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Abstract

The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the
1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression
Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing
projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of
the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies.
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Introduction

The 1000 Genomes Project was launched in 2008 to establish a
deep catalogue of human genetic variation that could serve as a
baseline for further research into the relationship between
genotype and phenotype and for identifying the genetic basis of
human disease. At the conclusion of the data generation phase
in 2013, the project had amassed 92 terabases of whole genome
and whole exome sequences.

Raw data were submitted by the sequencing centers to the se-
quence read archive as they were generated. Following a coordi-
nated process, data were assessed for quality, aligned to the
reference human genome assembly and sequence variants identi-
fied [1]. Although raw and processed data were made publicly
available as soon as possible, the project conducted and published
more comprehensive analyses in three phases characterized by
the number of individuals included in the analysis: 180 in the pilot
phase, 1092 in phase 1 and 2504 in phase 3 (phase 2 referred to
data production only) [2-4]. The final analysis, published in
October 2015, incorporates 26 populations from Africa, Asia,
Europe and America and contains 88.3 million variants including
84.4 million bi-allelic single nucleotide variants (SNVs), 3.4 million
bi-allelic indels and 60 000 structural variants (SVs) consisting of
large insertions, deletions, inversions and copy number variants
(CNVs). Powered by new variant discovery algorithms, the final

release also included ~475 000 multi-allelic SNVs and indels. In
addition, all individuals and their first-degree relatives (when avail-
able) were genotyped using high-density microarrays to enable
confident phasing and haplotype estimation [4]. The final data set
captured > 99% of SNVs with > 1% minor allele frequency (MAF),
95% of SNVs with >0.5% MAF and > 80% indels of MAF > 0.5%. The
heterozygous genotype accuracy was 99% for both SNVs and
indels. The variants arising from the three consortium publications
were deposited into the NCBI database of single nucleotide poly-
morphisms (dbSNP). As of dbSNP version 141, 61% of the variants
in the database were contributed solely by the 1000 Genomes
Project and 58% of those not contributed solely by the 1000
Genomes had been validated by the project’s results.

While the final 1000 Genomes data set has only recently be-
come available, the data releases that characterized the earlier
phases of the project have already given the wider scientific
community ample time to use the data described in the pilot
and phase 1 publications. Although the three main 1000
Genomes papers have been collectively cited several thousand
times, it is surprisingly difficult to catalog complete usage of the
data due in part to the complete openness with which the data
can be downloaded and redistributed. In the following sections,
we will review some of the studies that have leveraged the 1000
Genomes data to illustrate its broad utility.

Xiangqun Zheng-Bradley was a member of the 1000 Genomes Data Coordination Centre and currently works on the International Genome Sample

Resource.

Paul Flicek was a member of the steering committee and co-chair of the Data Management group of the 1000 Genomes Project. He leads the Vertebrate

Genomics Team at EMBL-EBI.

© The Author 2016. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

163


http://www.oxfordjournals.org/

164 | Zheng-Bradley and Flicek

Genotype imputation

A major motivation for the 1000 Genomes Project was to provide
a dense marker set for the imputation of genotypes in Genome-
wide Association Studies (GWAS).

GWAS is a modern and powerful approach for the unbiased
mapping of genomic regions associated with specific pheno-
types, and it complements other methods of disease gene dis-
covery. Years before the first successful GWAS, the technique of
linkage mapping from well-chosen pedigrees successfully iden-
tified the causative genes for a number of Mendelian diseases.
However, linkage mapping is not feasible for common diseases
such as obesity, high blood pressure or diabetes, where multiple
loci and variants contribute to disease susceptibility. Mapping
complex-trait loci is difficult for a number of reasons, including
that the effect size of each risk locus/variant is too small to be
detected by linkage mapping, and these characteristics were
originally thought to be better suited to candidate gene studies
[5]. However, in practice, genes identified by candidate
approaches are no longer considered reliable as they often fail
to replicate [6]. As an alternative, Risch and Merikangas con-
ceived genome-wide association in 1996 as a method to detect
individual causal variants with small effect sizes using popula-
tion-level linkage disequilibrium [7]. However, the technology
necessary to genotype the required hundreds of thousands or
millions of markers in thousands or tens of thousands of indi-
viduals did not become feasible until a decade later. In 2007 the
Welcome Trust Case and Control Consortium reported one of
the first successful large-scale GWAS, using arrays with ap-
proximately 500 000 markers and the genotypes of 2000 individ-
uals from each of seven common diseases and 3000 shared
controls [8]. As of 13 March 2016, according to the NHGRI-EBI
GWAS catalog, 2414 GWAS studies have been published and
curated with 16 696 unique SNV-trait associations [9].

Most commonly, the location of the significant trait-
associated variants in a GWAS study are outside gene coding re-
gions, and those variants with genome-wide significance only
account for a small portion of the observed heritability of the trait
[10]. These results were initially surprising and have led some
critics to argue against the biological relevance of GWAS.
However, it is now clear that replicated GWAS regions represent
robust biology and are appropriate for comprehensive follow-up
studies [11]. That the nature of GWAS results was initially un-
expected might have stemmed from the ‘common disease-
common variant’ hypothesis that GWAS was based on. The
hypothesis states that a common disease arises because the
disease-causing variants are of relatively high MAF in the popula-
tion [7, 12]. Building on this assumption and the idea that genic
variants would more likely be functional, the initial genotyping
arrays used for GWAS were biased toward finding associations
with both common and coding variants.

Today’s GWAS typically assay SNVs using microarrays, and
many of the hundreds of thousands or millions of SNVs on
these arrays are ‘tag SNVs’ that help to identify known haplo-
types. Using a reference panel of haplotypes, imputation com-
putationally fills in other SNVs on the tagged haplotypes. The
final individual genotype then has contributions from both the
array data and from imputation and is used for genome-wide
association that is at higher resolution than would be possible
from the array alone and at lower cost than whole genome
sequencing. Before the 1000 Genomes data became available,
the imputation panel used in most situations was HapMap, a
microarray-based variant catalogue and associated haplotype
map eventually containing 3.8 million variants with >5% MAF

[13]. GWAS using this panel led to some discoveries in disease
molecular mechanisms [14, 15], but as the total number of SNVs
in the panel is relatively small and these SNVs have the biases
toward coding and more common variation described above,
the possibility of new insight was limited [8, 16-20].

The release of the 1000 Genomes phase 1 variant catalogue
in 2011 inspired a collection of papers describing the fine map-
ping of genomic loci previously identified by GWAS. These re-
sults identified new and previously missed functional variation
giving further insight into the molecular basis of coeliac disease
[21], prostate cancer [22], glioma [23], type 2 diabetes [24, 25],
coronary artery disease [26], epithelial ovarian cancer [27],
breast cancer [28], glycaemia and obesity [29] and other dis-
eases. Some studies used population-specific variant panels
derived from the 1000 Genomes data to identify differences in
disease genetic architecture between populations [24]. The in-
clusion of a comprehensive collection of indels and SVs in the
1000 Genomes-based imputation panels also helped to identify
previously missed, but significantly associated, indels and SVs
in existing GWAS [30, 31].

Given the comprehensive nature of the 1000 Genomes phase
3 variant catalogue, using this data set as an imputation panel,
instead of either HapMap or earlier 1000 Genomes releases, will
significantly increase the number of imputed variants, as dem-
onstrated by an example GWAS for age-related macular degen-
eration [4]. Imputation accuracy is similar for common variants
using either the 1000 Genomes phase 1 or phase 3 data sets, and
better results for rare variants are achieved when using the
phase 3 data set. However, even with the newest 1000 Genomes
data, imputation accuracy for rare variants remains limited es-
pecially for non-African populations [4]. Finally, although the
1000 Genomes data are extremely valuable for imputation, they
are not appropriate for use directly as a control population in
GWAS owing to the variety of populations included.

Prioritize variants for pathogenicity

With the ever-reducing cost of DNA sequencing, many exome
sequencing and cancer genome sequencing projects have set
out to find disease-causing novel or rare variants shared among
related and unrelated affected individuals. On average, exome
sequencing identifies approximately 20 000 SNVs per individual
in normal tissue and often more from cancer samples. A major-
ity of these are known and assumed harmless variants that
must be filtered to effectively narrow the investigation to rare
or novel variants in the search for pathogenic mutations. The
1000 Genomes Project variants, together with those from other
public resources such as dbSNP and the National Heart, Lung
and Blood Institute Exome Sequencing Project (ESP), have been
widely used to establish novelty for variants discovered in re-
sequencing projects [32-34]. Assessing pathogenicity of variants
by novelty is based partly on the assumption that the known’
variant collections are free of disease-causing variants.
However, as the individuals sequenced by the 1000 Genomes
Project were not phenotyped at the time of sampling and their
health status and medical histories are not known, they may be
carriers of pathogenic variants, especially in recessive disease
loci [35]. Therefore, a better approach to avoid filtering out true
pathogenic variants is to set a MAF cutoff suitable for specific
disease and population based on a high-penetrance disease
model [35].

An innovative use of the 1000 Genomes data for prioritizing
variants is to use the data to categorize genes and genomic



regions based on their evolutionary characteristics. Variants
from a re-sequencing study can then be sorted into those that
reside in genomic regions under strong natural selection and
those that do not. The basic idea is that rare variants (MAF
< 0.5%) tend to be recent events and their enrichment can be
used to evaluate the strength of purifying selection on a region.
The fewer the rare variants in a region, the stronger the purify-
ing selection is for the region. Additional information such as
GWAS signals and expression qualitative trait loci (eQTLs) can
eventually overlay the evolutionarily significant alleles to pri-
oritize variants that are linked to phenotypes. Evidence of posi-
tive selection within the areas under purifying selection can
also be signatures for functional importance as variants with
MAF that differs drastically among different continental popula-
tions are good indications for positive selection [34, 36]. This
method of assigning functional importance to genomic areas
based on population variant data complements information
from multi-species sequence conservation, because regions
conserved among mammals can became nonfunctional in re-
cent evolutionary history [37]; this has been used to prioritize
variants discovered from cancer ESPs [34]. A genome browser
that enables visualization of different levels of natural selection
throughout the genome was developed using the 1000 Genomes
Project data [38].

More complex and ambitious variant classification methods
have also benefited from the 1000 Genomes data. For example,
the Genome Wide Annotation of Variants (GWAVA) algorithm in-
tegrates many complementary information sources, including
functional and evolutionary data, using a modified random forest
approach to predict which regulatory variants are more likely to
be pathogenic [39]. GWAVA uses several control data sets from
the 1000 Genomes Project as part of its training. A separate vari-
ant annotation program, the Combined Annotation-Dependent
Depletion (CADD) framework, also integrates multiple data types,
but using a support vector machine, to distinguish benign from
pathogenic variation [40]. CADD uses the 1000 Genomes data to
identify recent sequence changes that have become fixed or
nearly fixed in the human lineage and then treats these as indi-
cative of benign mutations. This benign set is compared with an
equal number of simulated mutations as part of the CADD
training.

Evolutionary genetics and population history

Human genetic variation was largely shaped by the random
process of genetic drift and to some degree by population fit-
ness advantages of natural selection, which can include purify-
ing selection to eliminate deleterious variants and positive
selection to accumulate advantageous variants [41]. Although
natural selection is not the main force behind most of the vari-
ation in the human genome, it has been of key interest to popu-
lation geneticists because of the insight it provides into the
history of human molecular evolution and its implications for
human genetic models of diseases. Over the past few years, the
1000 Genomes data have been extensively analyzed to address
questions of natural selection and population history. Here we
will give some examples of such analyses.

A well-understood model of positive selection is the select-
ive sweep, in which a recent advantageous variant is quickly
fixated in the population. These events generally result in an
unusually long haplotype of low diversity as the nearby neutral
variants piggyback with the advantageous variant in the sweep.
As reviewed by Fu et al., one example supporting this model is
the well-studied lactase persistence alleles, which are prevalent
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in Europeans but essentially absent from the non-European
populations [41]. Another example concerns Tibetans whose
adaptations to their high altitude environment are apparently
the result of a fast fixation of variants in the EPAS1 locus, a
hypoxia-inducible factor previously associated with athletic
performance [42], which may regulate tissue oxygenation at
high altitudes [43].

Data from the 179 samples of the 1000 Genomes pilot project
were used to identify the extent of which classic selective
sweeps have been a feature of recent human evolution. This
analysis found a decrease in genetic diversity around exons and
conserved noncoding sequences, which fits the expectation of a
recurrent-sweep model, but, surprisingly, the diversity around
human-specific non-synonymous substitutions was not greater
than around synonymous substitutions. Moreover, relative to
the genome background, amino acid and putative regulatory
sites were not significantly enriched in alleles that are highly
differentiated between populations. Based on these observa-
tions, Hernandez and colleagues concluded that while positive
selection is common, fast fixation of a newly occurred beneficial
variant by strong selection as suggested by the classic selection
sweep model is rare [44]. Other studies using the 1000 Genomes
data have investigated different models of positive selection
[45, 46].

Although some estimates of the contribution of purifying se-
lection within human regulatory regions have been controver-
sial [37, 47, 48], statistical analysis of the 1000 Genomes data
has provided evidence that purifying selection is prevalent and
that there is functional constraint in human noncoding se-
quences [49, 50]. Purifying selection not only affects SNVs: by
analyzing the indels found in the 1000 Genomes pilot samples,
Montgomery et al, found that indels inside functional se-
quences are generally exposed to stronger purifying selection
than SNVs; and the length of indels is directly correlated with
the selection strength [31].

The distribution and sharing of 1000 Genomes variants
within and between populations have been modeled to further
understanding of human population history and demography.
Extensive analyses of the 1000 Genomes data found that
African populations carry a larger genetic diversity than non-
African populations. While a majority of common variants are
shared globally, African populations have the most continental
and population-specific variants; in contrast, European and
American populations have the least. Statistical modeling of
the data essentially confirmed the out-of-Africa theory of
human origin and showed a strong and sustained population
bottleneck shared among European, Asian and American popu-
lations 15 000-20 000 years ago. The bottleneck experienced by
the African populations during the same period is much less se-
vere. After the bottlenecks, all but a few populations had recent
explosive increases in population sizes [2-4]. Using the 1000
Genomes pilot data, Gravel and colleagues were able to derive
demographic parameters for the out-of-Africa model for
African, European and Asian descent [51]. Calculations based on
the 1000 Genomes Project data from American populations—
Colombian, Mexican-American and Puerto Rican—gave good es-
timates of the genetic contributions of European, African and
Native American ancestries to these admixture populations and
filled in details of recent human migration history [52]. Analysis
of the high coverage data from the 1000 Genomes pilot trios pro-
vided evidence for extensive gene flow between Africa and
Europe after the divergence of the populations [53].

As demonstrated by the above examples, the 1000 Genomes
Project data have facilitated the detection of increasingly subtle
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signatures of natural selection and enabled statistical tests of
different models. The data also offer detailed insight into
human demography and population history.

The impact of genetic variations on gene expression

Using genetic variation data provided by the 1000 Genomes
Project has significantly deepened our understanding of tran-
scriptional regulation and its association with diseases. We will
review some examples in this section following some back-
ground regarding gene regulation.

In the past 10 years, advances in sequencing techniques rev-
olutionized both genome and exome sequencing and the way
gene expression is measured. Transcriptome assessment with
RNA-seq generates sequence reads from either the entire collec-
tion or an enriched fraction of RNA (such as enriched for
polyA-+) prepared from cells. The reads are aligned back to a ref-
erence genome or transcriptome and the read depth at each
position is correlated with the abundance of the RNA and the
intron/exon structure can be estimated from the coverage of se-
quence reads [54]. Unlike previous-generation hybridization-
based microarray techniques, RNA-seq does not require prior
knowledge of gene and transcript sequences and can be of
much higher throughput.

With the advances in RNA-seq and the wealth of genetic
variation data created by large-scale efforts such as the 1000
Genomes Project, it is increasingly possible to conduct direct in-
vestigations into both the genetic basis for gene expression
regulation and the impact of genetic variations on traits at the
cellular and organism level [55]. Genetic variation responsible
for regulating gene expression can often be found by identifying
eQTLs, which are genomic regions where sequence variation is
correlated with gene expression variation. eQTL mapping lever-
ages statistical methods developed to link continuous pheno-
typic (i.e. trait) measurements to genotypic data, but is unlike
standard QTL mapping in scale. For example, scanning the
human genome for eQTLs generally involves millions of com-
parisons between observed alleles and the measured gene ex-
pression phenotypes.

In 2007, large-scale genome-wide eQTL mapping was first re-
ported using genetic markers from the HapMap project and
gene expression measurements collected from lymphoblastoid
cell lines (LCLs) of the HapMap samples using whole-genome
gene expression microarrays [56, 57]. The studies identified
SNVs or CNVs that have association signals in cis with the ex-
pression of a few thousand genes. However, those studies were
underpowered for finding association signals in trans and the
density of the eQTLs was limited. The resolution of such eQTL
mapping was enhanced by using RNA-seq to measure gene ex-
pression at the transcriptome scale [58, 59].

With the much denser 1000 Genomes genetic variation map,
came larger efforts to systematically map eQTLs using RNA-seq
data. For example, the GEUVADIS consortium assessed
transcriptome-wide mRNA and microRNA (miRNA) levels by
RNA-seq in 465 LCLs that were sequenced by the 1000 Genomes
Project [60]. The 465 LCLs are from 5 populations and 423 of them
were included in the 1000 Genomes phase 1 release (the remain-
ing 42 samples were analyzed later by the 1000 Genomes Project
and the GEUVADIS study used imputation based on the 1000
Genomes phase 1 variants). The linkage analysis between the
transcriptome variations and genetic variations revealed eQTLs
for 3773 genes and eQTLs affecting ratios of alternatively spliced
transcripts for 639 genes, creating a comprehensive catalogue of
cis-regulatory genetic variants in a single cell type. Although

most common effects had been captured by HapMap3 genotype
arrays, many of the most significantly associated eQTL variants
were novel sites found by the 1000 Genomes Project [61].

In addition to SNVs, the 1000 Genomes resource contains
the most comprehensive collection of short indels [4, 31] and
larger SVs [62, 63]. eQTL mapping using these data sets suggest
that while all types of variants contribute to eQTL identification,
indels [31, 60] and CNVs [64] are over-represented compared
with SNVs for association with expression variation traits, espe-
cially considering the relative counts of indels and CNVs are
much smaller than those of SNVs. Further analysis showed that
frame-shift indels of length 1, 2, 4, 5bp were enriched for exon-
level gene expression association compared with in-frame
indels of length 3 bp, indicating the action of nonsense-
mediated decay [31]. In a more recent study, the 1.3 million
indels from the 1000 Genomes phase 1 were imputed into three
previously published eQTL data sets and used to establish a
comprehensive tissue-specific map of indel eQTLs designed for
interpreting GWAS hits; the authors anticipate an even better
discovery rate using the phase 3 of 1000 Genomes data [65].

Investigations into the biological mechanisms behind gene
expression regulation have also benefited from the 1000
Genomes Project data. Genetic variants are known to influence
RNA abundance if they alter regulatory elements or change the
copy number of genes; they can also influence the relative
abundance of alternative spliced RNAs if they interrupt splice
sites, stop codons or reading frames. By systematically catego-
rizing regions enriched for or lacking rare genetic variants, the
1000 Genomes data have helped to assess the functional im-
portance of the regulatory elements such as promoters [66] and
splice sites [67].

Methods combining 1000 Genomes genetic variants, RNA-
seq data and functional regulatory annotation from sources
such as the ENCODE project [68] or the Ensembl Regulatory
Build [69] can prove powerful in uncovering the molecular
mechanisms behind eQTLs. For example, Gaffney and col-
leagues have found that close to half of all eQTLs they identified
occur in open chromatin, and that they are highly enriched in
transcription factor binding sites [70]. The eQTLs found in the
GEUVADIS project are also highly enriched in noncoding regula-
tory elements from the Ensembl Regulatory Build, including
transcription factor binding sites, DNasel hypersensitive sites,
active promoters and strong enhancers [60]. These kinds of
studies both help to explain the biological mechanism of eQTLs
and enable the discovery of putative causal variants in GWAS of
various diseases.

Another mechanism of gene expression regulation is
through noncoding RNAs such as long intergenic noncoding
RNA and short RNA molecules such as miRNA. Rich genetic
variation data in noncoding RNA and their target genes are use-
ful in investigating the regulatory effect of noncoding RNAs on
gene expression. In one example, combining genetic variants
from the 1000 Genomes Project and gene expression data col-
lected by four earlier studies, Lu and Clark identified SNVs and
indels inside miRNA loci that were strongly associated with the
expression level of at least one of the predicted miRNA target
genes [71]. They also discovered thousands of variants in the
miRNA target genes associated with the abundance of these tar-
get genes. Interestingly, the associated SNVs and indels were
significantly enriched in the 3'UTR compared with introns; the
enrichment was even more significant for long indels >100bp.
As miRNA target sites are known to mostly locate at the 3'UTR
of the target genes, it is likely that the enriched association sig-
nals in the 3'UTR directly impact on the target recognition of



miRNA [71]. More recently, 1000 Genomes data were used to es-
tablish comprehensive genetic variation maps of human
miRNA [72] and variation maps of miRNA recognition element
seed sites [73], allowing efficient investigations of eQTLs in the
miRNA genes.

Other applications

In addition to the above four categories of common applications,
the 1000 Genomes data have been used widely for other pur-
poses. For example, the data were used by the Genome Reference
Consortium (GRC) to improve the human reference genome
at several thousand locations by identifying ‘a number of bases
and indels in GRCh37 that were never seen in any individuals,
suggesting they may represent errors in the assembly’ (http://
genomeref.blogspot.co.uk/2013/12/announcing-grch38.html). The
1000 Genomes data also contributed to the GENCODE pseudo-
genes resource by highlighting a list of pseudogenes that are
potentially under selection [74].

When mapping short sequence reads to a reference genome,
alignments around indels are error prone, leading to false SNVs
that are called around indels. A functionality known as
IndelRealigner included in the GATK toolkit makes use of
known indels and improves the alignment around them
(https://www.broadinstitute.org/gatk/gatkdocs/org broadinsti
tute_gatk_tools_walkers_indels_IndelRealigner.php). The indel
data set from Mills et al. [75] has been widely used as the known
indels for IndelRealigner, and we anticipate that because of its
completeness and high validation rate, the 1000 Genomes phase
3 indels will be used for this purpose in the future.

As the 1000 Genomes Project data is readily available and
free to use, it has found value as a good test data set for de-
veloping computational tools and statistical models in cases
that do not require data from trios or related individuals. In one
such example, 1000 Genomes data were used as a test set to ver-
ify the genomic segmentation model derived from the human-
orangutan alignment [76]. In a more recent example, a novel
computational protocol was developed to screen for spinal mus-
cular atrophy carriers based solely on individual exome data.
The authors used the 1000 Genomes samples as test data and
found that the carrier frequencies in multiple populations
match with those reported in the current literature [77].

High-throughput genotype arrays such as Affymetrix
GeneChips and Illumina BeadChips are capable of assaying 1 mil-
lion or more SNVs at one time and have played a key role in find-
ing disease associations in various GWAS. The content of these
chips has generally been derived from human genetic variation
catalogues produced by large international consortia, with earlier
versions based on HapMap data and today’s newest chips on the
1000 Genomes data. Different manufacturers have different crite-
ria to select tag SNVs based on their specific requirements of gen-
ome coverage, population and cost for performing the assays in
hundreds or thousands of samples [78-80].

Discussion

In the 5 years since the first release of the 1000 Genomes results,
the research community has embraced this comprehensive re-
source of human genetic variation and a flagship example of an
open data project. As a result, many studies have been pub-
lished using the 1000 Genomes Project data. Four main applica-
tions of the 1000 Genomes data have dominated the usage thus
far. First is imputing un-assayed genotypes for GWAS. The com-
pleteness of the catalogue, especially the inclusion of rare
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variants with MAF as low as 0.1%, significantly improves the
resolution for GWAS, leading to discoveries of new and previ-
ously missed causal variants with biological significance for
many diseases. Second is to aid screening for pathogenic vari-
ants in exome sequencing or cancer genome sequencing pro-
jects on well-defined disease cohorts. The 1000 Genomes data
can be used to filter out common germ line variants that are not
pathogenic. Additionally, the 1000 Genomes data can be used to
measure the level of purifying selection. Chromosomal regions
that are under high purifying selection pressure tend to be func-
tionally important; variants inside these regions are more likely
to be causal for certain phenotypic traits. Third, as the 1000
Genomes data are a dense catalogue of human genetic variants
with genotype data in many different populations across the
globe, it is naturally a good resource for population genetics.
Investigations into the signatures of natural selection, adapta-
tion, human origins and population migration history have all
used the data effectively. A fourth major application arises by
combining 1000 Genomes data with RNA-seq data and func-
tional regulatory annotation data to identify and characterize a
comprehensive list of eQTLs and to prioritize GWAS hits by
their associations with eQTLs. Many of the projects that have
used the 1000 Genomes Project data are themselves character-
ized by open science principles and a comprehensive survey of
whether studies using the 1000 Genomes data are more likely to
be open would be interesting.

One may question the future usefulness of the 1000
Genomes data as newer whole genome sequencing projects are
carried out or proposed with even more samples. One such pro-
ject, the UK10K project, used a low-coverage whole-genome
sequencing strategy to identify variants from close to 4000
healthy individuals from two well-studied British cohorts; fur-
thermore, they searched for causal mutations for three types of
diseases (rare disease, severe obesity and neurodevelopmental
disorders) by high-coverage exome sequencing of 6000 patients
[81]. The variants discovered from the 4000 healthy individuals
have been used as an imputation panel for the GWAS analysis
on the 6000 diseased individuals [82]. Another project, funded
by the UK government, plans to sequence 100 000 whole gen-
omes from patients registered and treated by the National
Health Service by 2017 (http://www.genomicsengland.co.uk/
the-100000-genomes-project/). For both the UK10K project and
the 100 000 Genomes project, the data sets are derived solely
from the British population and, while they may be more useful
for imputing missing genotypes in GWAS of British or other
European populations, they do not have the global diversity of
the 1000 Genomes Project. In addition, these two projects repre-
sent genome sequences from individual patients or various dis-
ease cohorts and they may not be suitable for all of the
applications reviewed here. Finally, unlike the 1000 Genomes
Project data, which is completely open to the entire community,
essentially all larger, disease-related projects will have various
access policies to their data to ensure participant or patient
privacy. Thus, we can predict, as a public human genetic vari-
ation reference, the 1000 Genomes data will continue to be use-
ful because of the unique combination of its high quality, global
diversity, unbiased health status of the project participants and
the open data access policy.

The 1000 Genomes Project has finished, but with the support
of the 1000 Genomes Project consortium and funding from the
Wellcome Trust, the data resource will be maintained and im-
proved. This extension to the 1000 Genomes Project is known as
the International Genome Sample Resource (IGSR) and has re-
cently finished re-mapping of all 1000 Genomes sequencing
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reads to the recently released GRCh38 human reference assem-
bly, and will soon release variant calls native to the new assem-
bly. These updated alignment and variant sets will benefit from
the error correction and gap filling in the new assembly. The
IGSR will expand the global catalogue of freely available se-
quence information by incorporating new data generated using
the 1000 Genomes model of consent for open data sharing.
Expected future data sets include data from Russian samples,
additional African populations and whole genome sequences
from the Simons Genome Diversity Project. From samples with
genome sequences already included in the resources, the IGSR
will also collect complementary functional genomics data sets
including RNA-seq, ChIP-seq or other epigenomics data sets, as
long as there is data for at least two sub-populations of 100 indi-
viduals. For example, RNA-seq data for European populations
was generated by the GEUVADIS project [60] and will soon be
available for African populations. Through these efforts, we be-
lieve that the 1000 Genomes Project and the IGSR will continue
to serve the science community in many different ways well
into the future. To enhance data accessibility, IGSR developed a
new data portal, http://www.internationalgenome.org (also
available at http://www.1000genomes.org), which lists all popu-
lations and samples of the project and also supports the query
and download of data files for specific samples.

Key Points

The 1000 Genomes resource contains a comprehensive
collection of genetic variants in the human genome,
all phased onto high-quality haplotypes.

As a dense imputation panel, 1000 Genomes data have
been used to discover new and previously missed causal
variants in many Genome-wide Association Studies.

The 1000 Genomes data offers a great insight into
human evolution and population history.

Combining 1000 Genomes data, RNA-seq data and
functional annotations of regulatory elements is a
powerful way to study gene expression regulation.

The 1000 Genomes data will be maintained and im-
proved by a new project known as the International
Genome Sample Resource.
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