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Early detection of Alzheimer’s disease (AD), such as predicting development from
mild cognitive impairment (MCI) to AD, is critical for slowing disease progression and
increasing quality of life. Although deep learning is a promising technique for structural
MRI-based diagnosis, the paucity of training samples limits its power, especially for
three-dimensional (3D) models. To this end, we propose a two-stage model combining
both transfer learning and contrastive learning that can achieve high accuracy of MRI-
based early AD diagnosis even when the sample numbers are restricted. Specifically,
a 3D CNN model was pretrained using publicly available medical image data to learn
common medical features, and contrastive learning was further utilized to learn more
specific features of MCI images. The two-stage model outperformed each benchmark
method. Compared with the previous studies, we show that our model achieves
superior performance in progressive MCI patients with an accuracy of 0.82 and AUC
of 0.84. We further enhance the interpretability of the model by using 3D Grad-CAM,
which highlights brain regions with high-predictive weights. Brain regions, including the
hippocampus, temporal, and precuneus, are associated with the classification of MCI,
which is supported by the various types of literature. Our model provides a novel model
to avoid overfitting because of a lack of medical data and enable the early detection of
AD.

Keywords: mild cognitive impairment, Alzheiemer’s disease, contrastive learning, transfer leaning, MRI, deep
learning

INTRODUCTION

Alzheimer’s disease (AD), a severe neurodegenerative disease, is the most common type of dementia
(Heun et al., 1997; Association, 2019). Nowadays, at least 50 million people worldwide suffer from
AD or other types of dementia, and it is expected that this number will reach 131 million in 2050
(Livingston et al., 2017). This further increases the burden of the medical care system in aging
societies. Mild cognitive impairment (MCI) is a stage between normal and AD, with 10–12% of
people developing AD each year (Petersen, 2000). Based on the progression toward AD, it can be
classified into two categories: progressive MCI (pMCI) and stable MCI (sMCI). Although there is
no effective treatment for AD at present, its progression can be slowed by medication, memory
training, exercise, and diet, which necessitates the early detection of potential patients (Roberson
and Mucke, 2006). Neuroimaging techniques, which can detect disease-related neuropathological
changes, are valuable tools for assessing and diagnosing AD (Johnson et al., 2012). MRI is one of
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the most widely studied neuroimaging techniques because
it is non-invasive, generally available, affordable, and
capable of distinguishing between different soft tissues
(Klöppel et al., 2008).

With the rapid development, deep learning has achieved
remarkable progress in a variety of fields, especially in computer
vision and medical imaging, where it outperforms traditional
machine learning methods (Shen et al., 2017; Bernal et al., 2019;
Abrol et al., 2021). Deep learning approaches perform feature
selection during model training and loss function optimization
without the need for domain experts’ prior knowledge. As a
result, individuals with no medical expertise can use them for
research and applications, especially in the field of medical
image analysis (Shen et al., 2017). Notably, Convolutional Neural
Network (CNN) has achieved outstanding performance in the
classification tasks of AD and normal control (NC) (Liu et al.,
2019) and pMCI/sMCI (Choi and Jin, 2018; Spasov et al., 2019).
In general, deep neural networks require large samples for
model fitting, especially 3D deep neural network models with
more parameters. However, as compared with existing million-
sample natural image datasets, neuroimaging datasets have a
relatively small sample size (Russakovsky et al., 2015), which can
possibly be explained by the following factors. At first, collecting
large training sets and labeling image data are costly and time
consuming (Shen et al., 2017; Irvin et al., 2019). Furthermore,
technical and privacy issues also constraints obstruct medical
data collection (Irvin et al., 2019). Therefore, preventing model
overfitting due to the scarcity of medical samples has become one
of the hottest topics in deep learning of neuroimaging.

Transfer learning is a popular method for dealing with a
small number of samples. It utilizes a pretrained model with
supervised learning on a large labeled dataset (source domain,
e.g., ImageNet) and then fine tunes it on the task of interest
(target domain). Studies have shown that knowledge transferred
from large-scale annotated natural images (ImageNet) to medical
images can significantly improve the effectiveness of assisted
diagnosis (Tajbakhsh et al., 2016; Raghu et al., 2019). However,
standard medical images, such as MRI, CT, and positron
emission tomography (PET), are in three dimensional (3D),
preventing ImageNet-based pretrained models from being
directly transferred to MRI. Converting 3D data into two-
dimensional (2D) slices is a typical method, however, this ignores
the rich 3D spatial anatomical information and inevitably affects
the performance. To address this issue, several studies (Yang et al.,
2017; Zeng and Zheng, 2018) have used pretrained 3D models
based on natural video datasets (Tran et al., 2014; Carreira and
Zisserman, 2017) to transfer to medical imaging tasks, but have
not yet achieved the expected results because of the vast difference
between these two domains.

Recently, contrastive learning, a self-supervised learning
method, has recently been demonstrated to perform superiorly
in various vision tasks (Wu et al., 2018; Zhuang C. et al.,
2019; Chen X. et al., 2020). Momentum Contrast (MoCo) (He
et al., 2020) is a state-of-the-art method in contrastive learning,
which minimizes positive pairs variability while maximizing
negative pairs variability. Based on existing research concerns,
we proposed a two-stage model based on MoCo (He et al., 2020)

to classify sMCI and pMCI. The main contributions of our
study are as follows.

1) Systematic evaluation of 3D ResNet models with different
structures and selection of the best model for sMCI
and pMCI classification. Provides a reference for
related studies.

2) A two-stage model is proposed to solve the problem of
domain transfer between the source and target domains,
which solves the problem of overfitting caused by small
samples in sMCI and pMCI classification and improves the
classification performance in AD diagnosis. To the best of
our knowledge, we first introduce the MoCo in pMCI and
sMCI classification.

3) Three-dimensional Gradient-weighted Class Activation
Mapping (Grad-CAM), which is widely used for model
interpretability, was introduced to get the heatmap that
highlights the brain regions our model focuses on and
increases the interpretability of the model.

MATERIALS AND METHODS

As indicated in Figure 1, our two-stage transfer learning model
was divided into three main parts. In our framework, we did not
directly transfer trained model on natural image sets or other
medical image sets to our research such as previous studies,
mainly for the following reasons: at first, the adoption of 3D CNN
in this study to preserve more spatial information limits direct
transfer learning from 2D natural images; second, the different
components of medical image sets may harm the performance.
For instance, the Med3D is composed of MRI and CT of brains,
lungs, chests, and other organs (Chen et al., 2019), while our MCI
data set only includes brain MRI data. The details of each step
were described next.

Dataset and Data Preprocessing
Data used in our study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which is the
largest open-access AD database with wide popularity in AD-
related research. It was launched in 2003 by the several public
and private organizations to measure the progression of MCI
and early AD by medical image (such as MRI, PET), genomics,
biological markers, and neuropsychological assessments (Jack
et al., 2008). More information can be found at http://adni.loni.
usc.edu/.

As defined in this study, participants with MCI at baseline who
developed or did not develop AD within 3 years were referred to
as pMCI and sMCI, respectively. To prevent data leakage, only
participants’ baseline data were selected in this study. Finally,
data from 577 MCI subjects (Means ± std age = 73.08 ± 7.25
years) were included in our study, and 297 of the MCI was
classified as sMCI (51.5%) and the rest 280 were pMCI (48.5%).
The demographics and the mini-mental state examination scores
(MMSEs) information of subjects is summarized in Table 1.
Differences in the median age and gender between groups
were tested using ANOVA and Fisher’s exact test, respectively.
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FIGURE 1 | The two-stage model. In step 1, we used the Med3D (Chen et al., 2019) pre-trained model to initialize network weights and learn the common medical
image features. In step 2, we performed contrastive learning on unlabeled sMCI and pMCI samples using the improved MoCo to update the network weights, further
increasing the correlation between the target and source domains and learning the specific medical features of the sMCI/pMCI classification task. Finally, the network
was fine-tuned using labeled sMCI/pMCI samples to achieve sMCI and pMCI classification. MoCo, Momentum Contrast; pMCI, progressive mild cognitive
impairment; sMCI, stable mild cognitive, impairment.

TABLE 1 | A summary of the demographic and clinical information of participants.

Number Age (years old) Sex(M/F) MMSE

sMCI 297 72.2 ± 7.4[55.0,88.4] 174/123 28.0 ± 1.7[23,30]

pMCI 280 73.9 ± 6.9[55.2,88.3] 172/108 26.8 ± 1.8[21,30]

Values are presented as Means ± Standard Deviation [Range]; M, Male; F, Female;
MMSE, Mini-Mental State Examination.

These two interactions yielded no statistically significant results
(p > 0.05).

All 1.5T and 3T structural MRI of the participant were
downloaded. The detailed information of MRI, such as scanner
protocols, can be found at http://adni.loni.usc.edu/methods/
documents/mri-protocols/. Data are preprocessed using FSL1

with three main steps: bias field correction using the N4
algorithm (Tustison et al., 2010); affine linear alignment of
scans onto the MIN152 atlas; skull stripping of each image for
129× 145× 129 voxels. Figure 2 shows the difference before and
after preprocessing of the MRI from the same sample.

Network Weight Initialization Using
Med3D
Many studies have demonstrated that using transfer learning
parameter initialization can significantly improve the

1https://fsl.fmrib.ox.ac.uk/

performance of models compared to training from scratch
(Afzal et al., 2019; Mousavian et al., 2019; Naz et al., 2021). This
study selected the Med3D network and its pretrained weights on
eight segmented datasets (Chen et al., 2019).

The authors of Med3D integrated data from eight medical
segmentation datasets to create the 3DSeg-8 dataset, which
contains multiple modalities (MRI and CT), target organs (brain,
heart, pancreas), and pathological conditions (CodaLab, 2021
Competition; Menze et al., 2015; Tobon-Gomez et al., 2015;
Medical Segmentation Decathlon, 2021). Med3D uses a standard
encode–decode partition structure, where the encoder uses the
ResNet family. The main idea of ResNet is to introduce the
residual block in the network, as illustrated in Figure 3, where
F(x) is the residual mapping and X is the identity mapping, also
called “shortcut.” This helps train a deeper network to achieve
higher accuracy without vanishing or explosion of the gradient.
Notably, Med3D uses a parallel format for model training,
which means the same encoder is used for eight datasets, and
the decoder is composed of 8 branches accordingly in parallel.
This allows the decoder to adapt to different organizational
segmentation targets, while the encoder can learn universal
features. Figure 1, Step1 depicts the Med3D structure. Med3D
pretrained models can be used for classification, detection, and
segmentation. We used the parameters of the models pretrained
by the 3DSeg-8 dataset for the initialization of our network.
Transfer learning strategy effects were evaluated in various
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FIGURE 2 | Comparison of MRI data before and after preprocessing. (A,B) Show the differences before and after preprocessing from the sagittal, axial, and coronal
view of the brain, respectively.

ResNet networks in Med3D, including, ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-152 (He et al., 2016).

Transfer Learning Using Contrastive
Learning
We extracted general 3D medical image features by Med3D
(Chen et al., 2019). However, while Med3D includes MRI and
CT of brains, lungs, chests, and other organs, whereas our MCI
data set only include brain MRI data, there are still domain
transfer concerns between the dataset of Med3D and MRI of
sMCI and pMCI (Chen et al., 2019), while our MCI data set is
only composed of brain MRI data. Contrastive learning, a special
unsupervised learning method with a supervisory function, was
introduced in this study to further increase the correlation
between the target and source domains. The labels of contrastive
learning are generated by the data itself rather than by manual
labeling (Liu et al., 2020). It uses unlabeled data to train models
and learn embeddings of the data by maximizing the consistency
between different augmented views of the same sample and
minimizing the consistency between different samples through a
contrast loss function (Tian et al., 2020).

Currently, there are various representative contrastive
learning methods, such as MoCo (He et al., 2020), SimCLR
(Chen T. et al., 2020), and PIRL (Misra and van der Maaten,
2020). Because of the sample size and computational resources
constraints, we chose MoCo as our pretraining model in our
study. Unlike the end-to-end gradient update of SimCLR, MoCo
introduces a dynamic queueing dictionary, which is updated by
adding new training batches to the queue while removing the
oldest ones from the queue according to the first-in-first-out
principle and keeping the length of the queueing dictionary

unchanged. This approach allows MoCo to obtain good training
results with small batch size.

Given and preprocessed sample x, contrastive learning
obtains two augmented samples xq and xk by data augmentation
of sample x. xq and xk are referred to as query data and key data,
respectively. q and k are the latent representation of xq and xk
using a query encoder q=fq( xq;θq) and key encoder k=fk(xk;θk) with
weight θq and θk , respectively. If the query and the key belong
to the same sample, it is marked as a positive pair k+ . Otherwise,
it is a negative sample pair k− . The auxiliary task in contrastive
learning is: given a pair ( xq , xk ), determining whether it is a

FIGURE 3 | Residual block. The ResNet’s Core Modules.
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positive or negative sample pair and making the positive samples
closer together and the negative samples further apart.

Give a query q. MoCo applies a queue storing a set of keys
k from different samples, including one k+ and several k− . The
contrastive loss can be defined as:

Lq,k+,{k−} = −log
exp

(
q · k+/τ

)
exp

(
q · k+/τ

)
+
∑

k− exp
(
q · k−/τ

) (1)

Here, τ is the temperature parameter. The model updates the
encoder weights by minimizing the contrastive loss.

In MoCo, the key encoder is neither updated by back-
propagation nor copied from the query encoder. Still, a running
average of the key encoder is used, which is known as a
momentum encoder. The updating of θq and θk can be formulated
as:

θq← θq − α ∂L
∂θq

θk← mθk + (1−m)θq
(2)

Here, m ∈ [0, 1) is the momentum coefficient. As in Eq. (2),
θk is updated more smoothly than θq which is updated by back-
propagation.

It was shown that data augmentation methods such as
Gaussian blur and color distortion for natural images might not
be applicable in the medical image. For example, Gaussian blur
on MRI can potentially change the label of the data. Therefore,
we improved the data augmentation method in MoCo by using
random rotation (± 10◦), horizontal flip, and random scaling
(± 10%) on 3D MRI. In detail, we rotated images at any angle
between –10◦ and +10◦ along the three axes. Random scaling
was also applied to randomly scale the image by ± 10%. If the
image size is larger than the size of the original image, the same
volume of the original image is extracted by cropping the center
region of the image. If the volume is less than its original size, it is
filled with 0 in the reduced region. Figure 4 shows the schematic
diagram of the three data augmentation methods.

We performed MoCo on the full unlabeled MRI data using
the Med3D pretrained ResNet as the encoder. In addition, as it
is shown that adding a projection head helps to learn feature
representation better (Chen T. et al., 2020; Chen X. et al., 2020),
we added a projection head, as shown in Figure 1. We used two
MLP with 128-D hidden layers and a ReLU activation function as
the projection head as:

zq = g(q) =W2σ
(
W1q

)
zk = g(k) =W2σ

(
W1k

) (3)

where W1 and W2 represent the hidden and output layer weights,
and σ is the ReLU activation function.

Classification
The last step of our model is classification, where the labeled data
were divided into training, validation, and test sets to fine-tune
the pretrained encoders. We added a linear classifier to the frozen
backbone model to complete the classification of sMCI and pMCI
as proposed by Chen X. et al. (2020).

Model Evaluation
We first used different ResNet, including ResNet-10, ResNet-
34, ResNet-50, ResNet-101 as our two-stage model backbone
network, and selected the ResNet with the best performance
(ResNet-50, see in results) as our backbone in the following
comparative experiment.

Evaluation of Transferring Learning Strategies
We first conducted the following comparative experiments with
different transfer learning strategies. All the models in different
transfer learning strategies used the best ResNet selected by the
first experiment.

λ Med3D, pretrained ResNet using Med3D and fine-tuned the
model to complete the classification of sMCI and pMCI.

λ MoCo, random initialization of weights, followed with the
modified MoCo in the method to train the ResNet without using
sMCI/pMCI labels. Then fine-tune the model using labeled data
and do the classification.

λ Only ResNet, random initialization of weights, and training
ResNet from scratch.

λ Med3D+MoCo, our two-stage model.

Comparison With Previous Studies
To comprehensively understand the performance of our method,
we reviewed the state-of-the-art literature, which utilized deep
learning to predict the conversion from MCI to Alzheimer’s
using MRI. We selected studies that achieved criteria for a fair
comparison, including (1) only used MRI. (2) published in the
last 3 years. (3) the data were from ADNI.

We selected five evaluation metrics to evaluate our model
accurately. (1) Accuracy (Acc) is used to measure the proportion
of correctly classified samples. (2) Sensitivity (Sens), also known
as the true positive rate, is the proportion of predicted positive
results that are true positives. (3) Specificity (Spec) is the
proportion of correctly identified negatives. (4) F1-score (F1)
is the reconciled average of sensitivity and retrieval. (5) Area
Under ROC Curve (AUC) represents how the false-positive rate
increases with the true-positive rate and increases the area under
the characteristic curve. The aforementioned evaluation metrics
were calculated based on True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN), and these four
indicators form a confusion matrix.

In our study, sMCI and pMCI were referred to as positive
and negative examples, respectively. We can calculate accuracy,
sensitivity, specificity, and F1 as follows:

Acc =
TP + TN

TP + TN + FN + FP
(4)

SPE =
TN

TN + FP
(5)

SEN =
TP

TP + FN
(6)

F1 = 2 ×
TP

(2 × TP+ FP+ FN)
(7)
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FIGURE 4 | Data augmentation schematic. Three data augmentation were used to augment the data size: random rotation, horizontal flip, and random scaling.

Finally, we used the non-parametric bootstrap to construct
each evaluation metrics’ CIs. A total of 10,000 bootstrap replicates
were extracted from the test set, and the performance metrics
of the model on each bootstrap replicate were calculated.
This generated a distribution for each estimate and reported
95% bootstrap percentile intervals (2.5 and 97.5 percentile)
(Efron and Tibshirani, 1993).

Experimental Settings
The model was implemented in PyTorch. We used Stochastic
Gradient Descent (SGD) with a weight decay of 0.0001 and
momentum of 0.99 as our optimizer. A minibatch size of 16
and a cosine annealing learning rate with an initialized value
of 0.01 were used in training. Other hyperparameters are the
same as default values in MoCo (He et al., 2020). All unlabeled
data were used to train MoCo. We trained the classifier with
optimized cross-entropy loss and a learning rate of 0.001 in 100
epochs. The dataset was randomly split into training and testing
data with a ratio of 8:2. Optimal hyperparameters were selected
using fivefold cross-validation on the training set, and the optimal
model was chosen for model evaluation on the test set (Figure 5).
All experiments were run on NVIDIA GTX 2080.

RESULTS

Results of Different ResNet Models
Using a Two-Stage Model
In this part, we investigated the classification performance of
different Med3D pretrained CNN backbones on the test set,
including ResNet-18, ResNet-34, ResNet-50, and ResNet-101.
As highlighted in Table 2 and shown in Figure 6A, ResNet-
50 achieved the best performance with an accuracy of 0.819
and an AUC of 0.835, indicating complex models with more
parameters may not always work best. ResNet-50, the model with
the best performance, was used in our following experiments. The
confusion maps of different ResNet are shown in Figure 6B.

Results of Different Transfer Learning
Strategies Using ResNet-50
Table 3 and Figure 7 show the results of the comparison
of accuracy, sensitivity, specificity, F1, and ROC for different

transfer learning strategies (based on ResNet-50) mentioned in
section “Experimental Settings,” where the optimal results are
highlighted. As Table 3 and Figure 7A indicate, our method
achieves better results compared to other methods in terms of
accuracy (0.819), sensitivity (0.786), specificity (0.850), and F1
score (0.807). Similarly, Figure 7A shows ROC curves of different
transfer learning strategies, where our method has the best AUC
of 0.835 compared with other methods. The confusion maps of
different transfer learning strategies are shown in Figure 7B.

Results of the Relevant Brain Region
In this study, the 3D Grad-CAM method was used to identify
brain regions associated with sMCI or pMCI and improve the
interpretability of the model. After weight back-propagation of
trained models, we obtained average relevance heatmaps of each
class in the test dataset. For comparison, we highlighted temporal
superior, temporal middle, hippocampus, thalamus, precuneus,
cingulate in the automated anatomical labeling (AAL2)2 in
Figure 8 first row. Figure 8 second and third rows show each
class’s last convolutional layer’s attention heatmap. As shown in
Figure 8, the hippocampus, temporal superior, temporal middle,
thalamus, and cingulate are relevant for both sMCI and pMCI.
But precuneus is recognized as a unique feature of pMCI.

Comparisons With Previous Studies
We further used four evaluation metrics to compare our results
to previous state-of-the-art deep learning studies on sMCI/pMCI
classification published in the last 3 years, including accuracy,
sensitivity, specificity, and AUC. Table 4 summarizes the results
in relation to the literature, and the best results are indicated
by the bold text. In the classification tasks of sMCI and pMCI
using deep learning, our method achieves better or comparable
classification results in terms of accuracy, specificity, and AUC.

DISCUSSION

This study proposed a two-stage method that combined
contrastive learning and transfer learning for predicting
conversion from MCI to AD based on MRI. Pretrained models
from sizeable medical image datasets were used to initialize the

2http://www.gin.cnrs.fr/en/tools/aal-aal2/
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FIGURE 5 | Data spilt strategies.

TABLE 2 | Performance of different ResNet using two-stage model.

Encoder Acc (95% CI) Sens (95% CI) Spec (95% CI) F1 (95% CI)

ResNet-18 0.707 (0.674, 0.735) 0.679 (0.637, 0.720) 0.733 (0.698, 0.772) 0.691 (0.651, 0.723)

ResNet-34 0.716 (0.690, 0.741) 0.679 (0.644, 0.715) 0.750 (0.716, 0.790) 0.697 (0.670, 0.726)

ResNet-50 0.819 (0.798, 0.841) 0.786 (0.754, 0.821) 0.850 (0.815, 0.877) 0.807 (0.783, 0.834)

ResNet-101 0.759 (0.730, 0.783) 0.767 (0.731, 0.808) 0.750 (0.716, 0.785) 0.754 (0.724, 0.779)

The bold numbers denote the maximum value of each column.
Acc, Accuracy; CI, Confidence Interval; F1, F1-score; Sens, Sensitivity; Spec, Specificity.

FIGURE 6 | The ROC curve and confusion matrix of different ResNet using our two-stage model. (A) The ROC curve. (B) The confusion matrix. pMCI, progressive
mild cognitive impairment; sMCI, stable mild cognitive impairment.

model parameters and obtain general imaging features. Training
on unlabeled target datasets using contrastive learning was used
to get target imaging features. At last, the network was fine-tuned
using the labeled target dataset to complete the classification.

In addition, 3D Grad-CAM was used to highlight brain regions
potentially associated with pMCI/sMCI classification. We
demonstrated the validity of our model through multiple
evaluation experiments. The experiments showed that our model
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TABLE 3 | Performance of different transfer learning strategies using ResNet-50.

Acc (95% CI) Sens (95% CI) Spec (95% CI) F1 (95% CI)

Med3D 0.655 (0.630,0.682) 0.661 (0.623,0.702) 0.650 (0.609,0.685) 0.649 (0.619, 0.6768)

MoCo 0.733 (0.704, 0.756) 0.786 (0.747, 0.820) 0.683 (0.651, 0.725) 0.740 (0.712, 0.762)

Only ResNet-50 0.716 (0.694, 0.744) 0.750 (0.712, 0.789) 0.683 (0.656, 0.722) 0.718 (0.694, 0.744)

Med3D+MoCo 0.819 (0.798, 0.841) 0.786 (0.754, 0.821) 0.850 (0.815, 0.877) 0.807 (0.783, 0.834)

The bold numbers denote the maximum value of each column.
Acc, Accuracy; CI, Confidence Interval; F1, F1-score; MoCo, Momentum Contrast; Sens,Sensitivity; Spec, Specificity.

FIGURE 7 | The ROC curve and confusion matrix of different transfer learning strategies using ResNet-50. (A) The ROC curve. (B) The confusion matrix, respectively.
All the models in this figure use ResNet-50. Med3D, pre-trained ResNet-50 using Med3D and fine-tune the model to complete the classification of sMCI and pMCI;
MoCo, random initialization of weights, followed with the modified MoCo in the method to train the ResNet50 without using sMCI/pMCI labels. Then fine-tune the
model using labeled data and complete the classification; Only ResNet, random initialization of weights and training ResNet from scratch; Med3D+MoCo, our
two-stage transfer learning model; MoCo, Momentum Contrast; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.

outperformed both transfer learning and contrastive learning
individually and achieved better or comparable results than
previous state-of-the-art studies.

Several factors improve the performance of our classification
model. The first contribution is the proposal of a two-stage
model. Table 3 shows that the classification accuracy of ResNet-
50 trained from scratch on sMCI and pMCI is 6.03% higher than
that of ResNet-50 pre-trained in Med3D, implying that direct
transfer learning for two data sets that are not highly correlated
does not always achieve good results, and may even result in a
negative transfer. The performance of transfer learning is affected
by the various factors such as the size of pretrained samples,
the relevance of the source and target domains. Thus, not all
the transfer learning can improve the model’s performance (Huh
et al., 2016; Zhuang X. et al., 2019; Alzubaidi et al., 2020, 2021;
Mustafa et al., 2021). For example, Alzubaidi et al. (2021) found
that the model trained from scratch performed better than those
pretrained by ImageNet using three different medical imaging
datasets. This observation inspired us to develop a two-stage
model. Our two-stage model is sample efficient when compared
with existing transfer learning-based models for sMCI and pMCI
classification (Oh et al., 2019; Gao et al., 2020; Bae et al., 2021).

In each of these studies, additional AD and NC samples were
collected for training. But our model does not require additional
data collection, makes full use of each sample, and produces
better or equivalent results. For example, Bae et al. (2021)
developed a transfer learning model based on 3D ResNet29. In
the source task, the model is pretrained using MRI scans of 2,084
normal samples and 1,406 AD samples. Then they used pMCI
and sMCI samples to fine-tune the model to accomplish the target
task of classifying pMCI and sMCI. In comparison to our results,
they got the same accuracy but lower AUC.

To the best of our knowledge, we are the first to use the MoCo
pretrained model for sMCI and pMCI classification. Compared
with the models, only pretrained by Med3D and ResNet-50
trained from scratch, our method improved accuracy by 16.4
and 10.3%, respectively, further demonstrating the importance
and efficiency of including contrastive learning into our method.
Pretraining by contrastive learning allows the model to have
a feature representation with better generalization at the same
domain of the target task (Sun et al., 2019). Recent studies have
shown that fine-tuning on a well-trained contrastive learning
model can achieve comparable or even better results than fully
supervised learning (Wu et al., 2018; Zhuang C. et al., 2019),
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FIGURE 8 | The heatmap of related brain region our model focuses on. The first row is a golden standard of temporal superior, temporal middle, hippocampus,
thalamus, precuneus, cingulate in automated anatomical labeling (AAL2, http://www.gin.cnrs.fr/en/tools/aal-aal2/). The second and third rows show brain regions
that our model focuses on more on sMCI and pMCI, respectively. pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.

TABLE 4 | A summarized comparison of state-of-the-art research on MRI using deep learning in sMCI and pMCI classification.

Research Conversion time sMCI/pMCI number Network Acc Sens Spec AUC

Liu M. et al. (2018) 36 Months 100/164 Landmark detection and 3D CNN 0.77 0.42 0.82 0.78

Liu J. et al. (2018) 18 Months 160/120 Whole brain hierarchical network 0.72 0.75 0.71 0.72

Lin et al. (2018) 36 Months 139/169 2D CNN 0.79 0.86 0.68 0.83

Shmulev and Belyaev (2018) 60 Months 532/327 3DResNet/VoxCNN 0.62 0.75 0.54 0.70

Shi et al. (2018) 18 Months 56/43 2D Deep polynomial network 0.79 0.68 0.87 0.80

Basaia et al. (2019) 36 months 253/510 3D CNN 0.75 0.75 0.75 NA

Li et al. (2019) 36 months 95/126 Self-weighting grading biomarker 0.69 0.82 0.51 0.70

Oh et al. (2019) 36 months 101/106 3D CNN + Transfer learning from CN/AD 0.73 0.77 0.71 0.79

Spasov et al. (2019) 36 months 228/181 3D CNN 0.72 0.63 0.81 0.79

Abrol et al. (2020) 24 Months 409/217 2D Multiscale Deep Neural Network 0.75 0.73 0.76 0.71

Gao et al. (2020) 36 Months 129/168 3D CNN + Transfer learning for AD age prediction 0.81 0.76 0.77 0.76

Pan et al. (2020) 18 Months 173/105 CNN and ensemble learning 0.62 NA NA 0.59

Wen et al. (2020a) 36 Months 298/295 3D CNN 0.74 0.80 0.68 NA

Bae et al. (2021) 36 Months 222/228 3D ResNet29 + Transfer learning from CN /AD 0.82 0.72 NA 0.83

Guan et al. (2021) 36 Months 401/197 3D CNN 0.79 0.55 0.84 0.78

Zhang J. et al. (2021) 18 Months 251/162 3D DenseNet + Attention 0.79 0.75 0.82 0.86

Our 36 months 297/280 3D ResNet and transfer learning from self 0.82 0.79 0.85 0.84

The bold numbers denote the maximum value of each column.
Acc, Accuracy; AD, Alzheimer’s disease; AUC, Area Under Curve; F1, F1-score; NC, Normal control; pMCI, progressive mild cognitive impairment; Sens, Sensitivity;
Spec, Specificity; sMCI, stable mild cognitive impairment.

which is consistent with our findings. In addition, one of the
critical factors limiting the performance of contrastive learning
is the slow convergence rate (Chen T. et al., 2020; Chen X.
et al., 2020; Tian et al., 2020). As shown in Table 3, compared
with MoCo trained from scratch, our method improved accuracy
by 6.89%, which indicates that transfer learning can accelerate

the convergence of the MoCo model and improve the model
performance. MoCo and transfer learning can reinforce and
complement one other.

In addition, our model uses complete 3D MRI as model input.
Unlike models using 2D slices, the 3D model makes full use of the
spatial information of the brain to improve the accuracy of the
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model (Wen et al., 2020b). Furthermore, some previous studies
used feature engineering or cherry-picked regions of interest as
input features (Gerardin et al., 2009; Ahmed et al., 2014; Basaia
et al., 2019), which ignored the contributions of other features
in the model, resulting in information loss in some cases. For
example, Basaia et al. (2019) chose brain gray matter to train the
model, neglecting the role of cerebrospinal fluid or white matter
in early diagnosis of AD (Jack et al., 2010; Weiler et al., 2015).
Our model differs from the previous studies by using an end-to-
end model to learn from all possible features in medical images,
which improves model performance.

In Figure 8, the hippocampus, temporal, and thalamus
are highlighted in both sMCI and pMCI. Hippocampus and
amygdala in the middle temporal lobe have been considered as
crucial brain regions for the diagnosis of early AD (Visser et al.,
2002; Braak and van Braak, 2004b; Burton et al., 2009; Costafreda
et al., 2011). The hippocampus is essential for memory formation,
and the recent studies have found that the hippocampus atrophy
of pMCI is more pronounced than sMCI (Devanand et al.,
2007; Risacher et al., 2009; Costafreda et al., 2011). Similarly,
the amygdala, which is primarily responsible for emotion and
expression, is intimately linked to emotional changes of AD, such
as anxiety and irritability (Unger et al., 1991; Poulin et al., 2011).
Thalamic damage is associated with decreased body movement
and coordination, attention, and awareness in AD (Braak and van
Braak, 2004a; de Jong et al., 2008; Cho et al., 2014; Aggleton et al.,
2016). In addition to the hippocampus and temporal, which have
been widely studied in AD, our heatmap also reveals that pMCI
is also closely related to the precuneus with high-level memory
and cognitive functions, which is in line with the previous studies
(Whitwell et al., 2008; Bailly et al., 2015; Perez et al., 2015;
Colangeli et al., 2016; Kato et al., 2016; Zhang H. et al., 2021). The
results, as mentioned earlier, further indicate that some structural
brain region abnormalities play an important role in predicting
early AD. In summary, our discovery of important brain regions
is supported by abundant literature, which helps construct a more
comprehensive brain biomarker atlas to predict MCI progression.

CONCLUSION

In conclusion, our two-stage model increases both the accuracy
of early AD detection as well as the transparency of the model.
Notably, a comprehensive comparison of different 3D ResNet
networks provides references for related research. Furthermore,
the combination of transfer learning and contrastive learning
solves the negative transfer problem and alleviates the model
overfitting problem due to a lack of medical data. Notably, it
also substantially improves the diagnostic performance of this
tricky classification problem in neuroscience. Our model only
uses low-invasive, low-cost, and widely available MRI data, which
significantly expands the application scenarios of the model.

However, this study also has some limitations that merit
additional exploration. First of all, we will explore more

options for the model’s various modules, such as different
data augmentation methods and pretrained models on model
effectiveness. When a larger dataset becomes available, we will
also continue to validate our model. At final, it is worth noting
that a direct comparison of different methods using the same
evaluation metrics is straightforward but may not be the optimal
solution. Factors such as sample size, dataset split strategy,
sMCI, and pMCI definitions, and test data selection can have
an impact on model outcomes. A more statistically robust
comparison should be proposed in our future studies. Despite
these limitations, our model provides a new solution to avoid
overfitting because of the insufficient medical data and allows
early identification of AD.
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