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ABSTRACT

Long-read sequencing currently provides sequences
of several thousand base pairs. It is therefore possi-
ble to obtain complete transcripts, offering an un-
precedented vision of the cellular transcriptome.
However the literature lacks tools for de novo clus-
tering of such data, in particular for Oxford Nanopore
Technologies reads, because of the inherent high
error rate compared to short reads. Our goal is to
process reads from whole transcriptome sequenc-
ing data accurately and without a reference genome
in order to reliably group reads coming from the same
gene. This de novo approach is therefore particularly
suitable for non-model species, but can also serve as
a useful pre-processing step to improve read map-
ping. Our contribution both proposes a new algo-
rithm adapted to clustering of reads by gene and a
practical and free access tool that allows to scale the
complete processing of eukaryotic transcriptomes.
We sequenced a mouse RNA sample using the Min-
ION device. This dataset is used to compare our so-
lution to other algorithms used in the context of bio-
logical clustering. We demonstrate that it is the best
approach for transcriptomics long reads. When a ref-
erence is available to enable mapping, we show that
it stands as an alternative method that predicts com-
plementary clusters.

INTRODUCTION

Massively parallel cDNA sequencing by Next Generation
Sequencing (NGS) technologies (RNA-seq) has made it
possible to take a big step forward in understanding the
transcriptome of cells, by providing access to observations
as diverse as the measurement of gene expression, the iden-
tification of alternative transcript isoforms, or the composi-
tion of different RNA populations (1). The main drawback
of RNA-seq is that the reads are usually shorter than a full-

length RNA transcript. There has been a recent explosion
in databases accession records for transcripts obtained with
short reads (2) but a laborious curation is needed to filter
out false positive reconstructed variants that do not have
enough support. Long read sequencing technologies such
as Pacific Biosciences (3) and Oxford Nanopore Technolo-
gies (4) are referred to as Third Generation Sequencing and
make it possible to sequence full-length RNA molecules. In
doing so, they remove the need for transcript reconstruc-
tion before studying complete RNA transcripts (5). The size
of short reads is certainly a major limitation in the process
of whole transcript reconstitution, because they may not
carry enough information to enable the recovery of the full
sequence. In addition, tools for de novo assembly of tran-
scripts from short reads (5,6) use heuristic approaches that
cannot guarantee the retrieval of exact original transcripts.
On the contrary long reads tend to cover full-length cDNA
or RNA molecules, and can therefore provide information
about the comprehensive exon combinations present in a
dataset. This gain in length comes at the cost of a compu-
tationally challenging error rate (which varies significantly
between protocols, up to over 15%, although RNA reads
generally show lower rates, at ∼9% or less (7,8)).

Over the last few years, increasing number of studies
have been focusing on the treatment of long read data
generated via the Oxford Nanopore MinION, GridION
or PromethION platforms, for transcriptome and full-
length cDNA analysis (4,9–11). International projects
have been launched and the WGS nanopore consortium
(https://github.com/nanopore-wgs-consortium/NA12878/
blob/master/RNA.md) has for example sequenced the
complete human transcriptome using the MinION and
GridION nanopores. Besides Human and microbial se-
quencing, this technology has also proved useful for the
de novo assembly of a wide variety of species including
nematodes (12) and plants (13) or fishes (14). It seems
clear that the reduced cost of sequencing and the portable
and real-time nature of the equipment compared to the
PacBio technology will encourage a wide dissemination
of this technology the laboratories (see Schalamun et al.,
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A comprehensive toolkit to enable MinION long-read
sequencing in any laboratory, bioRxiv, 2018) and many
authors point out the world of opportunities offered by
nanopores (15). Variant catalogs and expression levels are
starting to be extracted from these new resources (16–20),
and isoform discovery was cited as a major application of
nanopore reads by a recent review (21). However, the vast
majority of these works concern species with a reference.
In this study we propose supporting the de novo analysis
of Oxford Nanopore Technologies (ONT) RNA long read
sequencing data. We introduce a clustering method that
works at the gene level, without the help of a reference.
This makes it possible to retrieve the transcripts expressed
by a gene, grouped in a cluster. Such clustering may be the
basis for a more comprehensive study that aims to describe
alternative variants or gene expression patterns.

Problem statement

Within a long-read dataset, our goal is to identify the as-
sociated subset of Third Generation Sequencing reads for
each expressed gene without mapping them onto a refer-
ence. In order to group RNA transcripts from a given gene
using these long and spurious reads, we propose a novel
clustering approach. The application context of this paper
is non-trivial and specific for at least three reasons: (i) in
eukaryotes, it is common that alternative spliced and tran-
scriptional variants with varying exon content (isoforms)
occur for a given gene (22). The challenge is to automati-
cally group alternative transcripts in the same cluster (Fig-
ure 1); (ii) long reads currently suffer from a high rate of
difficult indel errors (7,8); (iii) all genes are not expressed
at the same level in the cell (23–25). This leads to a het-
erogeneous abundance of reads for the different transcripts
present. Clusters of different sizes including small ones are
expected, which is a hurdle for most algorithms, including
the prevalent methods based on community detection (26).

Our method starts from a set of long reads and a graph
of similarities between them. It performs an efficient and ac-
curate clustering of the graph nodes to retrieve each group
of a gene’s expressed transcripts (detailed in Materials and
Methods). A second contribution of our work is an im-
plementation of the clustering algorithm via a tool dubbed
CARNAC-LR (Clustering coefficient-based Acquisition of
RNA Communities in Long Reads) inserted into a pipeline
(see Results section). The input of this pipeline is a whole
dataset of raw reads, with no prior filter or correction
needed. The output is a set of clusters that groups reads by
gene without the help of a reference genome or transcrip-
tome.

Background

Early attempts to solve this problem can be traced back
to before the age of NGS: in the NCBI UniGene database
(27) Expressed Sequence Tags (ESTs) are partitioned into
clusters that are very likely to represent distinct genes. In
fact, clustering has been the basis for gene indexing in major
gene catalogues like UniGene, HGI, STACK or the TIGR
Gene Indices (28,29). Moreover this problem has come up
in many disciplines, taking different forms according to the

application domain. Many studies on sequence clustering
worked to find the most efficient way to compute similarity
but remained quite basic in their clustering scheme (e.g. CD-
HIT (30), SEED (31), Uclust (32), DNACLUST (33)). They
essentially used simple schemes to try to avoid all-versus-all
pairwise comparison of sequences, which became a major
issue with the advent of NGS and meta-transcriptomics.
These approaches and the underlying similarity measures
were designed for highly similar sequences, and are also
popular for applications beyond the scope of this paper such
as clustering OTUs. For proteins (34), spectral clustering
has been shown to provide meaningful clustering of fami-
lies. It uses the Blast E-value as a raw distance between se-
quences and takes all of them into account to establish a
global partition of protein sequences via simple K-means
clustering. This type of work cannot easily be extended to
the comparison of reads, which are much less structured
than protein sequences. To our knowledge no article has
been published so far using spectral clustering on RNA
reads. For RNA, using Sanger reads then short reads, many
approaches used simple single linkage transitive-closure al-
gorithms (EST clustering such as (35–37)), i.e. searched for
connected components in a graph of similar sequences. Sin-
gle linkage clustering is often used for expression data as
two similar sequences are meant to merge their clusters into
a single one. A problem with simple search for clusters is
that it can easily lead to chimeric clusters, especially because
of repetitions.

More advanced clustering strategies have therefore been
developed for graphs, which use the topological properties
of the graph to select relevant classes. Roughly speaking,
resolution strategies can be classified into two broad camps
according to applications and the community of affiliation:
a graph clustering strategy based on the search for minimum
cuts in these graphs and a community finding strategy based
on the search for dense subgraphs. Our own approach aims
to combine the best of both worlds. The first approach gen-
erally searches for a partition into a fixed number of clus-
ters by deleting a minimum number of links that are sup-
posed to be incorrect in the graph. The second approach
frequently uses a modularity criterion to measure the link
density and decide whether overlapping clusters exist, with-
out assumptions regarding the number of clusters. Given
that it is difficult to decide on the right number of clusters
and to form them solely on the basis of minimizing po-
tentially erroneous links, the main findings and recent de-
velopments are based on the community finding strategy
and we will focus our review on this approach. Modular-
ity measures the difference between the fraction of edges
within a single cluster and the fraction of edges that would
be observed by chance given the degree of each node. In
particular modularity-based partitioning of sequences (38)
was applied for discovering protein homology (39) or repeat
sequence clustering (40). Improved state-of-the-art meth-
ods consider either overlapping communities or hierarchi-
cal communities. A well-established method for overlapping
communities is the Clique Percolation Method (CPM) (41).
CPM came with applications such as identification of pro-
tein families (42,43).

Finally recent studies (44) rely on the Louvain algorithm
(45) that is also based on modularity and looks for a hierar-
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Figure 1. Clustering scenarii. In the case of basal gene expression and alternative events (described below), with the exception of mutually exclusive
transcripts, it is expected that all transcripts of a gene will be grouped together in a single cluster. Very small exons or very long retained introns (not
shown) can also be limitations according to the mapping tool strategies. In the more complex case of families of genes, two or more copies of paralogous
genes can express transcripts at the same time. If these transcripts share a common exonic content and if the gene sequences have not diverged too much
(to allow overlap detection), transcripts from this family of genes are clustered together, despite coming from different loci. Although this is an algorithmic
limitation, it can be interesting to group these sequences together, as they likely share similar functions. A like scenario occurs for transcripts sharing
genomic repeats (such as transposable elements).

chy of clusters, through multi-level optimization that merges
the clusters initially reduced to one element as long as mod-
ularity increases. This algorithm is fast because it uses a
greedy strategy and is quite popular for extracting commu-
nities from large networks. However, like the other algo-
rithms based on modularity, it suffers from two drawbacks:
it has difficulty dealing with small clusters and is unstable
in that, depending on the order of application of merges, it
can produce very different results that are difficult to com-
pare (46). Clustering problems associated with the specifics
of long reads start to emerge. Such needs were already a
concern in past long read literature (18,47) and are even
more acute when a mapping strategy cannot be taken into
consideration. We place ourselves in the particular frame-
work of de novo identification. While several studies based
on long read mapping onto a reference have been produced,
methodological contributions that would make it possible
to benefit from this promising data remain rare in particular
for non model species. To our knowledge, two contributions
(47,48) propose respectively de novo detection of alternative
variants, and clustering and detection of isoforms in long
reads transcriptome datasets. However these tools highly
rely heavily on the high accuracy provided by Pacific Bio-
sciences Consensus Circular Sequence (CCS) long reads,
and therefore do not apply to ONT reads. The method we
propose is much more robust to noise.

MATERIALS AND METHODS

Input similarity graph

We define a similarity graph as an undirected graph in which
nodes are reads and there is an edge between two nodes if
the computed similarity between these nodes exceeds a fixed
threshold. In such a graph, reads from a single gene are ex-
pected to be connected with one another because they are
likely to share exons. In the ideal scenario, all reads from a
gene are connected with one another. It is therefore a clique.

However, the spurious nature of data imposes the use of
heuristics to detect read overlaps.

In addition to the presence of genomic repeats, this leads
to the expectation of a graph with both missing edges (con-
nection missed during the search for overlapping reads)
and spurious edges (wrong connections between unrelated
reads), which motivates the development of tailored cluster-
ing methods.

Clustering long reads

Clustering issue and sketch of the algorithm.

Problem formalization. In what follows, we describe the
clustering algorithm that is the main contribution of this pa-
per. Our method makes no assumption regarding the num-
ber of expressed genes (i.e. clusters/communities), or on the
size distribution of such communities, and it needs no in-
put parameter value in the sense that all necessary values
are estimated on the data. Since we want to produce a par-
tition of the graph, there are no intersecting communities
(no read belongs to more than one gene family) and every
node belongs to a community (each read is assigned to a
gene). As mentioned previously, the expected subgraph sig-
nature of a gene in the graph of reads is a community, that
is, a cluster of similar reads. Clustering seeks to maximize
intra-cluster similarity and minimize inter-cluster similarity.
To measure the density of a connected component, we use
the clustering coefficient (ClCo) (49) rather than modular-
ity. Indeed, we assume that a gene should be represented by
a complete subgraph (clique) in a perfect similarity graph.
The value of ClCo measures the concentration of triangles
in a given subgraph (see ‘Selection of community found-
ing node’ section), and this coefficient is more directly con-
nected to the notion of clique than modularity. Although
we have designed a method that does not require parame-
ter tuning, its foundation depends on two parameters, the
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number k of clusters and the cutoff � on the ClCo value.
Specifically, the original problem is formalized as follows:

Definition 1. A community is a connected component in
the graph of similarity having a clustering coefficient above
a fixed cutoff θ . An optimal clustering in k communities is a
minimum k-cut, that is, a partition of the graph nodes into k
subsets, that minimizes the total number of edges between two
different subsets (the cut-set).

We assume that the overlap detection procedure (section
‘First step: computing similarity between long reads’) has
good specificity (it produces a low rate of spurious over-
laps). This can be ensured by carefully tuning the param-
eters of this procedure. The logic behind the search for a
minimum cut in the graph is that most of the edges of the ini-
tial graph should therefore be kept during clustering. This
problem is known to be NP-hard for k ≥ 3 (50). Another
source of complexity is that we do not know the number of
communities in advance, so we have to guess the value of
k. The k-cut should therefore be computed for each possi-
ble value between 1 and the maximum, which is the number
of reads. Solving this problem is not feasible for the large
number of reads that have to be managed. We are therefore
looking for an approximation of the solution by using an
efficient heuristic approach exploring a restricted space of
values for k. Finally, the second parameter, the cutoff �, is
not known either. The algorithm thus has to loop over all
possible values, that is, all ClCo values for a given connected
component. In practice it is enough to sample a restricted
space of possible k values.

Algorithm overview. In brief, our community detection al-
gorithm is composed of two main steps. The first one looks
for an upper bound of the number of clusters k. To this aim,
we relax the disjointed communities condition and look ini-
tially for star subgraphs (a read connected to all reads simi-
lar to it) having a clustering coefficient over a certain cutoff.
This corresponds to detecting well-connected reads, called
seed reads, using ClCo and node degrees (detailed in section
‘Selection of community founding nodes’). They form the ba-
sis of communities with their neighborhood.

The main challenge is then to refine the boundaries of
each community (section‘Refinement of community bound-
aries’) in order to fulfill the partition condition. During this
process, the value of k is progressively refined by potentially
merging clusters whose combination produces a better com-
munity (greater ClCo value). The other possibility of refine-
ment is to assign nodes to a community and remove them
from another. If x edges between a node and its previous
community are removed, the cut size of the partition is in-
creased by x. This core algorithm is run for different cut-
off values to obtain different partitions that we compare.
We keep the partition associated with the minimal cut (i.e.
number of edges removed when computing the partition).
The pseudocode of the implemented algorithm is given in
‘Supplementary material’. We set out the different imple-
mentation steps in detail below.

Generation of partitions. In order to generate and compare
different partitions for the graph, we define cutoffs that gov-
ern the generation and refinement of communities. The cut-
offs can be seen as the level of connectivity at which a com-

munity can be generated ((a,b) steps and (c) merge step in
Figure 2). In the basic algorithm, for each connected com-
ponent, all ClCo are computed in the first place, and par-
titions are built for each non-zero ClCo value as a cutoff.
In the end, only one partition is retained, associated with
the minimum cut (step (d) in Figure 2). However we have
reduced the number of possible cutoff values for the sake of
scalability (see ‘Implementation choices for scalability’ sec-
tion in ‘Supplementary material’). Each step is described for
a given cutoff value below.

Selection of community founding nodes. Let G = (N , E) be
an undirected graph of reads. Let ni be a node (read) from
N and Ni ⊂ N its direct neighborhood. Let deg(ni) be the
number of edges connecting ni to its direct neighbors (sim-
ilar reads), i.e. deg(ni) = |Ni|. For each node ni ∈ N with
degree deg(ni) > 1, first we compute the local clustering co-
efficient:

ClCoi = 2
∣
∣{(n j , nk) ∈ E : n j , nk ∈ Ni }

∣
∣

deg(ni ) × (deg(ni ) − 1)
(1)

Nodes of degree 0 and 1 have a ClCo of 1. This local co-
efficient represents the cliqueness of the Ni∪ni set of nodes.
The closer the coefficient is to 1, the more the set of nodes is
inter-connected, which suggests a group a reads that poten-
tially come from the same gene. By contrast, the subgraph
induced by a node with a ClCo of 0 and its neighbors is a
star (i.e. a tree whose leaves are all the neighbours). If the
coefficient is close to 0, the nodes are weakly connected and
are unlikely to come from the same gene. In order to pre-
vent unwanted star patterns, we add a statistical precaution
to prevent star-like patterns (with a very low ClCo with re-
spect to the degree of the seed node) from initiating commu-
nities. We state the following auxiliary condition for seeds:

∀ni , ClCoi ∈ ]cutof f, θ2[⇒ deg(ni ) ≤ θ1 (2)

�1 and �2 are values such that 1% of the observed degrees
are greater than �1 and 1% of the observed ClCo are lower
than �2 (1st and 99th percentiles). The selected seeds and
their direct neighbors form the initial communities. At this
point it is possible that two or more communities intersect.

Refinement of community boundaries. Community refine-
ment aims at solving the conflicts of intersecting commu-
nities. Communities intersect because of spurious connec-
tions in the graph due to the creation of edges between un-
related reads in the first step. The intersecting communities
are looked up pairwise in order to assign nodes of the in-
tersection to a single community. In fact, two cases have to
be differentiated. Either the edges between two communi-
ties are considered spurious and these communities must be
seen separated (split, (c’) step in Figure 2 (the pseudocode
for the split procedure is also given in ‘Supplementary mate-
rial’), or the edges have sufficient support and the two com-
munities have to be merged to obtain the full gene expres-
sion (merge, (c) step in Figure 2). In order to decide between
the two, we again use the cliqueness notion. This time we in-
troduce an aggregated clustering coefficient of the union of
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Figure 2. Summary of the algorithm. (a) All ClCo and degrees are computed. Each ClCo value is a cutoff. For a given cutoff, (b) different cutoffs yield
different seed nodes (black stroke) that initiate clusters with their neighborhood (section ‘Selection of community founding nodes’). (c, c’) Boundaries of
each cluster are then refined. Intersection between clusters are solved either by (c) merging them or by (c’) splitting (section ‘Refinement of community
boundaries’). (d) The communities at different cutoffs evolve in different partitions. In the end we keep only the best partition according to our criterion,
i.e. minimizing the cut.

two nodes ni and nj :

ClCoi j = 2
∣
∣{(nk, nl ) ∈ E : nk, nl ∈ Ni ∪ Nj }

∣
∣

|Ni ∪ Nj | × (|Ni ∪ Nj | − 1)
(3)

If the value of ClCoij is greater than or equal to the cur-
rent cutoff, we consider that there is a gain in connectiv-
ity when looking at the union of the two communities and
they are merged. In the other case, the nodes of the inter-
section are reported to only one of the two communities.
We remove the edges connecting these nodes from one or
the other cluster depending on which offers the minimum
cut. In case of ties for the cut, the algorithm uses a second
criterion. It chooses the cut that maximizes the differences
of clustering coefficient values across communities. For two
sets N1, N1′ , N1 ⊆ N1′ , this difference is defined as:

�CCN1,N1′ = CCN1′ − CCN1 , (4)

with CC calculated as in Equation (1), N1 being the com-
munity before the merge and N1′ being the community af-
ter the merge. The overall result depends on the order in
which pairs of clusters are compared. This order is care-
fully designed. First, the communities associated with the
two nodes of greatest degree (and secondly maximum ClCo)
are chosen, the intersection is resolved and the first com-
munity is updated. Then, it is compared to the third best
community that intersected if appropriate, and so on until
all intersections are solved. This way, we start the compari-
son with the most promising communities that combine re-
liability (well-connected subgraphs) with a high potential
for resolution (they likely to be the biggest communities,
thereby solving intersections for many nodes). On the con-
trary, communities associated with small subgraphs and rel-
atively low ClCo are only resolved afterwards.

Complexity and Implementation choices. Our algorithm
has a quadratic component in order to compare sets to
generate clusters. In addition, it explores the whole space
of clustering coefficients with fixed cutoffs. This results in
a time complexity that could theoretically be cubic in the
number of reads at worst, which is incompatible with pro-
cessing large datasets.

In order to cope with noise in the input graph, we in-
troduce features to simplify the graph (disconnect loosely

connected nodes) and to control the space for looking for
possible partitions. In practice these features are also key to
reducing the complexity of our approach. Our experiments
showed that the running time is reasonable, clustering mil-
lions of reads in a few hours. Two key ideas for obtaining
this result have been reducing the number of cutoffs and
disconnecting the articulation points (51) to reduce the size
of connected components in the graph. Details are given in
‘Supplementary material’. Indeed, the most costly phase in-
volves processing of the largest connected components. In
these components, many clustering coefficients values are
very close and variation in them is mainly an result of noise.
Introducing a rounding factor when computing the ClCo
results in a neat decrease in the number of different val-
ues observed, which drastically limits the number of iter-
ations required for the main loop, while providing a very
good approximation of the minimum cut. In addition, an
upper bound is set on the number of sampled values (100
by default).

We also chose to disconnect the graph’s articulation points
in order to remove nodes to be targeted as potential bridges
between two correct clusters. These are nodes whose re-
moval increases the number of connected components in the
graph. Such nodes can be identified as problematic, since we
do not expect a single read to be the only link between many
others. They can be detected with a DFS for the whole graph
in linear time.

Our algorithm has been also carefully designed with re-
spect to the features of long read clustering. To obtain
a O(n.log(n)) complexity with respect to the number n of
reads, we have made the following assumption: The degree
of each node is bounded by a constant, i.e. there is a limited
number of transcripts that share similar exons. This ensures
that the clustering coefficient of all nodes is calculated in
linear time. The most complex operation is the initial sort-
ing of nodes, first by decreasing degree value, then by de-
creasing ClCo value, which can be achieved in O(n.log(n)).
Moreover, since each cluster is initially built on a seed read
(see ‘Selection of community founding nodes’ section), it in-
tersects with a bounded number of clusters. Since the loop
for making a partition from overlapping clusters is based
on a scan of intersections, it is achieved in linear time with
respect to the number of reads.



e2 Nucleic Acids Research, 2019, Vol. 47, No. 1 PAGE 6 OF 13

Validation procedure

Production of validation material.

RNA MinION sequencing. cDNA were prepared from
four aliquots (250 ng each) of mouse commercial total RNA
(brain, Clontech, Cat# 636601 and 636603), according to
the ONT (UK) protocol ‘1D cDNA by ligation (SQK-
LSK108)’. The data generated by MinION software (Min-
KNOWN, Metrichor) was stored and organized using a Hi-
erarchical Data Format. FASTA reads were extracted from
MinION HDF files using poretools (52). We obtained 1 256
967 nanopore 1D reads representing around 2GB of data
with an average size of 1650 bp and a N50 of 1885 bp.

Mapping to obtain reference clusters for validation. We
compute ‘ground truth’ clusters for the purposes of valida-
tion, using a sensitive third-party protocol based on map-
ping onto a reference. Nanopore reads from the mouse
brain transcriptome were aligned to the masked mouse
genome assembly (version GRCm38) using BLAT (53) used
for isoform identification with long reads in various studies
(21). For each read, the best matches based on the BLAT
score (with an identity percent >90%) were selected. Then,
those matches were realigned onto the unmasked version of
the genome using Est2genome (54) that is dedicated to pre-
cise spliced-mapping onto reference genomes. Reads that
corresponded to mitochondrial and ribosomal sequences
were discarded. Next, nanopore reads were clustered ac-
cording to their genomic positions: two reads were added to
a given cluster if they shared at least 10 nucleotides in their
exonic regions. For the whole data experiment, all reads that
could be mapped on the reference were taken into account
(501 787). Due to repeats (paralogy, transposable elements,
etc), some reads were mapped at multiple loci on the ref-
erence. When a given read maps on several loci, such loci
are gathered into a single expected cluster (12 596 expected
clusters). This means that for instance reads from copies of
paralog genes that have not diverged to much or reads con-
taining a copy of a transposable element are expected to be
in the same cluster.

Assessment metrics for cluster accuracy. To assess the re-
sults, we used recall and precision measures, which are stan-
dard measures for assessing the relevance of biological se-
quence clustering (55). The recall and precision measures
are based on reference clusters obtained by mapping for
this validation. They are computed based on representative
graphs (56). These measures had already been used to as-
sess the relevance of biological sequence clustering (55). Let
{C1, . . . Ci }1≤i≤L be the set of clusters found by the clustering
method tested, where L is the number of predicted clusters.
Let {K1, . . .K j }1≤ j≤K be the set of ‘ground truth’ clusters,
where K is the number of expected clusters. Let Rij be the
number of nodes from Ci that are in ‘ground truth’ cluster
K j . We compute the recall and the precision such as:

Recall =

K∑

j=1
maxi (Ri j )

L∑

i=1

K∑

j=1
Ri j

(5)

Precision =

L∑

i=1
max j (Ri j )

L∑

i=1

K∑

j=1
Ri j

(6)

Note that the ‘ground truth’ is not really available and
that it is estimated from mapping results onto the refer-
ence genome. The recall expresses the mean over all clus-
ters of the fraction of relevant reads in a result cluster out
of the expected read population of this cluster. It shows to
what extent clusters are complete. The precision expresses
the mean over all clusters of the fraction of relevant reads
among the population of a result cluster. It shows the clus-
ters’ purity. The F-measure is a summary measure com-
puted as the weighted harmonic mean between precision
and recall. Recall and precision are tailored to express the
confidence that can be placed in the method, according to
its ability to retrieve information and to be precise. We also
assess the closeness of the computed clusters as compared
to mapping approaches. Let X0 be the reference partition
(set of clusters obtained by mapping), and X the partition
obtained using a given clustering method. Then a11 is the
number of pairs of nodes that are placed in a single cluster
in X0 and X1 and a00 is the number of pairs for which nodes
are placed in different clusters both in X0 and X1. a10 (resp.
a01) is the number of pairs of nodes placed in the same clus-
ter in the reference X0 (resp. X ) but in different clusters in
X (resp. X0). On this basis, a metric such as the Jaccard in-
dex shows the match between the reference and computed
partitions:

J(X0,X ) = a11

a11 + a10 + a01
(7)

The Jaccard index is between 0 and 1. The closer it is to 1,
the more the set of clusters computed by a method is close
to the ‘ground truth’ set of clusters predicted.

RESULTS

All experiments were run on Linux distribution with 24 In-
tel Xeon 2.5 GHz processors, 40 threads and 200GB RAM
available. First we present the tool we have developed and
made available for large scale long-reads clustering. We
demonstrate it performs well on a canonical example on
which other clustering approaches were assessed. We com-
pare our approach to well established community detection
methods and demonstrate its relevance to long read appli-
cation. Then we validate our method’s results by compar-
ing them with independent clusters obtained by mapping
a real size dataset. In these two parts (sections ‘Compari-
son to state of the art clustering algorithms’ and ‘Biological
relevance’), reads from the mouse brain transcriptome were
used in order to access a ‘ground truth’ via a reference. Then
we show that our approach offers an alternative to the clas-
sical mapping approach even when a reference is available.

CARNAC-LR, a software for long read clustering

Input/Output. We implemented our novel algorithm pre-
sented in section ‘Materials and Methods’, integrated into
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a pipeline called CARNAC-LR. It starts with the compu-
tation of long read similarities via a program called Min-
imap (57) and then produces the clusters. The pipeline’s in-
put is a FASTA file of reads. The output is a text file with
one line per cluster, each cluster containing the read in-
dexes. Each read is represented by its index in the original
FASTA file during CARNAC-LR computation. Then using
indexes, each cluster can easily be converted to a FASTA file
where each read’s sequence is retrieved from the original file
(a script is provided for this task).

First step: computing similarity between long reads. We
chose the Minimap tool for its efficiency and its very high
level of precision on ONT and PB (58), with regard to other
recent methods that can compute similarity or overlaps be-
tween long reads despite their error rate (59–62). To gener-
ate the similarity graph for CARNAC-LR, Minimap ver-
sion 0.2 was launched with parameters tuned to improve
recall (-Sw2 -L100). It produces a file of read overlaps in
.paf format.

Second step: clustering. Minimap’s output is converted
into a graph of similarity, where each node represents a read
and an edge a sequence similarity between two reads above
a certain threshold (see (57)). This graph is then passed to
CARNAC-LR that retrieves and outputs the gene clusters.
CARNAC-LR benefits from parallelization. A thread can
be assigned to the treatment of a single connected compo-
nent, thus many connected component can be computed in
parallel. Further results on scalability are provided in ‘Sup-
plementary material’.

Method validation

Input graph. In order to compare different clustering
methods, we generated an input graph from the mouse
dataset. We ran all methods on the same input graph, pre-
processed using the procedure described in the ‘Complex-
ity and Implementation choices’ section. For scaling pur-
pose, we chose to perform the benchmark on a subset of
10K reads (9609 mouse reads within 527 reference clusters
determined by mapping, section ‘Production of validation
material’). This sampling shows the effect of high gene ex-
pression on clustering. We also checked on a second 10K
sample from the whole dataset that further accentuates the
low expression effect. Directly after Minimap, the graph has
701 connected components, then pre-processing is applied
to obtain an input graph that has 1109 connected compo-
nents. We present a binned distribution of the input graph
degrees in Figure 3. Finally, the input graph G = {V, E} has
the following properties: |V| = 8539, |E | = 143317, graph
clustering coefficient: 0.049991, graph average geodesic dis-
tance: 8.812268 and graph diameter: 24.

Comparison to state of the art clustering algorithms. We
show results of state of the art algorithms and compare
them to our tool’s results. We compared CARNAC-LR re-
sults to algorithms we identified as close to the solution we
propose. We evaluated four state-of-the-art methods that
have been previously applied to similar biological cluster-
ing problems: single linkage transitive-closure (35–37), mod-
ularity (39,63,64), Clique Percolation Method (42,43) and
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Figure 3. Binned distribution of nodes’ degrees in the input graph.

Louvain (44,65). The results are presented Table 1. Our
method has the best precision and the best overall trade-off
between precision and recall as shown by the F-measure.
It also has the highest Jaccard index among all tested ap-
proaches. Louvain’s results were tested for each of its it-
erations, we present here the best result (other results are
given in ‘Supplementary Material’). Despite showing the
best recall, Louvain’s precision is too low to reach a high
F-measure or Jaccard index. The modularity-based method
achieves average recall and precision values, but one of the
lowest Jaccard indices. The transitive closure approach and
the CPM are the two other methods that show good results
on this instance. The CPM was tested with values for input
parameter k ranging from 3 to 145 (no community found
for greater values). Results are presented for k = 3 and show
the method’s best performance. For higher values of k, the
precision increases up to more than 98%, however the re-
call is dragged down to <15% (details shown in ‘Supple-
mentary Material’). Both the CPM and transitive closure
present a precision which is >10% inferior to our method.
As CARNAC-LR is designed for general pipelines provid-
ing a complete analysis of gene variants, it is important
that is does not mix two unrelated genes in a single cluster.
Our approach is therefore more conservative than CPM and
searching for connected components, and it shows compar-
atively good results in any case. Furthermore it needs no in-
put parameter. Results on the other sample present the same
trend as than those presented (shown in ‘Supplementary
material’) and demonstrate that CARNAC-LR also deals
better with shallow coverage.

Comparison to other nucleic acid sequence clustering tools.
We have simply situated the CARNAC-LR algorithm in re-
lation to existing general cluster detection methods, but we
still have to compare our pipeline to other tools dedicated to
the comparison of nucleotide sequences that have been de-
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Table 1. Comparison with state of the art methods. The benchmark was realized on a 10K reads dataset from the mouse chromosome 1. Recall precision
and Jaccard Index are presented (see Equations (7), (5) and (6)) to assess for the goodness of communities detection. CPM3 denotes the CPM algorithm
using k = 3. ‘Clusters’ column shows the number of output clusters of size >1

Recall (%) Precision (%) F-measure (%) Jaccard index #clusters

Transitive closure 63.86 87.20 73.72 6.7E−1 731
Modularity 60.70 71.16 65.51 2.6E−1 733
CPM3 63.03 87.17 73.16 6.7E−1 536
Louvain 81.01 14.71 28.89 3.6E−2 53
CARNAC-LR 60.16 98.04 74.57 7.1 E−1 748

veloped for the same clustering task. We started with one of
the most powerful tools currently available, Starcode (66),
which was designed for reads correction and offers a bench-
mark for the most widely used clustering tools, which we
have adopted. This includes CD-HIT (30), SEED (31) and
Rainbow (67). It should be noted that none of these tools
have been designed to work with ONT reads. They were
created before the full development of long reads technol-
ogy, they have proven not surprisingly completely ill-suited
to clustering these long reads. For this test, we used the
same mouse dataset as in the previous section. The meth-
ods stumble over two features of the data: the error rate and
the length of the sequences. SEED for instance is designed
to create clusters with sequences that show a maximum of
three mismatches, and so finds no clusters. Starcode is not
adapted to the size of ONT sequences and terminates with
an error message. We tried to increase the maximum size
allowed for sequences (initially set at 1024) but the mem-
ory consumed continued to grow rapidly and reasonable ca-
pacities (200GB) were quickly exceeded. We then tried to
perform the calculation by rejecting the longest reads but
like SEEDS, Starcode authorizes a limited distance between
pairs of sequences (a maximum Levenshtein distance of 8)
which is far too small for ONT reads, resulting in singleton
clusters. Rainbow only accepts paired reads such as those
sequenced in RAD-seq short reads experiments and cannot
be adapted to our problem. Finally the most flexible tool,
CD-HIT, was the only one to give results. Its ‘EST’ version
was used. We tested different values for sequence identity
threshold (-c), that can be decreased down to 0.8. We re-
port only the best result, for -c 0.8. It is a long way be-
low the result obtained by CARNAC-LR (F-measure up
to 41.96% due to low recall, compared with 86.62% for
CARNAC-LR). In addition, our pipeline is substantially
faster with memory consumption in the same range (within
a factor of 2). In view of these results, we added Tofu (48),
the only other de novo clustering tool that, to our knowl-
edge, is designed to work with long reads, to the benchmark.
Unfortunately, Tofu relies heavily on the specificity of Pa-
cific Bioscience RNA protocol (Isoseq) sequences, and can-
not be run with ONT reads. Incidentally, the aim of Tofu
differs from CARNAC-LR as it is expected to retrieve one
cluster per isoform rather than one cluster per expressed
gene. A detailed summary of this benchmark result is pre-
sented in ‘Supplementary materials’. Once again, another
sampling on mouse chromosome 1 was used to perform a
second benchmark that presents same conclusions, as also
shown in ‘Supplementary material’.

Biological relevance

Validation on a real size dataset.

Clusters quality. In this experiment we demonstrate the
quality of de novo clusters obtained using CARNAC-LR.
We used the subset of reads that could be mapped onto the
mouse genome reference (501,787 reads) as a means of com-
parison for assessing the biological relevance of our clusters.
CARNAC-LR’s results were computed using 43 GB RAM
and took 18 minutes. The mean recall for CARNAC-LR
was 75.38% and the mean precision was 79.62%. In other
words, retrieved clusters are on average 75.38% complete,
and on average 79.62% of the clusters are composed of un-
mixed reads from the same gene. In order assess whether our
method’s recall and precision is consistent regardless of the
gene expression levels, we computed expression bins. For a
given gene, we use the number of reads of the ‘ground truth’
cluster to approximate an expression. Any ‘ground truth’
cluster with 5 or less reads is placed in the first bin, and so on
for 5–10, 10–50 and ≥50 reads categories. Each of the four
bins represent quartiles of expression, which means there is
an equal number of clusters in each bin. Figure 4 presents
the recalls obtained for binned expression levels and shows
our approach’s recall and precision remain consistent de-
spite the heterogeneous coverage in reads. Furthermore, we
can deduce from this plot that small clusters do not bias the
presented mean recall and precision, as even for big clusters
(i.e. ≥50 expression bin) that are more prone to lose some
reads, these metrics remain high.

Output excerpt. Once CARNAC-LR has been run,
FASTA files can extracted for each cluster. We selected the
sequences contained in a cluster after CARNAC-LR’s pass
on the mouse transcriptome. We used a genome browser to
graphically show the reads that were grouped by our ap-
proach. (Figure 5). We selected a cluster of sufficient size to
be able to present a variety of isoforms. This corresponds
to a gene for which mapping retrieved 120 reads. In this ex-
ample, our approach recovered 93% of the predicted gene’s
reads while including no unrelated read in the cluster. Two
types of missed reads can be distinguished: (i) A group of
black reads that share no genomic sequence with the major-
ity of the gene’s transcript, because they come from an in-
tronic region. These reads could not be linked to the others
by Minimap and therefore cannot be clustered with them,
as shown in the particular case described in Figures 1 and
2. (ii) Two other reads for which local connectivity was not
detected by Minimap were discarded from the cluster. The
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Figure 4. Assessed mean recall and precision of CARNAC-LR+Minimap.
They were computed on mouse reads using clusters found by mapping on
a reference as a ‘ground truth’ (see Equations 5 and 6). Expression bins are
computed from quartiles of expression predicted by mapping and represent
the number of mapped reads by gene. Mean precision and recall over all
clusters falling in theses bins were then calculated.

Figure 5. Example of CARNAC-LR’s output cluster in mouse. The output
of CARNAC-LR is a text file with one line per cluster, each cluster con-
taining the read indexes. We selected a predicted cluster made of 112 reads
(purple). For validation purpose, these reads were mapped with BLAST on
an in-house igv (68) version for mouse genome. Reads are spliced-mapped,
bold parts are the mapped sequences from the reads and thin parts repre-
sents the gaps between the different mapped parts of the reads. Despite the
staircase effect observed in the data, this allows to notice that several types
of variants were gathered. They could all be assigned to gene Pip5k1c (chr
10:81 293 181–81 319 812), which shows no false positive was present in
this cluster. Eight reads (black) present in the data are missed in this clus-
ter. The group of six black reads on the left represent intronic sequences
and share no sequence similarity with the others and thus could not appear
in the same cluster.

image shows different exon usage in transcripts, which re-
veals alternative splicing in this cluster. Different alterna-
tive isoforms were therefore gathered in a single cluster as
expected (see Figure 1).

Complementarity of de novo and reference-based ap-
proaches.

Intersection and difference with the set of mapping clus-
ters. Since it does not rely on any reference information,
our approach putatively yields different results than clas-
sical mapping approaches. In this section, we investigate
the differences between the two approaches and demon-
strate the usefulness of CARNAC-LR even if a reference
is available. We ran it on the full mouse brain transcriptome
dataset (1 256 967 reads). We compared the intersections
and differences of the results of our approach and map-
ping. The CARNAC-LR+Minimap pipeline took less than
three hours (using 40 threads). In comparison, the ‘ground
truth’ clusters took 15 days to be computed (using up to 40
threads). Our approach was able to place 67 422 additional
reads that were absent in the mapping procedure, resulting
in 39 662 clusters. These clusters fall in two categories (i)
common clusters with a mix of reads processed by our ap-
proach and/or by mapping, or (ii) novel clusters that contain
reads processed exclusively by our approach or mapping.
Each approach performed differently on these categories.

Common clusters. For category (i), mapping comple-
mented many common clusters with small amounts of
reads left aside by our approach. As some reads are pro-
cessed by mapping, a recall and precision can still be com-
puted using mapping as ground truth. We computed re-
call and precision based on the read fraction of clusters
that could be compared with mapping. They are quite sim-
ilar to the values obtained in the previous section (mean
recall 75.26% and mean precision 79.30%). This demon-
strates that CARNAC-LR efficiently used the supplemen-
tary connectivity information despite the addition of poten-
tially noisy reads.

Novel clusters. Conversely CARNAC-LR shows a better
ability to group reads unprocessed by mapping into novel
clusters (Figure 6). CARNAC-LR produced 824 novel clus-
ters (17 189 reads) of category (ii) containing at least five
reads. In order to assess the relevance of these novel clusters,
we remapped reads a posteriori, separately for each clus-
ter, onto the reference genome using a sensible approach
(GMAP (69) version 29 September 2015). This operation
took ∼10 h (using four threads). 19.68% of mapped reads
were assigned to the MT chromosome, then chromosome 11
represented 10.85% of the reads, and other chromosomes
<10% of mapped reads each. A third of the reads were
multi-mapped (36.7%). However, on average, for each clus-
ter 98.89% of the reads shared a common genomic locus.
This is consistent with the expected results of the cluster-
ing for reads containing repeats or paralog regions (Figure
1). Finally, 5.7% of the clusters exclusively contained reads
mapped at a single locus. All of them could be assigned to
an annotated gene. So even if a reference was available, our
approach was able to retrieve de novo expressed variants of
the genes that were unassigned by the mapping.

Correlation of expression levels. Another way to look at
these results is two consider the number of reads predicted
by each method as the gene’s expression, and to compare
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Figure 6. Complementarity of CARNAC-LR and mapping approaches. Only clusters of size ≥5 are represented. Mapping complemented common clusters
a with a mean 13 reads per cluster in 90% of clusters. CARNAC-LR’s supply was tenfold lower with a mean 1.3 read added to 100% of common clusters.
On the other hand, CARNAC-LR retrieved 15-fold more novel cluster than mapping.
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Figure 7. Comparison of clustering and mapping approaches. Compari-
son and correlation of expressions levels. Gene’s expression can be inferred
by counting the number of reads by gene. For each gene, we counted the
number of reads retrieved by mapping and we compared it to the number
of reads reported by our pipeline and validated by mapping. We computed
the Pearson correlation coefficient between the two (in green). Density is
the number of points counted in a colored region. Despite a few outliers,
we can see a strong linear correlation between the two expression levels
estimations (plotted in black). Seven outliers above 750 on Y axis (up to
3327) are not shown.

expression levels predicted by our approach and by map-
ping. We showed that, despite the previously described dif-
ferences, they are highly and linearly correlated, with a Pear-
son correlation coefficient of 0.80 (Figure 7).

DISCUSSION

CARNAC-LR is well-suited to transcriptome instances

We demonstrated that our approach can compete with the
state-of-the-art algorithms to detect communities. With just
a fairly small example, state of the art approaches at least
show a lack of precision in comparison to our approach. We
showed that a modularity-based algorithms such as Louvain
algorithm are not well-tailored to this problem, probably
because of the heterogeneous size distribution of the clus-
ters, and because of overlapping effects due to the repeats.
Among tested state-of-the-art approaches, only the CPM
qualifies for retrieving clusters in our input graphs. How-
ever, by concentrating its results in a small subset of clusters,
it obtains a poor recall and not all its predicted clusters can
be trusted. On the other hand our approach shows a good
consistency. We supplemented these results with a compar-
ison with tools extensively used for clustering nucleotide se-
quences, including developments used for EST clustering
such as CD-HIT EST. We have shown that no published
tool is currently capable of producing quality clusters from
ONT RNA reads. We validated CARNAC-LR’s results us-
ing mouse transcriptome ONT reads, showing we can com-
pute high confidence clusters for many genes. We under-
lined that the mapping procedure used for producing ref-
erence clusters for validation has its own limitations. Thus
the ‘ground truth’ we refer to for the sake of clarity is in fact
only partial.

CARNAC-LR can complement mapping approaches with re-
spect to data with reference

Long reads make it possible to skip the transcript recon-
struction step that is necessary with short reads, although
this is particularly difficult when it involves assembly. There-
fore, long reads constitute an interesting and novel way of
obtaining reference transcripts. However, only a fraction of
long reads are processed by mappers and downstream anal-
ysis is made difficult because of the error rates. In this con-
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text, our approach is shown to be an alternative approach to
mapping for the identification of gene transcripts. We have
shown that our pipeline could be a complementary proce-
dure when reads can be mapped to a reference. It tends to
recover some clusters missed by mapping and allows a more
efficient use of data. We have demonstrated a straightfor-
ward use case for our pipeline as a good proxy for accessing
expression levels by gene. ONT sequences have been shown
to qualify for transcript quantification in Oikonomopoulos
et al. (9). In a long read sequencing experiment, it is likely
that some reads contain too many errors to be mapped onto
a genome. CARNAC-LR can help identifying the origin
gene of such reads, if they are clustered with other mapped
reads. Moreover CARNAC-LR provides structured infor-
mation that can be a sound input for other applications. For
instance, a read correction step can be performed on each
cluster instead of processing all the data, in order to obtain
high quality reference transcripts.

CARNAC-LR applies on non-model species and ONT data

Non model species require de novo approaches, and two
bioinformatics tools dedicated to them have emerged so
far (47,48). Both comprise a pipeline conceived to process
Pacific Biosciences Isoseq (3) reads only and require high
quality long reads. Thus they could not be used on the
data presented here. On the other hand CARNAC-LR is
a generic approach that is designed to be used regardless
of Third Generation Sequencing error profile and protocol.
As a consequence it is the first method to perform de novo
clustering on RNA reads from ONT.

Paralogy and repeats

The clustering of sequences from transcriptome reads is
made difficult by the existence of multiple repeats. This first
attempt to cluster RNA reads by gene is not designed to
precisely assign reads from paralog genes to their original
locus. We argue that specific instances such as paralog genes
constitute research themes on their own and the cluster-
ing provides first-approximation results in these cases. We
can imagine a second clustering pass with the development
of an adapted similarity calculation. CARNAC-LR gathers
all reads from a gene family together, provided the different
copies have not diverged too much and can therefore be seen
as a useful pre-processing step for the analysis of paralogs.
A related research axis would be to describe how repeats
like transposable elements that can be found in exons or re-
tained introns are treated by the clustering procedure.

CONCLUSION

We propose a method for clustering long reads obtained
from transcriptome sequencing in groups of expressed
genes. New algorithmic challenge arises with the combina-
tion of a high error rate in the data (7,8), a high heterogene-
ity of coverage typical of expression data and a large vol-
ume of data. In this, our issue differs from EST clustering
problems for instance. We demonstrated our method’s rel-
evance for this application, in comparison to literature ap-
proaches. It takes reads early after their generation, with-
out correction or filtering. The expressed variants of each

gene are obtained from the clusters, and related transcripts
are identified, even when no reference is available. To make
our solution practical for users, we provide an implemen-
tation called CARNAC-LR that, combined with Minimap,
scales and is able to quickly process real data instances, as
demonstrated by the processing of the whole mouse brain
transcriptome.

As a result of the quick development of TGS, the se-
quencing field is frequently upgraded with new types of se-
quences. For instance, recent long read technology ONT
RNA-direct could unlock amplification biases issues in
RNA sequencing and is therefore promising for gene ex-
pression studies (see Garalde et al., Highly parallel direct
RNA sequencing on an array of nanopores, bioRxiv, 2016).
But it shows higher error rates, at least compared to reads
presented in this study, according to unpublished works. By
proposing a tool tailored to ONT, we wish to promote and
encourage a broader use of these long reads for transcrip-
tome analysis.

DATA AVAILABILITY AND IMPLEMENTATION

CARNAC-LR is written in C++, open source and available
for Linux systems at github.com/kamimrcht/CARNAC-LR
under the Affero GPL license. The nanopore reads from the
mouse RNA sample are available from the ENA repository
under the following study : ERP107503.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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