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Abstract: Diabetic retinopathy (DR) is a leading cause for blindness among working-aged adults.
The growing prevalence of diabetes urges for cost-effective tools to improve the compliance of
eye examinations for early detection of DR. The objective of this research is to identify essential
predictors and develop predictive technologies for DR using electronic health records. We conducted
a retrospective analysis on a derivation cohort with 3749 DR and 94, 127 non-DR diabetic patients.
In the analysis, an ensemble predictor selection method was employed to find essential predictors
among 26 variables in demographics, duration of diabetes, complications and laboratory results.
A predictive model and a risk index were built based on the selected, essential predictors, and
then validated using another independent validation cohort with 869 DR and 6448 non-DR diabetic
patients. Out of the 26 variables, 10 were identified to be essential for predicting DR. The predictive
model achieved a 0.85 AUC on the derivation cohort and a 0.77 AUC on the validation cohort. For
the risk index, the AUCs were 0.81 and 0.73 on the derivation and validation cohorts, respectively.
The predictive technologies can provide an early warning sign that motivates patients to comply
with eye examinations for early screening and potential treatments.

Keywords: diabetic retinopathy; early detection; electronic health records; predictor selection; pre-
dictive models; risk index

1. Introduction

Diabetic retinopathy (DR) is a vision-threatening microvascular complication of dia-
betes, and is a leading cause of blindness among working-aged adults globally [1–5]. Ac-
cording to the 2002 American Diabetes Association Position Statement, nearly all patients
with type 1 diabetes and over 60% of patients with type 2 diabetes developed retinopathy
during the first 20 years of the disease [6]. In 2015, about 1.5 million Americans were
diagnosed with diabetes, and an additional 84.1 million Americans had prediabetes [7].
The fast-growing new cases of diabetes suggests that DR will continue to be a major cause
of vision loss and associated functional impairment in the U.S. in the coming years.
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Because DR can progress to irreversible stages (impossible to restore visual acuity)
with relatively few symptoms, early detection and treatment are essential in preventing DR
and the subsequent vision loss [8]. Although DR diagnostic and treatment options have sig-
nificantly advanced over the past decades, the early detection and screening for DR remain
challenging due to poor adherence to annual examination guidelines and lack of resources
to deploy comprehensive screening programs [3,9], especially in rural/undeveloped areas.
Therefore, there is a critical need for stakeholders to research innovative ways that can
implement timely, cost-effective detection techniques and/or programs in communities.

Clinical predictive models [10–14] provide an effective, alternative solution to improve
the access to early screening for DR under current limitations, by forecasting accurate risk
estimates of diseases based on important biomarkers. Predictive models have been exten-
sively investigated and adopted in diabetes studies [15–21]. In particular for DR, many
conditions comorbid with diabetes, such as hyperglycemia, hypertension and dyslipidemia
have been found to be significantly associated with DR [1,2,22–27]. In addition, HbA1c,
fasting plasma glucose, hemoglobin, hematocrit and many other laboratory test values
were found to be risk factors for DR development [28–32]. Based on the risk factors identi-
fied, a few prediction models were developed to predict the incidence and development of
DR [33–38]. However, most of the prediction models incorporated a multitude of laboratory
variables, leading to no consensus about which laboratory tests are required for effective
and economical prediction of DR. The objective of this study is to identify a set of labora-
tory tests most important for DR prediction, and use the essential laboratory results, in
conjunction with other key predictors, to develop an accurate and cost-effective predictive
model and an easy-to-use risk index. These predictive technologies can assist healthcare
providers in identifying patients at high DR risk and counseling them for ophthalmic
examination and proper treatments at early stages.

2. Materials and Methods

We performed a retrospective, secondary analysis of electronic health records (EHRs)
extracted from two different data sources for derivation and validation, respectively. The
details of our data and analysis are elaborated in the remainder of this section.

2.1. Data Sources and Data Extraction

We used Cerner Health Facts® EHR data warehouse (Cerner Corporation, Kansas
City, MO, USA) as our derivation data source to identify essential predictors, and develop
a model and a risk index to predict the onset of DR. Health Facts contains clinical data
contributed voluntarily from over 200 hospitals using Cerner EHR systems across the
U.S. spanning the past two decades. Cerner Corporation collects and integrates the data
with its internally established procedures in compliance with Health Insurance Portability
and Accountability Act (HIPAA) laws, thus all data are de-identified. The data in Health
Facts® are mostly time-stamped and cover a variety of aspects of patients’ hospital records
including encounters, diagnoses, procedures, medications, vital signs, laboratory results,
etc. Since Health Facts® has been completely de-identified according to HIPAA regulations,
the Institutional Review Boards (IRB) at Oklahoma State University (OSU) exempted the
study from review.

In order to validate the predictors and the predictive technologies derived from
Health Facts®, we used the Healthcare Enterprise Repository for Ontological Narration
(HERON) [39] from the University of Kansas Medical Center (KUMC) as our validation
data source. HERON was established with the EHRs collected from KUMC and its af-
filiated clinical organizations since 2010. The data contained in HERON include patient
demographics and time-stamped encounter, diagnosis, procedure, laboratory, vital sign
and medication records. All the HERON data are de-identified, therefore the validation
study was exempted from the IRB review of both OSU and KUMC, and was approved by
the HERON Data Request Oversight Committee. It should be noted that KUMC and its
affiliated clinical organizations have been using Epic EHR systems since 2007, hence the
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data included in HERON for validation are completely independent from our derivation
cohort extracted from Health Facts®.

In this study, we identified diabetic and DR patients from the data sources using
corresponding International Classification of Diseases, Ninth and Tenth Revisions, Clinical
Modification (ICD-9/10-CM) diagnosis codes, as listed in Table 1. In particular, diabetic
patients were defined as having at least one of 250.x, E10.x and E11.x diagnosis codes [21].
Among diabetic patients, those who had 362.0x, E10.31x-E10.35x or E11.31x-E11.35x di-
agnosis code(s) are identified as DR patients (case). Otherwise, the diabetic patients are
considered as non-DR patients (control).

Table 1. International Classification of Diseases, Ninth and Tenth Revisions, Clinical Modification
(ICD-9/10-CM) codes of diabetes and associated complications.

ICD Version ICD Code Code Description

ICD-9-CM

250.x Diabetes mellitus
362.0x Diabetic retinopathy
250.4x nephropathy
250.6x neuropathy

ICD-10-CM

E10.x Type 1 diabetes mellitus
E11.x Type 2 diabetes mellitus
E10.31x–E10.35x Type 1 diabetes mellitus with diabetic retinopathy
E11.31x–E11.35x Type 2 diabetes mellitus with diabetic retinopathy
E10.21 Type 1 diabetes mellitus with diabetic nephropathy
E11.21 Type 2 diabetes mellitus with diabetic nephropathy
E10.40 Type 1 diabetes mellitus with diabetic neuropathy
E11.40 Type 2 diabetes mellitus with diabetic neuropathy

2.2. Data Preprocessing

To support developing early prediction models for DR, we employed a window-based
data aggregation approach proposed by Ng et al. [40] to preprocess the data. As illustrated
in Figure 1, the method first identifies an event of interest (EOI), then assigns two successive
time windows prior to the event, namely a prediction window and an observation window.
The risk prediction is made at the beginning of the prediction window with the aggregated
data in the observation window to estimate the risk of EOI before the actual occurrence of the
event. We used the first DR diagnosis as the EOI for the case cohort and selected a random
encounter after the diabetes diagnosis as the EOI for the control patients. The lengths of
the prediction window and observation window were set to be six months and two years,
respectively. (Note that we tested the latest available data before prediction window, and one
year and two years for the observation window in our preliminary studies. The two-year
observation window resulted in the best predictive accuracy, thus it was chosen).

Observation Window (2 years)
Prediction Window 

(6 months)
EOI

Variables Aggregated for 
Risk Prediction

Time

Whether DR 
is onset

Figure 1. Prediction and observation windows for the predictive modeling.

Our study considered a total of 26 variables including three demographics (gender, race,
and the age at the beginning of the prediction window), two additional diabetic microvascu-
lar complications—nephropathy and neuropathy (corresponding ICD-9/10 codes are listed
in Table 1), duration of diabetes (measured in years from the first diabetic diagnosis to the
beginning of the prediction window) and results of 20 different routine blood tests for diabetic
patients as listed in Table 2. Before the aggregation of laboratory results, the interquartile range
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method [41] was utilized to identify and remove outliers. Then, we took the mean to aggre-
gate the laboratory results within the observation window. The two diabetic microvascular
complications—nephropathy and neuropathy—were modeled as two binary variables. Specif-
ically, if a complication occurred before the prediction window, the associated variable was
marked to be 1, otherwise 0. Furthermore, our analysis only included patients with complete
records for all variables; in other words, if a patient record came with any missing demographics
or laboratory results (the complication and duration of diabetes variables must not be missing),
the record was excluded from our subsequent analysis.

Table 2. Statistics and bivariate analytic results of the derivation and validation cohorts.

Demog. & DM
Cerner Derivation Data KUMC Validation Data

# (DR#) OR (95% CI) p-Value # (DR#) OR (95% CI) p-Value

Age <0.001 0.011
≥ 85 6036 (75) Reference – 179 (7) Reference –
18–34 2723 (135) 4.15 (3.12–5.54) <0.001 261 (37) 4.06 (1.87–10.14) 0.001
35–49 13,247 (620) 3.90 (3.09–5.01) <0.001 908 (102) 3.11 (1.52–7.48) 0.005
50–64 33,554 (1585) 3.94 (3.14–5.02) <0.001 2851 (371) 3.68 (1.85–8.71) 0.001
65–74 25,118 (854) 2.80 (2.22–3.58) <0.001 2024 (238) 3.27 (1.64–7.78) 0.002
75–84 17,198 (480) 2.28 (1.80–2.94) <0.001 1094 (114) 2.85 (1.41–6.86) 0.008

Gender
Female 53,396 (2034) Reference – 3703 (439) Reference –
Male 44,480 (1715) 1.01 (0.95–1.08) 0.707 3614 (430) 1.00 (0.87–1.16) 0.955

Race <0.001 <0.001
Black 17,993 (1363) Reference – 1572 (254) Reference –
White 72,488 (2126) 0.37 (0.34–0.40) <0.001 5005 (499) 0.57 (0.48–0.68) <0.001
Other 7395 (260) 0.44 (0.39–0.51) <0.001 1360 (116) 740 (0.76–1.22) 0.768

Duration (years) <0.001 <0.001
0–1 36,536 (775) Reference – 2285 (179) Reference –
1–2 26,359 (843) 1.52 (1.38–1.68) <0.001 1729 (196) 1.50 (1.22–1.86) <0.001
2–3 13,560 (723) 2.60 (2.34–2.88) <0.001 1054 (135) 1.73 (1.36–2.19) <0.001
3–4 8696 (518) 2.92 (2.61–3.27) <0.001 719 (79) 1.45 (1.09–1.91) <0.001
>4 12,725 (890) 3.47 (3.14–3.83) <0.001 1530 (280) 2.64 (2.16–3.22) <0.001

Nephropathy
No 92,153 (2711) Reference – 6239 (617) Reference –
Yes 5723, (1038) 7.31 (6.76–7.90) <0.001 1078 (252) 2.78 (2.36–3.27) <0.001

Neuropathy
No 88,657 (2507) Reference – 5986 (559) Reference –
Yes 9219 (1242) 5.35 (4.98–5.75) <0.001 1331 (310) 2.95 (2.53–3.44) <0.001

Lab results Case avg (SD) Control avg (SD) p-value Case avg (SD) Control avg (SD) p-value

HbA1c 8.36 (2.03) 7.14 (1.51) <0.001 8.20 (2.07) 6.95 (1.45) <0.001
Creatinine 1.94 (1.81) 1.07 (0.46) <0.001 1.56 (1.45) 1.10 (0.47) <0.001
Glucose 174.83 (61.95) 142.89 (46.24) <0.001 170.74 (53.15) 143.78 (40.21) <0.001
Hemoglobin 12.08 (1.65) 13.03 (1.70) <0.001 12.40 (1.91) 12.86 (1.90) <0.001
Hematocrit 36.24 (4.72) 38.97 (4.75) <0.001 37.36 (5.60) 38.69 (5.58) <0.001
Calcium 9.12 (0.49) 9.26 (0.44) <0.001 9.27 (0.49) 9.37 (0.46) <0.001
Triglycerides 155.56 (89.85) 154.40 (84.71) 0.436 165.96 (94.59) 155.80 (86.11) 0.003
Potassium 4.33 (0.38) 4.24 (0.35) <0.001 4.20 (0.37) 4.14 (0.32) <0.001
Chloride 103.00 (3.45) 103.19 (2.85) 0.001 103.11 (3.07) 103.30 (2.69) 0.082
MCH 29.57 (2.00) 29.95 (1.94) <0.001 29.50 (2.13) 29.83 (2.07) 0.001
Sodium 138.49 (2.39) 138.83 (2.47) <0.001 137.03 (2.10) 137.31 (2.19) <0.001
MCHC 33.32 (0.92) 33.43 (0.96) <0.001 33.19 (0.80) 33.24 (0.78) 0.084
MCV 88.74 (5.31) 89.53 (5.00) <0.001 88.84 (5.56) 89.67 (5.34) <0.001
Albumin 3.64 (0.55) 3.86 (0.46) <0.001 3.80 (0.48) 3.95 (0.46) <0.001
Bilirubin 0.58 (0.27) 0.61 (0.28) <0.001 0.60 (0.28) 0.64 (0.30) 0.651
Anion Gap 9.55 (2.69) 9.47 (2.56) 0.058 8.05 (1.83) 7.88 (1.73) 0.011
AST 24.45 (9.79) 24.88 (10.08) 0.009 22.80 (10.28) 24.11 (10.30) <0.001
ALT 25.18 (12.24) 27.86 (14.47) <0.001 22.34 (12.23) 25.23 (14.00) <0.001
RBC 4.10 (0.58) 4.37 (0.56) <0.001 4.23 (0.66) 4.34 (0.65) <0.001
WBC 7.97 (2.24) 8.13 (2.21) <0.001 8.02 (2.35) 8.17 (2.27) 0.074

Demog. and CM: variables related to demographics and status of diabetes mellitus; Duration: duration of diabetes; MCH: mean corpuscular
hemoglobin; MCHC: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; AST: aspartate transaminase; ALT:
alanine transaminase; RBC: red blood cells; WBC: white blood cells.
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2.3. Essential Predictor Identification and Predictive Modeling

As shown in Figure 2, our analysis first evaluated the bivariate association of each
variable with the onset of DR. To that end, a Chi-squared test was applied to the categorical
variables, including age, gender, race, duration of diabetes and diabetic complications,
while the two-sample t-test was used for laboratory results. Furthermore, we used the odds
ratio (OR) and its 95% confidence interval (CI) to compare the association strengths (with
DR) among different levels of each categorical variable. Significant variables (p < 0.05)
from the bivariate analysis were then selected for the subsequent predictive modeling and
key predictor selection.

Cerner Data 
(Derivation)

KUMC Data 
(External 

Validation)

Statistically 
Significant 
Variables

Bivariate 
Analysis

Training  
Data

Testing Data 
(Internal 

Validation)

Predictive 
Modeling and 
Key Predictor 

Selection

Predictive 
Model

Risk Index

Internal and 
External 

Validation

Essential 
Predictors

Figure 2. Steps of the derivation and validation analyses.

In order to identify a compact set of predictors with the best predictive power among
the variables found statistically significant in the bivariate analysis, we randomly parti-
tioned all the derivation data into a training data set (70%) and a testing data set (30%), and
applied the machine-learning-based ensemble predictor selection (EPS) method proposed
by Song et al. [42] to our training data set. On the other hand, the testing data set was left
out for internal validation. The EPS method consists of two steps: (i) ranking aggregated
variable importance and (ii) golden-section search for a minimal predictor count. In the first
step, the method builds machine-learning models on bootstrap samples from the training
data set, and returns variable importance (in terms of the contribution to the prediction
accuracy) for each bootstrap sample. Then, the importance values are aggregated across
the bootstrap samples, and the variables are sorted based on the aggregated importance.
The second step performs a golden-section search on the sorted variables to determine a
minimal set of predictors that can maintain a close predictive accuracy to that given by the
full model incorporating all significant variables. In our implementation of the EPS method,
we employed extreme gradient boosting (XGBoost) as our machine-learning model. XG-
Boost is a popular, tree-based machine-learning technology [43], and demonstrated an
outstanding performance in EPS [42]. Furthermore, we evaluated the predictive accuracy
using the area under the receiver operating characteristic curve (AUC), and used weighted
average to aggregate variable importance (the AUC on the bootstrap sample was used as
the weight).

2.4. Risk Index Development

The machine-learning-based predictive model is a “black box” in nature, thus diffi-
cult to interpret [44,45]. To address the issue, risk indices are often developed based on
essential predictors to provide predictive tools that are more user-friendly and easier to
interpret [46,47]. In the research, we used the scoring method described in [48] to create an
index to predict the DR risk. The scoring method consists of the following five steps:
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(i) Create a logistic regression based on the specified n predictors, and obtain the predic-
tors’ coefficients {βi | i = 0, 1, . . . , n}, where β0 is the intercept and βi is the coefficient
of ith predictor.

(ii) Break down each numerical predictor into intervals (i.e., levels) and determine the
reference level for each predictor based on clinical expertise.

(iii) Calculate the distance from each level to the reference level in terms of regression
risk units for each predictor. The distance is defined as βi(Mij −MiR), where Mij and
MiR are the level values of level j and the reference level of predictor i, respectively.
The level value is defined as the middle point for numerical, interval levels and
non-negative integers for other types of levels.

(iv) Define a constant B regarding how many regression risk units can be mapped to one
point in the scoring system. In this study, we let B = 5× βage. In other words, one
point in the risk scoring system corresponds to the increased regression risk units
associated with a 5-year change in age.

(v) Compute the score for each level of a predictor by rounding βi(Mij −MiR)/B to the
nearest integer. The risk index is the summation of all predictors’ scores.

All the data preprocessing and predictive technologies presented in this article were
implemented using R 3.6.0 [49].

3. Results

Figure 3 shows a development workflow for our derivation cohort. In the cohort, we
included 3749 DR and 94, 127 non-DR diabetic patients (the DR rate is 3.8%). By applying a
similar workflow to the validation data source, we obtained a validation cohort with 869 DR
and 6448 non-DR diabetic patients (the DR rate is 11.9%). The cohort statistics and bivariate
results are listed in Table 2, which shows that the associations of many variables with DR
in the validation cohort were consistent with that in the derivation cohort. For example,
a longer duration of diabetes is significantly associated with a higher risk of DR in both
cohorts (p-values < 0.001) and gender is a statistically insignificant variable in both cohorts
(p-values = 0.707 and 0.955 in the derivation cohort and the validation cohort, respectively).
However, there still exist certain differences in statistics between the two cohorts, especially
for the laboratory results. For example, triglycerides (p-value = 0.436) and an anion gap
(p-value = 0.848) were found to be insignificant in the derivation cohort, but they were
significant in the validation cohort (p-values = 0.003 and 0.011, respectively). Furthermore,
chloride, MCHC, bilirubin and WBC were significant variables in the derivation cohort
(p-values ≤ 0.001), but they were insignificant in the validation cohort (p-values were
0.082, 0.084, 0.651 and 0.074). Furthermore, an interesting observation from the results is that
diabetic patients aged 65 or older have a lower risk of developing DR than their younger
peers, and this observation holds for both the derivation and validation cohorts. Though
seemly counter-intuitive, a similar finding was reported in [50] (interested readers may refer
to the discussion therein for possible reasons, which are beyond the scope of this paper).

We then excluded statistically insignificant variables in the derivation cohort (includ-
ing gender, triglycerides and anion gap) and entered the remaining 23 variables into the
EPS process to build a predictive model and select the essential predictors based on the
derivation cohort. The variable importance returned by EPS is shown in Figure 4. Among
the 23 variables, 10 were selected as the essential predictors, which include age, creatinine,
HbA1c, neuropathy, duration of diabetes, WBC, nephropathy, glucose, hematocrit, and
sodium. Comparing the predictive accuracies between the full model that includes all
23 variables and the compact model with only the 10 essential predictors (AUCs are shown
in Figure 5), we find that the compact model (AUCs were 0.85 and 0.77 for the derivation
and validation cohorts, respectively) achieved very close accuracies to that of the full model
(AUCs were 0.85 and 0.78, respectively, for the derivation and validation cohorts) for both
the derivation and validation cohorts.
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Diabetic Patients (N=725,514)
- Having diabetes diagnosis code(s)

- Age is at least 18
- 1999-2016 (Years)

Diabetic patients with complete lab records during the 
observation window (N=97,876)

Exclude patients with incomplete 
lab records (N=627,638)

DR patients 
(N=3,749)

Non-DR 
patients 

(N=94,127)

Figure 3. The workflow for the derivation cohort development.
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The top 10 essential predictors were entered into a multivariate logistic regression for
risk index development. Table 3 lists the logistic regression results as well as the scoring
system derived from the results. The risk index calculated based on the scoring system can
estimate the DR risk with considerably good accuracy. Its AUC on our derivation cohort
was 0.81, and the AUC on the validation cohort was 0.73 (shown in Figure 5), which are
very close to that given by the full models. Though the developed risk index ranges from 0
to 160, our results suggest to break down the index into eight intervals with cutoffs: 40,
50, 60, 70, 80, 90, and 100, as shown in Figure 6. From the risk index distributions shown
in Figure 6, we can observe that the index is capable of reflecting the trend of the DR risk:
as the index score increases, the patient risk of developing DR becomes higher in both
the derivation and the validation cohorts, supporting the generalizability of the proposed
risk index.

Table 3. Logistic regression results and risk scores for essential predictors.

Variable Coefficients (βi) OR (95% CI) p-Value Levels Level Values (Mij) Points

Age −0.0187 0.98 (0.97–0.99) <0.001

18–34 26 12
35–49 42 9
50–64 57 6
65–74 69.5 4
75–84 79.5 2
≥85 ‡ 87.5 0

Creatinine 0.8601 2.36 (2.24–2.50) <0.001

<0.5 ‡ 0.41 0
0.5–1 0.75 3
1–1.5 1.25 8
1.5–2 1.75 12

>2 2.68 21

HbA1c 0.2877 1.33 (1.29–1.37) <0.001

<6 ‡ 5 0
6–8 7 6

8–10 9 12
10–12 11 18
>12 14 28

Neuropathy 0.9229 2.52 (2.27–2.78) <0.001 No ‡ 0 0
Yes 1 10

Duration of diabetes 0.1455 1.16 (1.13–1.18) <0.001

<1 ‡ 0.5 0
1–2 1.5 2
2–3 2.5 3
3–4 3.5 5
>4 9.2 14

WBC −0.1077 0.90 (0.88–0.92) <0.001

<4 3.5 17
4–6 5 15
6–8 7 13

8–12 10 9
>12 ‡ 18.2 0

Nephropathy 0.5598 1.75 (1.55–1.98) <0.001 No ‡ 0 0
Yes 1 6

Glucose 0.0059 1.01 (1.00–1.01) <0.001

<60 ‡ 53 0
60–80 70 1

80–100 90 2
100–200 150 6

>200 364 20

Hematocrit −0.0609 0.94 (0.93—0.95) <0.001

<30 25.7 19
30–35 32.5 15
35–40 37.5 11
40–50 45 7
>50 ‡ 55 0

Sodium 0.0822 1.09 (1.07—1.11) <0.001
<136 ‡ 131.5 0

136–144 140 7
>144 146.5 13

‡ the reference level; B = 0.0187× 5 = 0.0935.
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Cerner
score_group Patient # DR %
<40 6,637 0.5%
40 – 50    27,767 0.8%
50 – 60 30,817 1.8%
60 – 70 16,890 4.3%
70 – 80 9,314 8.7%
80 – 90 4,200 15.9%
90 – 100 1,555 26.7%
>100 696 44.3%

KU
score_group Patient # DR %
<40 453 2.9%
40 – 50    1,781 4.7%
50 – 60 2,118 7.9%
60 – 70 1,414 12.0%
70 – 80 886 23.0%
80 – 90 433 27.9%
90 – 100 150 42.0%
>100 82 59.8%
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Figure 6. Risk index distributions in the cohorts.

The age-specific AUCs of our compact model and risk index are presented in Table 4.
It shows that these technologies had better predictive accuracy for younger patients than
for senior patients. Furthermore, there exist certain inconsistencies in the performance
between the derivation cohort and the validation cohort for patients aged 85 or older.
The phenomenon may be a result of the complex health conditions of senior patients
and implies the need to improve the technologies’ accuracy for this group of patients in
the future.

Table 4. Age-specific AUCs of predictions.

Models and AUCs
Age Groups

18–34 35–49 50–64 65–74 75–84 ≥85

Compact Model Internal AUC 0.92 0.92 0.86 0.81 0.77 0.72
External AUC 0.86 0.82 0.79 0.73 0.70 0.82

Risk Index Internal AUC 0.89 0.88 0.83 0.78 0.74 0.65
External AUC 0.85 0.83 0.74 0.69 0.64 0.72

4. Discussion

A large set of risk factors have been reported to be significantly associated with the
incidence of DR in literature, leaving little consensus regarding which variables are essential
for DR prediction. A major contribution of our work is to derive and validate a small set of
the most important predictors from the large variable set. We showed that these predictors
were essential because they contributed a majority of the predictive accuracy and adding
more variables did not improve the accuracy significantly.

Our analysis and technologies also have various practical implications. Firstly, we
derived a predictive model with a minimum number of predictors that have high prediction
accuracy for DR. As previously stated, the current method for detecting or diagnosing
DR is the annual ophthalmic exam. However, the annual eye examination has a low
compliance rate due to the lack of specialists and high overhead to patients in many areas,
especially the rural communities [51]. Our study tackles the poor compliance challenge by
developing an automatic predictive model. Its prediction result can provide an effective
and early warning for DR risk and trigger practitioners to counsel and refer patients for
ophthalmic examination and proper treatments. Comparing with several published models
that similarly aim to predict the DR risk, our model includes fewer predictors, resulting in
easier interpretation and reduction in the cost related to data collection.

Secondly, the risk index we developed provides a practical and user-friendly tool
to monitor the essential predictors for early warning signs of DR. Though the machine
learning model achieved high predictive accuracies in both derivation and validation
cohorts, its black box nature makes it difficult to understand how decisions are made.
Moreover, complex machine-learning algorithms require the support of specific software
(such as R or EHR systems) for their execution, which are often less user-friendly to health
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workers and can lead to additional costs to hospitals/clinics. The proposed risk index was
designed to address these issues.

More notably, we externally validated the predictive model and the risk index by
testing the technologies on a large patient cohort from an independent EHR database. The
technologies demonstrated promising discriminative ability in the external data source,
which implies their generalizability to the entire diabetic patient population. As far as we
know, this study is the first effort to validate diagnostic predictive models for DR on two
distinct patient cohorts.

With respect to how to utilize the predictive technologies, we recommend health
workers and patients to use the risk index because of its easy-to-use nature. On the other
hand, EHR vendors may integrate the machine-learning model into their EHR systems to
make this more accurate prediction tool available to providers.

Caveats: It is worth noting that the predictive technologies are not intended to replace
the regular eye examination, which is the gold standard for DR diagnosis. However,
they can be useful screening tools to identify those that may be at higher risk to ensure
timely diagnosis and intervention. Moreover, it is important to note that the statistical
results, presented in this article, reveal the associations between the predictors and the
development of DR. The associations do not necessarily reflect the causality. It is still unclear
why the laboratory values are significantly associated with DR, and how they contribute to
the prediction from the pathological perspective. Therefore, the pathological role of the
essential predictors in the development of DR should be investigated in the future.

Future Work: There are several potential directions worth future investigations fol-
lowing this study. Firstly, further investigations on better-quality data of senior diabetic
patients are desired to improve the prediction accuracy for this group of patients. Sec-
ondly, we plan to include more comorbidities, treatments and laboratory results into the
feature selection process and predictive models to find novel, essential predictors as well
as improve the predictive accuracy. We are also interested in conducting clinical trials to
further validate the essential predictors and the predictive tools. Furthermore, the methods
employed in this study can be extended to nephropathy, neuropathy and other diabetic
complications for creating a comprehensive prognosis toolkit for diabetes and associated
complications. Lastly, the pathological relationship between the development of DR and
the key predictors is also an interesting direction for future research.

Limitations: There exist a couple of limitations in the research. Firstly, EHRs do not
necessarily capture the complete pictures of patient health. Useful data of a patient may be
missing from our EHR data sources for many reasons, such as a patient is not compliant
with follow up or treatment, the DR diagnosis is not entered into the EHR problem list due
to neglect, and a patient visits other hospitals with different EHR systems. Secondly, due to
de-identification, there were a small number (2173) of patients older than 90 were recorded
as 90 years old in the derivation cohort (there were no such patients in the validation
cohort). The inaccuracy may undermine the prediction performance of our technologies
for patients older than 90. More accurate data of patients aged 90 years or older can help
address the limitation.

5. Conclusions

DR is a major cause of blindness among middle-aged adults over the world. The
vision loss that occurs at the late stage of DR cannot be reversed. As a result, diagnosing
DR at an early date is crucial. In this study, we conducted a retrospective analysis of
EHR data to identify a set of essential predictors of DR. Based on the key predictors, we
furthermore derived and validated a compact predictive model and a risk index for early
detection of DR. The technologies demonstrated promising accuracies in prediction, both
internally on the derivation cohort and externally on the validation cohort. The DR risk
given by the predictive technologies can be used as an early warning sign to urge patients
to comply with the prompt ophthalmic examination, which has a relatively low compliance
rate currently.
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