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Abstract

Introduction

The aim of the current study was to determine the effect of general anesthesia on neonatal

brain activity using amplitude-integrated EEG (aEEG).

Methods

A prospective cohort study of neonates (January 2013-December 2015), who underwent

major neonatal surgery for non-cardiac congenital anomalies. Anesthesia was administered

at the discretion of the anesthetist. aEEG monitoring was started six hours preoperatively

until 24 hours after surgery. Analysis of classes of aEEG background patterns, ranging from

continuous normal voltage to flat trace in six classes, and quantitative EEG-measures,

using spontaneous activity transients (SATs) and interSATintervals (ISI), was performed.

Results

In total, 111 neonates were included (36 preterm/75 full-term), age at time of surgery was

(median (range) 2 (0–32) days. During anesthesia depression of brain activity was seen,

with background patterns ranging from flat trace to discontinuous normal voltage. In most

patients brain activity was two background pattern classes lower during anesthesia. After

cessation of anesthesia, recovery to preoperative brain activity occurred within 24 hours in

86% of the preterm and 96% of the term infants. Gestational age and the dose of sevoflur-

ane were significantly associated with SAT-rate (F(2,68) = 9.288, p < 0.001) and ISI- dura-

tions during surgery (F(3,71) = 12.96, p < 0.001). Background pattern and quantitative EEG-

values were not associated with brain lesions (χ2(4) = 2.086, ns).
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Conclusion

aEEG shows a variable reduction of brain activity in response to anesthesia in neonates

with noncardiac congenital anomalies, with fast recovery after cessation of anesthesia. This

reduction is related to gestational age and the dose of sevoflurane. The aEEG offers the

opportunity to monitor the depth of anesthesia in the neonate.

Introduction

EEG-derived monitors are most frequently used to investigate the anesthetic depth in children.

However, EEG-derived monitors, such as the Bispectral Index Monitor, have only been inves-

tigated in a limited number of children and data is limited in infants[1–4]. Since EEG charac-

teristics of infants are different from those of older children, a monitoring tool to guide

anesthetic depth in neonates is not available[3,5–7]. A widely used monitoring tool for electri-

cal brain activity in neonates admitted to the neonatology department is the amplitude-inte-

grated EEG (aEEG). It offers continuous long-term monitoring of electrical brain activity,

which is suitable to assess the background activity, detect sleep-wake cycling, and screen for

seizures.

The cerebral activity is classified by background pattern recognition and voltage criteria[8].

Typically, the aEEG is discontinuous in preterm infants and gradually becomes continuous at

term. The patterns burst suppression, continuous low voltage and flat trace have a poor prog-

nosis in term infants[9,10]. Another prognostic indicator is sleep wake cycling[11], which is

present from around 32 weeks of gestation to 44 weeks. This is recognized by sinusoidal varia-

tion in amplitude[8]. The presence of spontaneous activity transients (SAT) is a sign of brain

immaturity and is observed in discontinuous and continuous brain activity. With increasing

maturation the frequency of SATs decrease, although SATs are still observed in full-term neo-

nates [12,13].

Neurodevelopmental outcome of patients with major non-cardiac congenital anomalies

(NCCA), who require major neonatal surgery, warrants attention[14–16]. At two years of age,

a cognitive and motor delay of up to 50% has been reported[17]. The causal pathway of this

neurocognitive delay in children without a genetic syndrome is not completely understood.

The clinical impact of inhalational anesthetics in infants and children is currently under inves-

tigation in three trials (PANDA, MASK and GAS-study)[18–20]. The first results show no dif-

ferences in IQ-scores in later childhood, after a single and short exposure to anesthesia[18,19].

Nevertheless, this is only partly reassuring, since our patient cohort consists of young new-

borns undergoing major surgery, which might be of greater impact to the brain.

The aim of this study is to 1) evaluate the effect of general anesthesia on brain activity in

preterm and term neonates using aEEG and 2) to review the effect of the anesthetic dose, brain

injury and epileptic activity on the aEEG during anesthesia.

Materials and methods

Patients

In this prospective cohort study, patients with major non-cardiac congenital anomalies,

requiring surgery in the neonatal period, were included between January 2013 to December

2015 at the Wilhelmina’s Children Hospital, University Medical Center Utrecht. This study

was approved by the Medical Ethical Committee of the University Medical Center Utrecht
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(Utrecht, The Netherlands) for the use of clinically acquired data and the need for exclusively-

written parental or guardian consent was waived. Inclusion criteria consisted of major non-

cardiac congenital anomalies, surgery in the neonatal period, a postmenstrual age of 44 weeks

or less during surgery. Exclusion criteria consisted of critical congenital heart disease and

major congenital anomalies of the central nervous system.

Amplitude-integrated EEG

Patients were monitored with a two-channel EEG, using the BrainZ Monitor (BRM3, version,

Natus CA, Seattle, USA). The BRM3 records a two-channel aEEG as well as a raw EEG from

two electrodes over each hemisphere (F3-P3, F4-P4, according to the international 10–20 sys-

tem of electrode placement). The amplitude ranges from 0 to 100 μV and is displayed on a

semilogarithmic scale(Fig 1). Monitoring started six hours prior to surgery, continued during

surgery and for 24 hours after surgery. Patients with a shorter duration of measurement were

not excluded from analyses, when background assessment was feasible.

Neuro-imaging

At hospital admission, cranial ultrasonography (cUS) was performed, in order to detect the

presence of pre-surgical brain injury, and repeated postoperatively. A postoperative MRI was

performed on a 3.0 Tesla whole-body Achieva system (Philips Medical Systems, Best, Nether-

lands) as part of routine clinical care. The scanning protocol included T1-, T2-, diffusion and

susceptibility weighted imaging.

Fig 1. Examples of aEEG background patterns.

https://doi.org/10.1371/journal.pone.0183581.g001
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Anesthesia

Anesthesia was administered at the discretion of the anesthetist. For the induction of anesthe-

sia sevoflurane or isoflurane was used with an FiO2 of 40–100%. Atracurium besylate was used

most often as a muscle relaxant, and sufentanil for pain medication.

Data analysis

The aEEG background pattern and raw EEG signals were simultaneously assessed offline by

three aEEG experts (M. Toet, L.S. de Vries and L.C. Weeke) using Analyze. Only recordings

with an impedance <5 kO were analyzed and periods containing artifacts, such as nursing

care, intubation at the operating room, and diathermy were excluded. The aEEG background

patterns were classified according to Hellström-Westas et al.[9] as: continuous normal voltage

(CNV), discontinuous normal voltage (DNV), burst suppression (BS), continuous low voltage

(CLV), and flat trace (FT) (Fig 1). Epileptic activity was defined as evolving rhythmic activity

for>10s on the raw EEG in the absence of artifacts and classified as single seizure, repetitive

seizures, or status epilepticus[10]. Sleep-wake cycling (SWC) was classified as no SWC(no

cyclic variation of the aEEG background), imminent SWC and normal SWC[11]. The time

to return to baseline background activity and to SWC was documented up to 24 hours

postoperatively.

For quantitative analyses the cross-cerebral EEG signal (P3-P4) was used. EEG-data were

recorded at a sampling rate of 256 Hz. The recorded aEEG were assessed visually to identify

marked artifacts, periods of high impedance, and other events (e.g. diathermy, blood sampling,

care). Using in house developed software (Signalbase; version 7.8; University Medical Center

Utrecht, Utrecht, The Netherlands) EEG data was analyzed. The following variables were cal-

culated: number of spontaneous activity transients (SAT) per minute (SAT-rate) and the inter-

val in seconds between SATs, the InterSatInterval (ISI).

For analysis, nine epochs of 30 minutes were manually selected: preoperatively, first 30

minutes of surgery, last 30 minutes of surgery, total duration of surgery (variable duration),

and 1hr, 6hrs, 12hrs, 18hrs and 24hrs after surgery (Fig 2). Start of surgery was defined as time

of surgical incision (first 30 minutes) and end of surgery as time the surgeon finished (last 30

minutes of surgery). Other parameters, including heart rate (HR), arterial saturation, mean

arterial blood pressure (MABP), perfusion index (PI), end-tidal carbon dioxide (etCO2),

applied fraction of inspired oxygen (FiO2), respiration rate (RR), and end tidal sevoflurane

(etSevo), were also simultaneously analyzed. These parameters were captured by in house

developed software (Signalbase) at a sampling frequency of 1dp/sec.

Infants were classified preterm with a postmenstrual age < 37 weeks’ gestation at time of

surgery. In children who underwent multiple surgical interventions, the first surgical interven-

tion was included.

Fig 2. Epochs for analysis.

https://doi.org/10.1371/journal.pone.0183581.g002
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Statistical analysis

Statistical procedures were performed using IBM SPSS statistics software package (IBM 1

SPSS 1 Statistics version 22, IBM Corp. Armonk, NY, USA). Data are presented as

mean ± standard deviation (SD) or as median and range when indicated. A multivariable lin-

ear regression analysis was used to analyze the relationship during surgery between the SAT-

rate or ISI, and postnatal age at surgery, birth weight z-score, dose of sevoflurane, sufentanil,

propofol and duration of anesthesia. Correlations were checked using the Spearman correla-

tion test. The Wilcoxon Signed Rank test was used to compare ISI- and SAT-values before,

during and after surgery, a post hoc Bonferroni correction was applied to correct for multiple

testing. A p-value < .05 was considered statistically significant.

Results

Study population

From January 2013 to December 2015, 114 infants with NCCA were admitted to the NICU for

major neonatal surgery. Three infants were not eligible for inclusion in this study, since no

perioperative aEEG was available due to logistic reasons. This resulted in a final sample of 111

infants being enrolled in this study (Table 1). Of these, 13 infants underwent multiple surgical

interventions in the neonatal period.

Table 1. Demographic and surgical details of included patients.

n = 111

Gender (male, %) 59 (53%)

Preterm (n, %) 36 (32%)

Gestational age (weeks) 38.28 (28–42)

Birth weight z-score -0.50 (-3.12–2.00)

Apgar score

At 1 minute 9 (2–10)

At 5 minutes 10 (2–10)

At 10 minutes 10 (6–10)

Congenital abnormality, n(%)

Esophageal atresia 28 (25%)

Gastroschisis / omphalocele 16 (15%)

Intestinal atresia / volvulus 34 (31%)

Anorectal malformation 11 (10%)

Urogenital malformation 8 (7%)

Other 14 (12%)

Surgery

Postnatal age (days) 2 (0–32)

Duration anesthesia (minutes) 186 (60–563)

Duration surgery (minutes) 119 (15–475)

Multiple surgical interventions (patients) 13(12%)

Type of surgery

Laparotomy n(%) 49 (44%)

Laparoscopy n(%) 33 (30%)

Thoracoscopy n(%) 29 (26%)

Laparoscopy and thoracoscopy n(%) 1 (1.6)

Arterial line n(%) 95(86%)

Data are displayed in median[range], unless otherwise indicated

https://doi.org/10.1371/journal.pone.0183581.t001
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aEEG background patterns

The median duration of aEEG recorded preoperatively was 5 hours and 24 minutes (range 3

minutes to 24 hours), seven patients had no preoperative measurement due to emergency sur-

gery (n = 5) and logistic (n = 2) reasons. In seven patients sleep wake cycling could not be

determined, because the duration of the preoperative measurement was too short (3 to 60

minutes).

Pre-operatively, preterm infants (GA 34.7[28.1–36.9] weeks) had a continuous normal volt-

age background pattern in 58%, discontinuous normal voltage 37% and burst suppression 5%.

During entire duration of surgery brain activity was depressed in all preterm infants. Postoper-

atively, 86% of the preterm infants returned to their preoperative background pattern within

24 hours, of which 60% within one hour. Sleep-wake cycling returned to preoperative patterns

in 69%, and stayed imminent in 11% (Fig 3). Excluding patients who received midazolam post-

operatively (n = 17)(Table 2), 87% returned to their preoperative background pattern within

24 hours, of which 65% within one hour. Sleep-wake cycling returned to preoperative patterns

in 78%.

Of the term infants (39.1[37.0–41.9 weeks], 94% had a continuous normal voltage and 6%

discontinuous normal voltage prior to surgery(Fig 3). In most patients the background pattern

regressed two classes in comparison to preoperatively (preterm 67%, term 49%)(Fig 4). Of the

two term patients with a predominant flat trace, one was diagnosed with a syndrome and the

other had received a high dose of propofol (15 mg absolute dosage; 4.3 mg/kg). Postopera-

tively, 98% recovered to continuous normal voltage within 24 hours, of which 78% within

one hour (Fig 3). Sleep-wake cycling returned to a normal pattern in 57%, and was imminent

in 40%. Postoperatively, no difference in the administered dose of pain medication for the

different background patterns and return of sleep-wake cycling was found (Kruskal Wallis,

(H(1) = 2.220, p = 0.136)).

Excluding patients who received midazolam postoperatively (n = 22), 95% returned to con-

tinuous normal voltage within 24 hours, of which 84% within one hour. Sleep-wake cycling

returned to a normal pattern in 95%.

During anesthesia nine term infants had a severe reduction in brain activity, from continu-

ous normal voltage to continuous low voltage or flat trace. Of these, six patients received pro-

pofol during surgery (67% versus 19% all infants). No other common explanatory factors were

found.

Fig 3. Predominant background pattern before, during and after surgery.

https://doi.org/10.1371/journal.pone.0183581.g003
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Table 2. Detailed characteristics of medication administered before, during and after surgery.

n = 129 Patients n(%) Absolute dosage Dosage/kg Dosage/kg/hr

Preoperative

Midazolam 9(7%) 0.05[0.04–0.1]

Morphine 29(22%) 0.37[0.23–1.00]

Surgery

Anesthetic

Sevoflurane n(%) 126 (98%) 1.26[0.04–2.5] NA NA

Isoflurane n(%) 3(2%) 0.5[0.4–0.6] NA NA

Propofol, mg/kg n(%) 24 (19%) 10[2–20] 3.26[0.8–10.17] 1.06[0.23–3.41]

Midazolam n(%) 5(4%) 1.5[0.5–2.75] 0.53[0.15–0.88]

Pain medication

None 3(2%)

Sufentanil 124 (96%) 2.25[0.25–12.50] 0.84[0.09–4.87] 2.47[0–32.45]

Bupivacaine* 31 (24%) 1.75[0.71–3.65] 0.56[0.19–2.37] 0.19[0.06–0.8]

Morphine 51 (40%)** 0.13[0.04–2.75] 0.06[0.02–1.17] 0.19[0.01–0.49]

Muscle relaxant

None 6(5%) - - -

Atracurium 106(82%) 4.0[1–15.50] 1.39[0.33–4.68] 3.43[0.54–41.91]

Rocuronium 16(12%) 4.5[1–10] 1.63[0.48–3.68] 4.34[1.73–17.05]

Suxamethonium 1(1%) 5.0 1.24 3.69

Postoperative

Midazolam 38(29%) - - 0.05[0.03–0.28]

Morphine 101(78%) - 0.28[0.22–0.62] -

Bupivacaine 29(22%)

Postoperative period was defined as 24 hours after end of surgery.

Sevoflurane in %, propofol mg/kg, midazolam mg/kg, sufentanil ug/kg, morphine mg/kg.

*Bupivacaine was administered through epidural at a continuous drip of 0.33mg/kg

https://doi.org/10.1371/journal.pone.0183581.t002

Fig 4. Degree of background pattern depression during surgery.

https://doi.org/10.1371/journal.pone.0183581.g004
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Epileptic activity

Preoperatively, none of the patients had known or suspected seizure activity. In 11 patients

epileptic activity was identified. In four infants epileptic activity (2 single seizures, 2 repeti-

tive seizures) occurred during surgery, of which one directly after administration of sevo-

flurane during the induction of anesthesia (end tidal concentration sevoflurane 2.5–5%).

Eight infants had seizures postoperatively (6 single seizure, 2 repetitive seizures). One infant

had clinical seizures, and was diagnosed with a thalamic infarction, the other seven had sub-

clinical seizures. No correlation with background pattern or brain injury was found. Four

patients were suspected to have a genetic syndrome, one was diagnosed to have Moebius

syndrome.

Quantitative EEG analysis

In preterm infants, ISI-durations were significantly longer during surgery (median ISI during

total surgery period 33 seconds[3–571]) versus preoperative ISI (4 seconds[1–113]), Wilcox-

on’s Signed rank test T = 29.0, r = -0.810, p<0.001 (Fig 5). One hour after surgery ISI were not

significantly longer (median ISI 1hr: 5 seconds[1–75]) in comparison to preoperative ISI,

T = 553, r = -0.304, p = 0.055 (Fig 5).

SAT-rates were significantly reduced during surgery (median SAT-rate during total surgery

period: 2.23/minute [0.08–8.50]) than preoperative SAT-rates (7.94/minute[0.29–10.36]),

T = 773, r = -0.850, p< 0.001 (Fig 5).

In term infants, ISI-durations were significantly longer during surgery (median ISI during

total surgery period 14 seconds[3–253]) versus preoperative ISI (2 seconds[1–16]), Wilcoxon’s

Signed rank test T = 2.0, r = -0.868, p<0.001 (Fig 5). One hour after surgery ISI-durations

were significantly longer (median ISI 1hr: 3 seconds[1–81]) in comparison to preoperative ISI,

T = 1731, r = -0.578, p< 0.001 (Fig 5).

SAT-rates were significantly reduced during surgery (median SAT-rate during total surgery

period: 4.30/minute [0.16–8.50]) than preoperative SAT-rates (8.45/minute[2.67–11.13]),

T = 2049, r = -0.844, p< 0.001 (Fig 5).

Fig 5. Median ISI-values and SAT-rates of all patients.

https://doi.org/10.1371/journal.pone.0183581.g005
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ISI and background patterns

ISI-values during surgery correlated with the background pattern classification, showing that

ISI-values of a continuous normal voltage pattern (median ISI 2.77 seconds[2–4]) were signifi-

cantly shorter than a discontinuous normal voltage pattern (ISI 4.72 seconds[3–7]), and these

were significantly shorter than a burst suppression (ISI 21.21 seconds[11–85]). Values during

burst suppression were significantly lower than flat trace (ISI 76.95 seconds[25–215])(S1 Fig).

A factor significantly influencing the ISI-values was the type of procedure: ISI-values

were significantly longer during a thoracoscopic procedure (median 28.4 seconds [3–571])

than during non-thoracoscopic surgery (median 15.3 seconds [3–393]), U 1121.00, p< .005,

r = -0.26, z = -2.910 (S1 Table).

Multivariable linear regression analysis SAT-rate and ISI during surgery

In the multivariable analysis, correcting for gestational age, the dose of sevoflurane showed a

significant linear relation with SAT-rate and ISI during surgery. In particular, sevoflurane was

positively related to ISI (β = 0.531, F(3,71) = 12.96, p< 0.001, R2 = 0.364, R2
adjusted = 0.336)

and negatively associated with SAT-rate (β = -0.420, F(2,68) = 9.288, p< 0.001, R2 = 0.291,

R2
adjusted = 0.259). Birth weight z-score, postnatal age at time of surgery, duration of anesthesia,

the dose of sufentanil and the administration of propofol were not significantly associated to

quantitative EEG measures.

aEEG and brain injury

Preoperatively, 11 patients had brain injury on their ultrasound scan: one periventricular hem-

orrhagic infarction, one cerebellar lesion and nine infants inhomogeneous echogenicity, sug-

gestive of punctate white matter lesions. Of all infants, in 58% parenchymal lesions were

present on MRI and in 37% non-parenchymal injury. MRI-abnormalities were not signifi-

cantly associated with the different background patterns or ISI and SAT-rate during surgery

(Fisher-Freeman-Halton Exact Test: χ2(4) = 2.086, ns). For all data, see S2 Table.

Discussion

Our study investigated the effects of general anesthesia on brain activity measured by aEEG in

a neonatal cohort. The main findings were that the aEEG showed a transient, but very variable

reduction of brain activity in neonates with major non-cardiac congenital anomalies. In most

patients the background patterns decreased two classes during anesthesia. This depression in

brain activity ranged from a flat trace to a discontinuous normal voltage. After cessation of

anesthesia, 60% of the preterm and 78% of the term infants recovered within one hour after

surgery to their preoperative background pattern. Within 24 hours, the background pattern of

86% of the preterm and 96% of the term infants had recovered. The gestational age and the

dose of sevoflurane were significantly associated with the level of reduction in brain activity.

Background patterns and quantitative EEG-measures during surgery were not associated with

brain lesions and the occurrence of seizures.

There are no previous studies assessing the effect of anesthesia on the aEEG in a cohort of

neonates during surgery[21]. Reports on EEG-derived measurements during anesthesia are

rare in children, and limited in neonates [2,3,22–25]. In search of a neonatal device, diverse

anesthetic depth monitors contain an algorithm based on adult EEG data. Since EEG parame-

ters in neonates differ greatly from older children and adults, these devices cannot be used

[3,26,27]. Therefore, we decided to investigate the use of the aEEG. The aEEG is commonly

used in neonatal practice, and extensive knowledge has been gained on the use of aEEG in
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neonates. Although quantitative data rather than patterns may be preferred, the described

background patterns can assist the pediatrician and anesthesiologist to intervene immediately.

In our quantitative analysis the Spontaneous Activity Transients were used. This endoge-

nous activity is important for brain development[13]. These SAT’s are decreasing with GA, in

number and amplitude approaching term equivalent age and remain detectable at least until

week 44[28]. In our study the SAT-rate was able to make a distinction between the different

background patterns and was therefore considered suitable for further analysis.

The reduction of brain activity, expressed by an increased interSATinterval and a decreased

SAT-rate, was inversely related to the dose of sevoflurane. This is as expected, since this anes-

thetic causes a dose-dependent cortical inhibition by GABA stimulation[29]. It is of interest to

observe such a large variation in brain activity, given the dose range used in our hospital. One

of the guidelines for the appropriate dosage of sevoflurane is the Minimal Alveolar Concentra-

tion (MAC), which is 3.3% in the neonatal age group[30]. The range of the dose of sevoflurane

used in our study was substantially lower: 0.4 to 2.5%. In a study performed by McKeever et al.

no changes in aEEG were observed in children between one month and two years of age with a

dose between 0.75MAC and 1.25MAC[22], which is in contrast to our results. A possible

explanation could be the younger age of our cohort. Previous analyses during anesthesia has

been performed by using EEG in infants[5] or only comprising a few neonates [2]. Further-

more, the reduction was age-dependent, even observable in the small gestational age width of

our patient population[5].

Early brain activity is important for neuronal development[31]. Anesthesia causes a rela-

tively short depression of brain activity with a rapid recovery postoperatively. Still, Backeljauw

et al. found a decreased language comprehension and performance IQ in children exposed to

anesthetics before the age of four[32]. In our cohort, severe brain lesions were not related to

perioperative background patterns, SAT-rate or ISI-values.

Epileptic activity was identified on EEG in 11 neonates. One infant had been diagnosed

with clinical seizures during admission. These seizures were not more prevalent in infants

with a more depressed background pattern or with a higher prevalence of brain lesions. One

child had a single seizure directly after the start of sevoflurane. This epileptiform activity has

been described previously, and seems to be related to the speed of induction. Rapid induction

is associated with a higher incidence of epileptiform discharges in comparison to a gradual

induction[33,34]. Worldwide, concerns have been raised on the potential harmful effects of

general anesthesia on the young infant’s brain. Awaiting the results of the clinical trials The

Food and Drug Administration and the American Academy of Pediatrics recommended to

reduce the overall drug dosage of anesthetics in young children. However, little is known

about the immediate and long-term effects of clinical levels of volatile anesthetics on the devel-

oping brain. In general, the dose of anesthesia is based on the ‘clinical judgment of the anesthe-

tist’[7,35]. Monitoring neonatal brain activity during anesthesia could ensure adequate dosing.

Anesthetic depth monitors have been shown in adults to reduce the amount of anesthetic

drugs used, reduce awareness and shorten recovery[3].

To be able to determine the adequate depth of anesthesia, we have to decide what level of

depression in brain activity is sufficient. Do we agree that a discontinuous normal voltage is

adequate anesthesia, in case of a continuous pattern preoperatively? Or, do we prefer to avoid

any stress in the infant and lower the brain activity to a flat trace? One of the definitions of

anesthesia is a loss of consciousness, amnesia, immobility and a reduction in the reflex auto-

nomic responses associated with noxious stimuli[6]. The EEG measures cortical brain activity,

which gives an indication of consciousness. This is of important additional value to other clini-

cal parameters, such as HR, RR and MABP. Since for example, a movement response to a nox-

ious stimulus is mediated by the subcortical brain(37).
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One of the limitations of our study is the lack of a standardized anesthesia protocol. Anes-

thesia was administered at the discretion of the anesthesiologist, which reflects normal prac-

tice. The strength of this study is that the aEEG is commonly used in neonatal practice and our

results add to the literature data on describing the clinically used background pattern. The

aEEG offers continuous, bedside monitoring and the data can readily be interpreted by pedia-

tricians and anesthesiologists. The study comprises a cohort with a small gestational age width,

which is important since we know that cerebral maturation influences the EEG and the neona-

tal brain is developing fast.

The future perspective is to correlate the background pattern during anesthesia to long-

term neurodevelopment. The time to recover to a normal background pattern and the onset of

sleep-wake cycling has been proven in patients with hypoxic-ischemic encephalopathy to be

important prognostic factors of outcome. Since the depressed pattern during anesthesia is iat-

rogenic and recovery after cessation is rapid, the prognostic value may limited. Surgery cannot

easily be postponed or avoided, therefore studies on early childhood anesthesia for surgery

and the effect on long-term cognitive function are needed.

In conclusion, general anesthesia in neonates causes a variable reduction in brain activity.

This reduction is transient and recovery to the preoperative level of brain activity occurs rap-

idly. The depressant effect of sevoflurane is proportional to the dose, even observed in the

small dose range in our study population. The aEEG offers the opportunity to monitor the

depth of anesthesia in the neonate. The question remains which depth based on aEEG we aim

for during anesthesia.
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