Hepatitis 
B virus which infects hepatocytes, yet it has not been reported 
to infect several other tissues such as pneumocytes, myocytes, 
monocytes, or neurons. Whereas Epstein–Barr virus is known to 
target B-cells but not hepatocytes.

Epimmunity is conferred on the population by individual dif-
ferences caused by allelic gene variations (e.g., ABO blood groups), 
single nucleotide polymorphism (SNPs), gene imprinting, epige-
netic gene regulation (5), and quantitative gene expression.

Other areas linked to epimmunity include immune tolerance, 
self-recognition, allograft, xenograft, and autoimmune diseases.

Here, the “epimmunity theory” will be illustrated by focusing 
on vertebrate MEs to show that epimmunity among other factors 
have forced enucleation of mammalian erythroblasts, nuclear 
inactivation in non-mammalian vertebrates, and possibly partial 

inactivation of genes and chromosomes of mature differentiated 
cells. Available literature strongly supports the epimmunity 
theory; no contradicting reports have been identified; only inac-
curate reports were suspected (studies referring to peripheral red 
cells as a homogenous ME population and not taking different 
stages and ages of circulating red cells into consideration).

epiMMUnity oF Mes

During hematopoiesis, cells progress from one developmental 
stage to the next until erythroblasts finally mature into eryth-
rocytes. Each developmental stage expresses different genes 
and surface receptors that distinguish one stage from others. 
Different tissues of an individual and similar tissue from differ-
ent indivi duals vary in their surface receptors rendering some 
of them susceptible or resistant to a given pathogen. Such vari-
ations suggest that a single disease cannot equally strike a large  
population.

On the other hand, if a multicellular organism expressed a 
given receptor by all cells, then most probably, all cells will be at 
risk of being infected by the same pathogen with an inevitable dev-
astating outcome to the host. Due to ME large numbers, critical 
function, and circulation, it is imperative that they are refractory 
to both genetic and infectious diseases.

Mes Have to Be refractory to Genetic 
diseases
Genetically active cells are susceptible to genetic diseases (muta-
tions, chromosome aberration, and cancer). They are also prone 
to infections depending on the receptors they express; cellu lar 
receptors can be parasitized by a variety of viruses (6). The 
following hypothetical example illustrates the importance of 
enu cleation of mammalian erythroblasts and the inactivation  
of nuclei of avian erythrocytes (7) (and other vertebrates) in 
evading genetic and infectious diseases. Hypothetically, if one 
particle of a lytic virus were to release 50 particles every hour 
after invading a single human ME, then all circulating MEs of an 
individual will be lysed and death will occur in few hours (less 
than 10 h post infection).

Thalassemia, sickle cell anemia, spherocytosis, PRCA, and 
erythroid and bone marrow cancers are major genetic diseases of 
progenitor cells of erythrocytes (8–10). However, none of these 
diseases is known to initiate in ME. Enucleation of mammalian 
erythroblasts has circumvented erythrocyte susceptibility to 
genetic disease; they are genetically epimmune. Accordingly, 
mature mammalian erythrocytes are protected against genetic 
diseases including cancer. On the other hand, non-mammalian 
vertebrates have Nucleated Mature Erythrocytes and they 
achieved a similar level of epimmunity to mME by adopting a 
different, yet efficient, strategy. The avian erythrocyte nucleus 
is genetically inactive, i.e., dormant, or metabolically inactive 
(11). All vertebrate erythrocyte nuclei become condensed and 
transcriptionally inactive (12). Avian erythrocyte nucleus is 
retained in an inactive transcriptional state during terminal 
erythropoiesis; erythrocytes show no transcription, no DNA syn-
thesis, and no protein synthesis including hemoglobin (13). Avian 
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erythrocytes have active mitochondria (14) that are lost together 
with ribosomes and cellular RNA in aging nucleated erythrocytes  
(13, 15). In rainbow trout fish, erythrocytes experience many 
changes throughout their 4- to 6-month life span including loss of 
mitochondria, ability to mount heat shock response, and reduc-
tion in biosynthetic processes (7).

Nuclei of avian erythrocytes are unable to synthesize detect-
able RNA (including globin RNA) (16). Ninety percent of RNA is 
degraded within 8 days in the young circulating avian embryonic 
erythrocytes, degradation of RNA continues to near zero over the 
following 10 days (17), indicating the absence of RNA synthesis 
as well.

Dormant hen nuclei inserted into the cytoplasm of HeLa 
human cell line increase in size and transform from elliptic shape 
to become spherical (~3 μm diameter). Then they are induced to 
resume RNA and DNA synthesis (18).

Heterogeneous nuclear ribonucleic acid (hnRNA) metabolism 
in differentiating avian erythroid cells revealed the existence of 
stable hnRNA derivatives (19); the function of which was not 
clarified. Does it behave as an antisense RNA, an inhibitor of 
DNA replication, and/or transcription?

This question is raised again; avian erythrocytes synthesize 
messenger-like RNAs via endogenous polymerase II activity, 
these include polyadenylated species but contain no mRNA (16). 
Gene repression and chromatin condensation are accomplished 
by histone H5 and a 42 kDa-basic non-histone protein known  
as Mature Erythrocyte Nuclear Termination stage-specific 
protein (MENT) that accumulates in erythrocyte nuclei of adult 
chicken (20). However, in  vitro LPS-stimulated rainbow and 
chicken erythrocytes were able to increase levels of Toll-like 
receptor transcription, supporting the conclusion that nMEs are 
transcriptionally active and can translate TLR mRNA [St Paul 
et al. (21) and others] which contradicts earlier reports (11–13, 
16, 18, 20, 22, 23). These conflicting reports need to be sorted out 
and carefully analyzed to clarify this discrepancy.

In general, differentiated cells have partially active nuclei as 
indicated by the many tissue types of vertebrates (i.e., hepatocyte 
vs myocyte or neurons) rendering them partially susceptible to 
phenotypic mutation (i.e., with some exceptions, mutated genes 
that are inactive will have no consequences on the inert gene  
and the phenotype of that cell). Similarly, these cells will only 
engage microbes through their limited surface components 
which is subject to modification by mutation or interaction with 
intrinsic immune complexes or extrinsic drugs (cefotetan, ceftri-
axone, and piperacillin) as in drug-induced immune hemolytic 
anemia (24, 25).

Epigenetics, histone code, gene imprinting, iRNA, anti-sense 
RNA, and their combination are likely to play important roles 
in achieving tight regulation of nuclear activities, arrest cell dif-
ferentiation, cell division, and inactivate nuclei of nME.

Such nuclear inactivation renders MEs refractory to genetic 
diseases, similar to enucleated mammalian erythrocytes.

infectious diseases
Claims of parasitic protozoan, bacterial, fungal, and viral diseases 
of ME are vague and unsubstantiated as revealed by examining 
some of these infectious diseases of “erythrocytes.”

During final stages of enucleation of mammalian erythroblast, 
certain receptors are depleted from reticulocytes by way of vesicle 
sorting and trafficking of proteins to pyrenocytes or reticulocytes 
(26, 27). Transferrin CD71 receptor is completely eliminated 
from reticulocytes by sorting to pyrenocytes, unlike glycophorin 
A/TER119 receptor which sorts to reticulocytes (26). CD71+ 
erythrocytes are rare in peripheral blood (27). Accordingly, mMEs 
express fewer cell-surface receptors than erythroblasts.

Since viruses and bacteria can replicate in a very short time 
relative to ME life span (>20 days in chicken, 120 days in human, 
4–6 months in fish, and >500 days in turtles), life span of ME 
cannot explain erythrocyte resistance to infections. On the 
contrary, the absence of nuclear activity (due to enucleation in 
mammals and inactivation in other vertebrates) offers a likely 
explanation.

Enucleated cells have the advantage of reduced cell-surface 
receptors, allowing erythrocytes to evade microbial attachment, 
colonization, and invasion.

Parasitic Disease and Erythrocytes
About 130 Plasmodium species have been described in mammals, 
birds, and reptiles (28). Different species of Plasmodium can 
cause diseases in different hosts. In human, five species have been 
identified (Plasmodium vivax, P. ovale, P. falciparum, P. malariae, 
and P. knowlesi). Several species are found in chimpanzees  
P. reichenowi, P. gaboni, P. falciparum, and P. gaboni; in reptiles  
P. mexicanum and P. floridense; and P. relictum and P. juxtanu-
cleare in birds (29).

Plasmodium vivax can invade bone marrow CD71+ reticulo-
cytes (27). Experiments with erythrocytes from mice deficient 
in pyruvate kinase and expressing high levels of CD71 receptor 
show increased susceptibility to P. yoelii 17x-GFP (30). Flow 
cytometry shows that only 0.013% of mouse erythrocytes are 
parasitized by P. chabaudi adami. This number is reduced by 
35% after protease treatment of erythrocytes for 30  min (31). 
Peripheral blood enriched for reticulocytes shows significant 
(2.2-fold) increase in P. knowlesi infection relative to normal blood  
(32, 33). Accordingly, only a small subset of red cells express-
ing a specific (unknown) receptor is susceptible to infection  
by malarial merozoites. This example of parasitism of an eryth-
rocyte developmental stage(s) but not MEs is rare, it reflects the 
efficient role of epimmunity in protecting vertebrate MEs against 
malaria and other microbes.

Bacterial Diseases
Among pathogenic bacteria, some species are obligate or faculta-
tive intracellular parasites; Legionella, Chlamydia, Anaplasma, 
Ehrlichia, Rickettsia, Coxiella, Brucella spp., Listeria monocytogenes, 
Erysipelothrix rhusiopathiae, Tropheryma whipplei, Shigella, 
Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei, 
Burkholderia cenocepacia, Salmonella typhimurium, Edwardsiella 
tarda, and Mycobacterium spp. (34, 35).

Experimentally Mehock et  al. (36) showed that only 1% of 
feline red cells are infected in vitro by Bartonella henselae. Mändle 
et al. (37) have shown that B. henselae does not adhere, invade, 
nor infect human erythrocytes, yet it can invade and persist in 
CD34+ hematopoietic progenitor cells (HPCs). B. quintana most 
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taBle 1 | Examples of erythrocytes agglutinated by different viruses.

erythrocyte source agglutinating virus 
(species)

reference

Chicken Influenza Tamm (2)

Human O-group 
erythrocytes

Influenza (H1N1) Tsukasa et al. (51)

Human, goose, chicken, 
guinea pig, horse (poor 
agglutination)

Influenza (H5N1) Louisirirotchanakul  
et al. (52)

African primate, gray 
monkey

Adenovirus (3,11,16,21), 
reoviruses, enteroviruses

Mutanda and Munube (53)

Red-tail monkey Echovirus (7, 12) Mutanda and Munube (53)

Albino rat Adenovirus (10, 24, 27) Mutanda and Munube (53)

Gray monkey and  
Albino rat

Reovirus (1,2) Mutanda and Munube (53)

Sheep Human cytomegalovirus Bernstein and Stewart (54)
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likely colonizes the bone marrow. It evades immune clearance 
and causes persistent and relapsing infections. Quiescent HPCs 
are resistant to in  vitro infection with Listeria monocytogenes,  
Salmonella enterica, and Y. enterocolitica (37).

Anaplasma marginale (Rickettsiales: Anaplasmataceae) causes 
persistent infections in cattle erythrocytes and tick vectors (38). 
Anaplasmataceae species of the genera Aegyptianella, Bertarellia,  
Cytamoeba, Eperythrozoon, and Haemobartonella can infect 
erythrocytes and form cytoplasmic inclusions without any 
pathological consequences to host or erythrocytes (15). Possible 
explanations to the lack of bacterial pathogenic consequences 
may reside in the inability of red cells to uptake transferrin, 
iron, and other nutrients required for normal bacterial growth 
within red cells. Alternatively, the inability of bacteria to thrive 
inside red cells may be related to mitochondrial loss of function 
and activity in aging red cells, which may have similar impact 
on bacteria inside erythrocytes. A third possibility is that only 
a small subset of erythrocytes is susceptible to infections by 
Anaplasmataceae species. Other possibilities include lactic acid 
formation resulting from glycolysis as shown for cattle eryth-
rocytes (39) and formation of reactive oxygen species (1, 40). 
All of these possibilities share a common denominator, that is, 
intracellular epimmunity.

Accordingly, MEs appear to resist infection and if infected 
appear to offer little, if any, support to the intracellular microbe.

Relevant to this issue is the interesting results reported by 
Wynn et al. Provision of immunosuppressive CD71+ (enucleated) 
reticulocytes to murine neonates before polymicrobial (bacterial) 
sepsis challenge did not affect animal survival. On the contrary, 
reduction of CD71+ after anti-CD71 treatment enhanced bacte-
rial clearance (41). It is not clear if CD71+ cells harbored intracel-
lular bacteria; since the depletion of these cells may have denied 
intracellular bacteria their sanctuary leading to their enhanced 
clearance in murine neonates.

Experimental enucleation using centrifugation in the pres-
ence of cytochalasin B generating enucleated cells known as 
cytoplasts may contribute significantly to our understanding of  
host–pathogen interaction. Cytoplasts retain several of cell 
activities including viral replication and protein synthesis (42). 
As shown by Yamamoto et al. (43), Shigella flexneri invades and 
multiplies within cytoplasts. Although, it was not clear from their 
work how they distinguished between intracellular and surface-
bound bacterial cells despite the availability of simple techniques. 
Speert and Gordon distinguished between macrophage surface-
bound and ingested Pseudomonas aeruginosa using lysozyme  
treatment (44).

Viral Interaction with Erythrocytes
Cells harboring active or partially active nuclei such as neurons, 
hepatocytes, B-cells, T-cells, and myocytes (45) support viral 
infections pending the expression of specific cell receptors of the 
corresponding viral ligand.

Viruses are obligate intracellular parasites; they depend on host 
cell for the provision of ATP, ribosomes, and aminoacyl-tRNAs. 
Most DNA and some RNA viruses also require nuclear functions 
for transcription and replication. Most of these requirements  
are not available in MEs.

Viral Attachment, Agglutination, Hemadsorption, and Cell 
Fusion
Receptor-mediated infections determine tissue tropism of viruses. 
The specific interaction between viruses and cell receptors is 
illustrated by the ability of viruses to agglutinate certain animal 
erythrocytes but not others (Table 1). Similarly, hemadsorption 
of chicken erythrocytes to mumps-induced syncytia of HeLa 
cell indicates selective mumps–erythrocyte interaction (46). 
Although several viruses are known to agglutinate or adsorb to 
erythrocytes, no viral replication has been reported to take place 
within vertebrate erythrocytes including Newcastle disease virus 
(NDV), mumps, or influenza B (2). PRCA is a genetic disease 
marked by the absence or reduction of nucleated red cells from 
the bone marrow. A similar transient form of the disease is caused 
by B19 infections (3, 47), which is a human parvovirus that infects 
and replicates in erythroid progenitor cells but adsorbs to the 
blood group P antigen (48). A later study (49) showed that human 
subjects who are deficient in P antigen are naturally resistant  
to B19 infections. Recombinant construct of B19 showed that  
P antigen alone which is distributed on several cell types and cell 
lines is insufficient to mediate internalization of the recombinant 
virus (50).

In vitro, expanded erythroid progenitor cells are easily infected 
with B19V, yet the virus is poorly produced from these cells. Viral 
productivity increases by ten folds when erythroid progenitor 
cells are incubated under hypoxic environment (1% oxygen) (1), 
these results suggested that intracellular reactive oxygen radicals 
contributed to controlling viral propagation. They concluded 
that the virus B19 sustains progenitor erythroid cells conductive  
to cell-surface–nuclear signaling system that involves transcrip-
tion factors STAT5A and MEK/ERK pathways. B19 interaction 
with enucleated ME is diminished to near-harmless levels (1).

Agglutinating viruses elute spontaneously from erythrocytes, 
possibly by an enzymatic alteration of erythrocyte surface recep-
tors (mucoproteins) (2). A possible conclusion is that aggluti-
nating viruses, especially naked viruses are merely adsorbed to 
cells; they do not penetrate or fuse agglutinated erythrocytes as 
supported by the agglutination tests and hemadsorption photos. 
No reports of giant red cells. These agglutinating viruses do not 
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cause disease in source animals; cytomegalovirus of human is not 
known to cause disease in sheep erythrocytes (Table 1). Fusogenic 
viruses require the ligation of specific receptors for fusion to take 
place. Ligation to surface structures does not necessitate fusion, 
internalization, or uncoating of the viruses. Simple experiment 
showing intact viruses after agglutination or uncoated nucleic 
acids can be accomplished by experiments duplicating Hershey–
Chase experiment (55).

Cell cultures used to isolate viruses have to express the correct 
receptor; no single cell culture is capable of supporting all human 
viruses due to high specificity of attachment and infection. If we 
were made of a single cell type, we would have been destroyed by 
a single infection. Our tissue variations guarantee that one type 
of virus is incapable of assaulting all tissues or all developmental 
stages of a single cell as shown for B19 virus, many other viruses, 
and P. vivax (see Viral Interaction with Erythrocytes and Parasitic 
Disease and Erythrocytes, respectively).

Lysis of Red Cells
Snake venom effects include neurotoxicity, complement fixation, 
and induction of hemolysis (56), the paramyxovirus mumps was 
shown to lyse chicken, sheep, and Group-O human erythrocytes 
(57). New castle chicken disease virus (NDV) is known to lyse 
avian erythrocytes. In vitro experimental hemolysis of rooster 
erythrocytes by NDV ranges between 24 and 59% (58, 59).

Naïve chicken allantoic fluid shows significant inhibition of 
erythrocyte lysis. Allantoic fluid obtained from NDV challenged 
chicken embryos, significantly reduces NDV ability to lyse 
rooster erythrocytes (even after boiling) relative to naïve allantoic 
fluid of chicken embryos (60). Hemolysis of erythrocytes was 
not implicated in the death of any of the adult chicken killed by 
NDV experimental infections (45). Death rate of NDV oronasally 
infected chicken is 56%; dead chicken showed hemorrhage and 
other pathological signs (61). In another study, lethality was 
58.30% for chicken, but only 2.94% for ducks infected with the 
same NDV in the same experiment (62). The mechanism by which 
NDV lyses avian erythrocytes remains unknown (59), especially 
since NDV does not replicate within avian erythrocytes (2).  
The fusion glycoproteins of NDV and other paramyxoviruses 
belong to the class I fusion protein group (63). Experimentally, 
Sendai virus (HVJ) fusion proteins are used to lyse cells, fuse cells, 
and fuse HVJ containing liposomes to erythrocytes (64), sugges-
tive of a possible role of the fusion protein in cell lysis.

Adult chicken infected with NDV viscerotropic or neurotropic 
pathotype usually suffer secondary infections (45) indicating that 
NDV infections may not be lethal per se. The fact that some birds 
had survived the challenge is indicative of viral inability to kill all 
challenged birds, which may or may not have suffered a second-
ary bacterial infection.

Penetration and Replication
If a virus succeeded in penetrating an erythrocyte it will be 
trapped and unable to complete its cycle of replication due to 
unavailable resources to support viral replication.

However, inside non-mammalian erythrocytes, viral DNA 
may integrate into host chromosome(s), in doing so, there are 
two possibilities: the integration represents a dead end to the 

viral DNA where it will be degraded as erythrocytes die and 
are cleared by the phagocytic system. The second is a possible 
activation of avian nucleus and the erythrocyte. Such activation 
will be significant if it results in erythrocyte division or neoplasm 
formation.

These possibilities are eliminated from mammalian erythro-
cytes due to the complete absence of nucleus. Although nuclear 
inactivation can be viewed as an extreme case of epigenetic control, 
enucleation of mammalian erythroblasts represents the ultimate 
epigenetic control. Accordingly, enucleation can be viewed as a 
higher evolutionary level over nuclear inactivation.

Fungal and Yeast Infections
Intracellular infections by yeast appear to be limited to phago-
cytic cells; macrophages and neutrophils. Certain yeasts have 
developed mechanisms of immune evasion and survival against 
cytokines and lysosomal destruction. Latent and recurrent 
intra cellular yeast infection caused by Candida albicans (65–67). 
Histoplasma capsulatum and Cryptococcus neoformans are found 
in macrophages and neutrophils (68, 69). C. glabrata (facultative 
intracellular parasite) survives and replicates inside macrophages 
as supported by direct microscopic evidence (70). Scientific 
reports concerning yeast or fungal association or infection of 
erythrocytes were not found.

pHysioloGiCal and iMMUnoloGiCal 
CoMpatiBility oF erytHroCytes

Mature erythrocytes cannot perform several functions and must 
be compatible with other cells and tissues.

erythrocyte deformability and innate 
immunity
In addition to their small size, ME must be flexible (deform-
able) in order to pass through the narrow network of capillaries 
(human capillaries are 3–10 µm in diameter) (12, 71). Enucleation 
of mammalian erythroblasts contributes to erythrocyte deform-
ability and efficiency of oxygen-carrying capacity (26, 72, 73). 
Several lines of evidence show that loss of deformability results 
from ligating erythrocyte receptors such as complement recep-
tor (CR1) by complement-opsonized microbes or other immune 
complexes. The loss of deformability plays an important role in 
the clearance of rigid red cells. Complement–erythrocyte inter-
action leads to the phosphorylation of the cytoskeletal (band 3) 
protein which limits erythrocyte deformability (74, 75). Rigidity 
of erythrocyte in cases of stomatocytosis, discocytosis, and 
antibody opsonization signals their removal by the phagocytic 
cells (76). In cases of bacterial infections, complement opsonized 
bacteria are captured by erythrocytes CR1 where erythrocytes 
become rigid causing slow microcirculation in the area of infec-
tion, eventually entering the liver and spleen where they interact 
with resident sinusoidal macrophages. They deliver captured 
bacteria and immune complexes to macrophage and carry on 
back to circulation (40, 74, 77).

Plasmodium falciparum evades immune clearance by main-
taining gametocyte-infected red cells normally deformable; 
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infected cells do not lose their deformability and remain in 
the circulation for a longer period. The drug sildenafil (viagra) 
induces rigidity of gametocyte-infected red cells due to protein 
kinase A-mediated phosphorylation leading to their removal. 
The phosphorylation of C-terminus serine residue of the protein 
SubTElomeric Variable Open Reading frame is a signal conveyed 
to the cytoskeleton through ankyrin, a complex that regulates 
red cell deformability (78). Erythrocyte deformability is subject 
to several factors; increased intracellular calcium ions result in 
rigid cells (74).

Relevant to complement–erythrocyte interaction is the human 
collectins, mannan-binding lectin, and surfactant protein A and 
D, which in the presence of an infectious agent may activate the 
lectin pathway (79).

erythrocytes Cannot divide
Human orthochromatic erythroblasts lose the ability to divide 
as they exit the cell cycle (26). Human reticulocytes undergo 
several changes within 1–2 days after being released into the 
circulation, they mature into erythrocytes which lose an average 
of 15% of their hemoglobin over their lifespan. In vitro, reticu-
locytes are larger than erythrocytes and contain more RNA and 
hemoglobin relative to MEs (80). The number of erythrocytes is 
monitored and regulated by erythropoietin in response to levels 
of blood oxygen (81).

If hypothetical erythrocytes (HEs) had metabolically active 
nuclei and were capable of cell division, then new levels of 
homeostasis have to be attained by other organ systems. The 
immune system must handle excessive lysis, infections, and 
malignancies of HEs. Other systems also must reach homeosta-
sis in response to HE activities. However, if HEs double their 
number by cell division, an increase in blood volume may lead 
to hypertension, increased blood viscosity, sluggish circulation, 
and stressed heart.

A regulatory feedback system coordinating HE numbers will 
be required; such a system must signal every HE to halt or com-
mence cell division, a process that requires one or more receptors 
which in turn may become targets for microbial attack.

erythrocytes Cannot Be sticky
In order to flow smoothly in the circulation without interfer-
ing with physiological functions of other cells, erythrocyte cell 
surface receptors and structures must be limited to a few per-
missible types that coat erythrocyte surface such as the highly 
glycosylated glycophorins. Such simple structure (72) should 
allow for a smooth erythrocyte (blood) flow. Blood transfusion 
between compatible human individuals is indicative of the sim-
ple basic surface structures expressed by human erythrocytes; 
unlike other tissue grafts and implants, which require histo-
compatibility matching. Scanning electron microscopy shows 
smooth erythrocyte surfaces relative to surfaces of activated 
platelets and leukocytes (72, 82). The simple surface structure 
reduces erythrocyte adherence to endothelia, leukocytes, bone 
marrow, cardiac muscle, cardiac valves, other erythrocytes, 
and microbes. Meanwhile, confinement of erythrocytes to the 

closed circulatory compartment prohibits its contact with other 
tissues (e.g., alveolar parenchyma, hepatocytes, fibroblasts, and 
neurons).

erythrocytes Cannot perform 
extravasation (diapedesis)
As leukocytes respond to cytokines and signals of inflammation, 
they extravasate (exit the circulation) to other tissues. Since the 
main function of erythrocytes is in gas exchange, it is counter-
productive for erythrocytes to wonder outside the circulation, 
they do not perform extravasation and remain trapped inside 
the circulation, thereby defining the closed circulatory system. 
Inability of red cells to respond to extravasation signals indicates 
the importance of enucleation (or nuclear inactivation) in the 
prevention of extravasation and cell division (see Other Issues 
Resolved by Enucleation or Nuclear Inactivation).

erythrocytes Must not interact  
non-specifically with serum Molecules
Signaling molecules are released in the blood at very low con-
centration; if MEs were to capture or non-specifically interfere 
with such signaling molecules, the signal will be attenuated or 
interrupted before reaching its target receptor. MEs are depleted 
from transferrin CD71 receptor (26) since they do not require 
transferrin, accordingly they do not compete with other cells 
for signals or nutrients. MEs transport glucose via GLUT1, 
which has low affinity to glucose, they also utilize fructose via 
GLUT5 (83). GLUT 5 has been reported on enterocyte, muscle, 
kidney, brain, and testis cells, but has not been reported on  
leukocytes.

otHer issUes resolVed By 
enUCleation or nUClear 
inaCtiVation

intracellular Hemoglobin vs extracellular 
Globin of lower life Forms
In unicellular organisms and simple organisms (e.g., sponges), 
O2/CO2 exchange with the environment is direct. In arthropods 
including insects, oxygen transport is carried out by extracellular 
globins; hemerythrins and hemocyanins (84–86). Backswimmer 
insects (Anisops and Buenoa) hemoglobin is located intracel-
lularly in the cells of large abdominal trachea (87). Vertebrates 
adopted an intracellular hemoglobin system (the red cells, 
erythrocytes, or RBCs) for gas exchange. This intracellular system  
has overcome several problems associated with extracellular 
globins; serum viscosity and the short half-life of extracellular 
globins relative to the long half-life of intracellular hemoglobin 
(88–90). Since vertebrates have closed circulatory systems, a third 
problem was resolved by confining hemoglobin and erythrocytes 
to the circulatory system and preventing them from leaking 
outside the circulation. The importance of confining hemoglobin 
to the closed circulation is emphasized by the plasma haptoglobin 
that binds serum hemoglobin and prevents it from causing renal 
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damage (91). Excess soluble hemoglobin can deplete haptoglobin 
which appears diagnostically in urine (92). Leakage of hemo-
globin outside the circulation is counterproductive. Whereas 
blood flow rate is about one cycle per minute (93), leakage of 
hemoglobin or ME outside the circulation will prolong the flow 
rate far beyond the 1 min rate. Therefore, localization of hemo-
globin intracellularly is a suitable solution for closed circulatory 
systems. Leukocytes exit circulation via extravasation (diapede-
sis) (94), whereas erythrocytes are incapable of extravasation, 
they remain to define the closed circulation of vertebrates. While 
the intracellular entrapment of hemoglobin has solved viscosity, 
globin turnover, and hemoglobin leakage problems on one hand, 
it created significant problems on the other. In addition to epim-
munity and deformability, three other problems that erythrocytes 
must contend with are discussed in the following sections.

High erythrocyte surface area to Volume 
ratio for efficient Gas exchange
The absence of nucleus from mMEs allows the cell to acquire 
the biconcave-discoid shape, hence, creating a high A/V ratio. 
Human biconcave RBCs have a high ratio: ~1.53/μm, whereas the 
ratio for the spherical shape, i.e., nucleated RBC (erythroblast) is 
~0.833/μm (95).

Non-mammalian vertebrates (birds, fish, amphibians, and 
reptiles) possess nucleated erythrocytes that contain cytoplasmic 
organelles (96) and functional mitochondria (14). Avian chroma-
tin condensation, nuclear collapse, and inactivation allow avian 
erythrocytes to appear as flat, thin, flexible, elliptic cells under 
scanning electron microscope ~(2.24 × 7 µm wide) (97) with a 
predicted A/V ratio of ~1.53/μm (97–100).

erythrocytes Must Maintain a Continuous 
supply of oxygen to all Cells
Uninterrupted supply of oxygen is maintained by the large num-
bers of circulating erythrocytes (2–3.1 × 1013 in adult human), 
timely heartbeat, and normal breathing rate (at rest human 
breathing rate is 12–16 times per minute) (101). The size and 
number of circulating human erythrocytes are subject to varia-
tion; oxygen concentration, gender, and alleles of TRIM58 gene 
resulting from SNPs (5).

CoMMents and reCoMMendations

The “Epimmunity theory” predicts that no single disease should 
equally affect members of a given vertebrate species. Epimmunity 
is clearly utilized by free-living and parasitic unicellular organ-
isms including bacteria which may resist bacteriophages and anti-
biotics. Accordingly, zygotes of multicellular organisms and their 
eventual developmental stages must be epimmune. Published 
research in different biological areas supports the existence of 
single cell defenses (epimmunity). Similar to other biological 
systems, epimmunity is subject to breakdown, abnormality, and 
failure as well.

Genetically, cells safeguard their critical metabolic pathways 
by having multiple alternative pathways such as the intricate 

regulation of checkpoint/cyclins/kinases controlling the cell cycle 
(102), repair mutations, and can circumvent mutations in many 
cases by alternative splicing of pre-mRNA (103), by utilizing an 
alternative metabolic pathway, and by suppressing mutations. In 
diploid animal cells, recessive mutations are suppressed by the 
presence of a functional allele.

Epimmunity should be incorporated as a genuine branch of 
immunology since it is not accounted for in any field of knowl-
edge. Epimmunity cannot be replaced or compensated by any 
other component including those of the immune system.

Immune tolerance and autoimmunity should be reevaluated 
from the epimmunity point of view; tolerance breakdown or 
autoimmunity may actually result from “epimmunity break-
down.” Since it takes at least two entities to interact in an auto-
immune disease, either entity can be defective. Therefore, in an  
autoimmune disease, the breakdown could have afflicted the 
immune cell or its target cell (antigen). Epimmune cells will 
become susceptible to certain diseases upon breakdown in their 
epimmunity.

Understanding the properties of erythrocytes in rela-
tion to diseases and cancer biology may open new avenues 
toward nuclear inactivation in cancer research. Inhibition of 
extravasation process in metastatic cancer and leukemia may 
prevent their metastasis, especially prior to medical or surgical  
intervention.

Having inactive nucleus carries a risk of reactivation; reenter-
ing cell cycle or gene expression as a result of external stimuli such 
as exposure to radiation, chemical agents, or biological agents. 
This area of gene and nuclear reactivation can be experimentally 
exploited to understand the mechanisms responsible for inacti-
vation/reactivation as attested by earlier studies (13, 18, 22).

I propose targeting extravasation of metastatic cancer for inhi-
bition by transient, reversible, and partial (or complete) nuclear 
inactivation as an important strategy in combating metastasis and 
cancer cell proliferation. Applying miRNA to inhibit transcrip-
tion of cellular deformability genes (104), which should not affect 
erythrocyte deformability since it is enzymatically regulated; 
Section “Erythrocytes Deformability and Innate Immunity.” 
Extravasation may be inhibited by targeting cytoplasm streaming 
with drugs such as cytochalasin B that affect animal cell microfila-
ments (105); injecting the drug into the arteriole that feeds into a 
tumor may prove valuable in controlling or preventing metastasis.

Other areas of importance include ex vivo erythrocytes load-
ing with therapeutic drugs for programmed drug delivery (106) 
or as proposed by PEGylation system (107).
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