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Summary
Objective: Manual detection of spike-wave discharges (SWDs) from electroencepha-
lography (EEG) records is time intensive, costly, and subject to inconsistencies/biases. 
In addition, manual scoring often omits information on SWD confidence/intensity, 
which may be important for the investigation of mechanistic-based research questions. 
Our objective is to develop an automated method for the detection of SWDs in a mouse 
model of absence epilepsy that is focused on the characteristics of human scoring of 
preselected events to establish a confidence-based, continuous-valued scoring.
Methods: We develop a support vector machine (SVM)–based algorithm for the 
automated detection of SWDs in the γ2R43Q mouse model of absence epilepsy. The 
algorithm first identifies putative SWD events using frequency- and amplitude-based 
peak detection. Four humans scored a set of 2500 putative events identified by the 
algorithm. Then, using predictors calculated from the wavelet transform of each 
event and the labels from human scoring, we trained an SVM to classify (SWD/
nonSWD) and assign confidence scores to each event identified from 60, 24-hour 
EEG records. We provide a detailed assessment of intra- and interrater scoring that 
demonstrates advantages of automated scoring.
Results: The algorithm scored SWDs along a continuum that is highly correlated 
with human confidence and that allows us to more effectively characterize ambigu-
ous events. We demonstrate that events along our scoring continuum are temporally 
and proportionately correlated with abrupt changes in spectral power bands relevant 
to normal behavioral states including sleep.
Significance: Although there are automated and semi-automated methods for the 
detection of SWDs in humans and rats, we contribute to the need for continued de-
velopment of SWD detection in mice. Our results demonstrate the value of viewing 
detection of SWDs as a continuous classification problem to better understand 
“ground truth” in SWD detection (ie, the most reliable features agreed upon by hu-
mans that also correlate with objective physiologic measures).
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1  |   INTRODUCTION

Spike-wave discharges (SWDs) are the signature electro-
graphic (ie, electroencephalography [EEG]) feature associated 
with absence epilepsy.1,2 These oscillations are thought to be 
associated with reverberations in thalamocortical networks 
and in rodents have a characteristic ~6 Hz oscillation.3–5 
Identification of SWDs from EEG records is extremely impor-
tant both in the clinic as a tool for the diagnosis of absence epi-
lepsy6 and in research. In the clinic, identifying the presence of 
seizure-related events in a patient's EEG may be sufficient to 
identify appropriate treatments. However, detailed scoring of 
epilepsy-related events may be required for better patient care7 
and to identify potential mechanisms of disease or to investi-
gate the efficacy of drug treatments in research laboratories.

Manual scoring of SWDs is time-consuming and costly.8 
In our experience, a person skilled in manual scoring of 
SWDs may require 2-3 hours to score a 24-hour record. In 
both clinical and research settings there may be many hun-
dreds of hours of EEG from humans or experimental animals 
that must be scored. As a result of the significant burden of 
scoring numerous long EEG records, research labs may use 
only snippets of EEG recordings that are presumed to be 
representative of the full dataset. Selective cherry-picking of 
data could introduce unanticipated bias.

In addition to the time and cost associated with manual 
scoring of SWDs, inconsistencies between multiple scorers 
may be abundant.3 Such inconsistencies are not well char-
acterized for SWD detection (we present a detailed example 
here); however, inconsistencies have been described in the 
scoring of other nonconvulsive epileptiform events (eg, in-
terictal spikes).9 Indeed, nonconvulsive epileptiform events 
are difficult to identify and classify for numerous reasons. 
First, the definition of “epileptiform” is often vague10–12 and 
is subject to disagreement. Clinicians and researchers typi-
cally use subjective criteria, such as that an event “stands out 
of the background,”13 to force events into binary categories.  
In addition, many electrographic features appear hidden in 
the time domain14 and thus may be difficult to detect via 
visual inspection of EEG records. As we show, events can 
appear ambiguous to the same expert scorer such that, on 
repeated presentations, a scorer changes their mind about 
an event's categorization. Such ambiguity is reminiscent of 
human perception of optical illusions such as the Necker 
Cube15 and suggests that “ground truth” (What do humans 
define as SWDs and how do those events relate to, or arise 
from, ongoing nonepileptic brain activity?) in identifying 
electrographic events may need to be considered in terms of 
confidence measures rather than certainty.

Thus, there is a need for the development of robust, au-
tomated methods for the detection of SWDs that allow for 
confidence-based scoring of events along a continuum that 
mirrors physiologically relevant EEG features and that 

matches human scoring characteristics. Although algorithms 
have been developed for detection of SWDs,16–19 there has 
been little development of algorithms for the detection or 
quantification of SWDs in mice.16 This is an important gap 
because rodent models are currently the main research tools 
for understanding the basic mechanisms of epilepsy.

We present a support vector machine (SVM)–based  
algorithm for the detection of SWDs in mice expressing a  
γ-aminobutyric acid A (GABAA) receptor mutation (γ2R43Q) 
that causes absence epilepsy.5,20 This algorithm is much faster 
than manual scoring; it scores a 24-hour record in ~3 minutes. 
It is important to note that this algorithm agrees well with 
human scoring and captures the statistical characteristics of 
human uncertainty. In addition, and unlike human experts, it 
is 100% self-consistent. Finally, we show that events along the 
scoring continuum generated by the algorithm are temporally 
and proportionately correlated with changes in spectral power 
bands relevant to behavioral states including sleep.

2  |   METHODS

All use of animals in this manuscript conformed to the Guide 
for the Care and Use of Laboratory Animals21 and was ap-
proved by the University of Wisconsin-Madison Institutional 
Animal Care and Use Committee.

2.1  |  Animal colonies
Animals were bred from a colony maintained at the University 
of Wisconsin-Madison. In a paired breeding scheme, female 

Key Points

•	 Clinicians and researchers may benefit from an 
automated method of SWD detection that pro-
vides a framework for the quantitative description 
of SWDs and how they relate to other electro-
graphic events

•	 We present an algorithm for the automated, con-
sistent, and rapid scoring of SWDs that assigns a 
confidence to detected events that is highly corre-
lated with human scoring confidence

•	 We characterize the human inter- and intrarater 
consistency in the scoring of potential SWD 
events and compare them with the algorithm

•	 Events along the scoring continuum generated by 
the algorithm are temporally and proportionately 
correlated with changes in spectral power bands 
relevant to behavioral states including sleep
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wild-type (RR) mice of a C57BL/6J-OlaHsD background 
(Harlan, Madison, WI) were bred with male heterozygous 
mice expressing the γ2R43Q knock-in mutation in the same 
background. Heterozygous knock-in mice (RQ) experience 
SWDs concurrent with behavioral arrests,5 whereas homozy-
gous mutants are rare. The γ2R43Q strain was provided by 
Dr. Steven Petrou (The University of Melbourne, Parkville, 
Australia).

2.2  |  Computer programing and code 
accessibility
All analyses, data processing, and event classification was 
done in MATLAB (MathWorks, Natick, MA). The final ver-
sion of this algorithm was executed with MATLAB 2017b 
and code is available at the GitHub repository: https://github.
com/jessePfammatter/detectSWDs.

2.3  |  EEG implantations, 
recording, and data
EEG electrodes were implanted as described by Nelson et al. 
22 Briefly, male heterozygous knock-in (RQ) and wild-type 
(RR) mice were implanted at postnatal day 24 under isoflu-
rane anesthesia (1%-2% in 100% O2). Each animal was im-
planted with gold-plated miniature-screw electrodes over the 
right and left frontal and parietal cortices, and one over the 
cerebellum as reference. Two vinyl-coated braided stainless-
steel wire electrodes were placed in the nuchal muscle for 
electromyography (EMG) recording. The EEG and EMG 
leads were wired to a head cap, which was affixed to the skull 
with dental acrylic.

After recovery from surgery (2-3 days), animals were 
connected to a multichannel neurophysiology recording 
system (Tucker-Davis Technologies, TDT, Alachua, FL) to 
continually sample EEG and EMG signals at 256 Hz (dig-
itally bandpass filtered between 0.1 and 100 Hz) for up to 
14 days. Offline, data were notch filtered at 60 Hz using 
a Chebyshev Type II digital filter and high-pass (>2 Hz) 
filtered with a Chebyshev Type I digital filter. We selected 
these infinite impulse response (IIR) filters because of 
their highly specific frequency attenuation without ripple 
in unintended frequencies, acceptable phase shift given 
our largely time-frequency–based algorithm, and compu-
tational efficiency (see Figure S1 for frequency and phase 
responses of these filters). EEG signals were then normal-
ized using the following variation of a z-score normaliza-
tion: First, we fit a Gaussian distribution to the all-points 
histogram (calculated using the histfit() function with bins 
equal to the floor of the square-root of the number of data 
points in each EEG signal) of each 24-hour record using 
least-squares minimization via Nelder-Mead simplex op-
timization23 as implemented by the fminsearch() function 

in Matlab using the mean and standard deviation of the 
24-hour EEG as starting guess for the optimization. We 
then normalized the 24-hour record by subtracting the 
mean from each data point and dividing by the standard 
deviation of the model fit. The resultant normalization is 
different from the standard z-score normalization in that 
the mean and standard deviation are calculated from esti-
mating the Gaussian portion of the signal via the best-fit 
Gaussian model (using sum of squared errors) rather than 
being empirically calculated. We employed this normaliza-
tion technique to comparatively normalize the EEG from 
healthy and epileptic animals alike. High-amplitude EEG 
signal such as convulsive seizures or high-amplitude spikes 
produce EEG data with non-Gaussian all-points histograms 
and thus poor results from the maximum likelihood esti-
mates of the mean and standard deviation. In addition, 
more simplistic methods such as a median normalization 
did not perform as well and fundamentally do not attempt 
to normalize the data to the “normal” component of the 
EEG signal in the same way as our method. All analyses 
used a frontal EEG channel.

2.4  |  Automated event detection
We used a 2-stage algorithm for the detection and classifica-
tion of SWDs. In Stage 1, we automatically detected puta-
tive SWDs using a frequency and amplitude threshold-based 
approach. First, we detected all peaks that were (a) above 3 
standard deviations from the mean of the normalized EEG 
signal and (b) that had a peak greater 3 three standard de-
viations from the mean of the derivative signal (the nega-
tive of the first derivative of the normalized signal calculated 
with the gradient() function and normalized again with the 
same procedure as the original signal) that preceded (within 
60 msec) the peaks identified in the normalized EEG. Then, 
sets of peaks were grouped into “possible SWD events” if 
their frequency was between 3 and 11 Hz. The parameters for 
event selection were selected heuristically rather than opti-
mized. We choose these parameters with the aim to minimize 
the number of false negatives at the cost of false positives 
(filtered in Stage 2) as compared with unaided human scor-
ing (described in the next section and results presented in 
the top confusion matrix of Figure 4H) while also remaining 
within previously published guidelines for the characteristics 
of SWDs in mice5,24 and rats.3,4

2.5  |  Manual event classification
Completely unaided from our computer algorithms, scorers 
(S1 and S4: R.K.M. and J.A.P.) each manually scored 5, 24-
hour EEG records (n = 4 RQ, n = 1 RR) for the presence of 
SWDs. Scorers marked epochs (4 s) containing SWDs using 
Svarog v1.0.10 (Braintech, Ltd., UK). We use these manual 

https://github.com/jessePfammatter/detectSWDs
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scores to help validate the performance of both our Stage 1 
and Stage 2 algorithms.

We also presented 2500 putative SWD events identified by 
the Stage 1 detection method to each of 4 human scorers (S1-
S4: R.K.M., E.P.W., M.V.J., and J.A.P.) including an epilep-
tologist with over 20 years of experience (R.K.M.) for manual 
classification. Of these, 2050 were randomly selected unique 
events from 10, 24-hour EEG records from 5 animals (3 RQ 
and 2 RR). From these we selected 50 events to be repeated 10 
times each. Each of the resultant 2500 events were shown to the 
human scorers in random order. Each event was presented as 
an 8-second length of normalized single-channel EEG with the 
putative event highlighted in yellow. Scorers classified events 
as either SWD or nonSWD and were given as much time as 
they needed to view/review/reclassify events. All human scor-
ers were skilled in the identification of SWDs but were blinded 
to the genotypes, and 2 were blinded to the presence of repeated 
events. None of the scorers were aware of which events were 
repeated because the order of events was random.

EEG/EMG signals were also manually scored for sleep 
stages (wake, non-rapid eye movement [nREM], or rapid eye 
movement [REM]) (see Figure 3) in epochs (4 s) with Serenia 
Sleep Pro software (Pinnacle Technology, Lawrence, KS) 
following criteria similar to Nelson et al (2013).22 Stretches 
≥8 seconds (2 epochs) were required for valid transitions.

2.6  |  Event predictor variables
From the putative events detected by Stage 1, we extracted 
12 predictor variables for use in Stage 2 of the automated 
algorithm: event classification with an SVM. These vari-
ables were calculated from 4 scale ranges from the wavelet 
transform (using the cwt() function specifying “amor” for the 
Morlet wavelet) of each event. These ranges were chosen to 
target the characteristic ~6 Hz frequency of SWDs in mice 
and several of its harmonic components.3–5 For each of the 4 
frequency bands (4.4-8.2 Hz, 8.8-16.4 Hz, 17.6-32.8 Hz, and 
35.1-65.5 Hz) we summed the absolute value in each bin (9 
bins per band) across the duration of each event (including 
10 data points before the first peak and after the last peak 
identified for each event) and calculated the mean, standard 
deviation, and maximum values for each event (4 frequency 
bands * 3 statistics = 12 predictors).

2.7  |  Automated event classification
For Stage 2 of the algorithm we developed an SVM-based 
automated method to classify SWD events identified in Stage 
1 using the 12 predictors. In brief, an SVM is a machine 
learning–based classification method that aims to separate 
groups of events after being trained with set of “known” la-
bels. The boundaries of the classification space are defined 
by events assigned as support vectors. The location of each 

event relative to the nearest support vectors can be used for 
classification of events, and the distance from each event to 
its nearest support vector can be used as a proxy for confi-
dence in the assigned classification of each events. Readers 
unfamiliar with SVM may find a suitable introduction in-
Reference 24 or 25. We trained the SVM (fitcsvm() func-
tion) using the labels provided by the human scorers (10 000 
labels, 2500 per scorer for 2050 unique events) where the 
algorithm created a weighted response for each unique event 
based on the average human label across all 4 scorers. In our 
preliminary testing of the algorithm and upon visual inspec-
tion of the predictor variables for these events, we choose a 
Gaussian kernel for the SVM.24 To choose the proper hyper-
parameters for the SVM (kernel scale, box constraint, and 
cost matrix used in fitcsvm()), we employed a grid-search 
based optimization process. We trained the SVM under 
each unique combination of the following parameters; ker-
nel scale = [1, 5, 10, 15, 20], box constraint = [5, 10, 15, 
20, 25], and a cost matrix of [0, 1; x, 0] where x = [1, 1.5, 
2, 2.5, 3]. We then chose hyperparameters with the fol-
lowing guidelines: (a) We aimed to minimize the standard 
deviation of the agreement among the human scorers and 
the SVM in order to minimize individual scorer bias. We 
chose this method as opposed to maximizing the average 
agreement between the human scorers and the SVM because 
that quantity can be maximized to a significantly higher 
value than the agreement within human scorers, resulting in 
model overfitting and poor performance on novel data. (b) 
To avoid overfitting, we calculated the fivefold cross vali-
dation, which partitions the data into multiple subsets and 
tests model fit on each subset,24 between the SVM and the 
training labels. Because Matlab uses a stochastic fitting pro-
cess for the generation of the SVM, we repeated SVM fitting 
and calculation of the fivefold cross validation 10 times and 
took the standard deviation of fivefold cross validations.26 
Minimizing this quantity allowed us to select a model that 
performs similarly on numerous randomly chosen subsets 
of data. (c) The model should match human uncertainty in 
order to generate accurate confidence-based model scores 
(distance from each event to the nearest support vector). We 
aimed to maximize the R2 between the model scores and 
the weighted human responses for each of the 50 repeated 
events (not the entire 2500 events) within the data set (ie, 
intrarater reliability), which produces a model with high fit 
to the human uncertainty (the 50 repeated events are our 
predictors of human uncertainty in SWD scoring). Although 
these parameters are important, their optimal set point is un-
clear given that variability between human scorers suggests 
that ground truth labels may not exist for these data. Here, 
we used the following hyperparameters: kernel scale = 10, 
box constraint = 10, cost matrix x = 1.5. We present graphi-
cal results for the optimization of our tunable SVM param-
eters in Figure S2.
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To better understand the relationship of the 12 predic-
tor variables calculated from the wavelet transform of each 
event with the classification scores produced by the SVM, 
we performed a least absolute shrinkage and selection oper-
ator (LASSO) regression.27 Although this analysis does not 
allow direct understanding of the classification space of the 
SVM, such direct understanding is difficult to achieve and 
therefore methods that allow some intuition as to the relative 
importance of predictor variables in the system are useful. 
We allowed the LASSO regression 100 iterations with cross 
validated (10-fold) fits and selected the final coefficients 
from the model with a lambda value (indicating lowest cross 
validation error) that was one standard deviation larger than 
the model with the lowest lambda value.

To highlight the differences between the human and SVM 
scoring of the 2500 events identified by Stage 1, we calculated 
receiver-operating characteristic (ROC) and precision-recall 
curves between each scorer and the algorithm. In addition we 
provide a table showing pairwise agreement between the human 
scorers, the SVM trained with K-means28 labels (generated 
using the kmeans() function from the 12 predictor variables for 
each event), the final SVM, and the human consensus labels. In 
addition, we calculated the sensitivity, specificity, and precision 
between the human consensus labels and the final SVM (for 
the 2500 events identified by Stage 1). To demonstrate the per-
formance of the algorithm in comparison to human scoring (2 
scorers) of an unannotated (no information from Stage 1) and 
out-of-training data set (5, 24-hour EEG recordings), we calcu-
lated confusion matrices from the epoch-by-epoch scoring of 
SWDs identified by humans (S1 and S2) and the Stage 1 events, 
and SWDs identified by humans (S1 and S2) and the Stage 2 
(final SVM) scores. From these confusion matrices we calcu-
lated the 12 event predictor variable values for each event within 

3 categories: Stage 2 true positives (TP, events within epochs 
classified by Stage 2 the humans as SWDs), Stage 1 false nega-
tives (FN, events within epochs classified by humans as SWDs 
but missed by Stage 1), and Stage 2 true negatives (TN, events 
within epochs classified by Stage 2 and the humans as non-
SWDs). We then calculated a multivariate analysis of variance 
(MANOVA; using the manova1() function) to demonstrate if the 
means of the 12 predictor variables collectively varied between 
the three test groups (Stage 2 TP, Stage 1 FN, and Stage 2 FN).

2.8  |  Application of the algorithm and 
preliminary testing of the SWD output scores
We applied the algorithm to classify SWDs in 60, 24-hour 
EEG records from 8 RQ and 3 RR animals including 45 
records that were not used for algorithm development (ie, 
out-of-sample data). Using the output of the algorithm, we 
calculated the event-triggered average: (ie, the average of 
all segments of one signal aligned to the time of events in 
another signal) of 50 random examples of strong SWDs 
(distance to support vector of >1 to 2), moderate SWDs 
(>0.5 to 1), weak SWDs (>0 to 0.5), weak nonSWDs (<0 to 
−0.5), moderate nonSWDs (<−0.5 to −1), and strong non-
SWDs (<−1 to −2), and 50 random locations not identified 
by our algorithm to delta (0.5-4 Hz), theta (6-9 Hz), sigma 
(10-14 Hz), and gamma (25-100 Hz) power surrounding 
each event during lights-on and lights-off periods.

3  |   RESULTS

We found that events identified by our algorithm as SWDs in 
γ2R43Q animals have a characteristically strong and continuous 

F I G U R E   1   A, An EEG trace from the frontal left channel of a mutant γ2R43Q mouse showing three putative SWD events detected by Phase 
1. B, The wavelet transform scalogram of the trace in A. We use the maximum, average and standard deviation of the scalogram amplitude from 
four bands (~4.4-8.2 Hz, ~8.8-16.4 Hz, ~17.6-32.8 Hz, and, ~35.1-65.5 Hz shown as bands with white frequency labels) to generate 12 predictors to 
train the SVM-based classification algorithm.
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power in the ~6 Hz frequency range during the entire discharge 
event (Figure 1), consistent with previous descriptions of SWDs 
in these animals.5 In addition, these events have a reliable “fin-
gerprint” in the time-frequency decomposition (Figure 1).

3.1  |  Manual scoring and inter- and 
intrarater reliability of preselected events
Overall, human scorers were variable in their scoring. Of the 
2050 unique events, the 4 human scorers were in complete 

agreement (ie, consensus labels) for 57% of the events (1159 
events, 940 nonSWDs, and 219 SWDs). Figure 2 shows a 
characterization of human scoring of the 2500 events pre-
sented as 2-dimensional cross-sections in predictor space for 
6 of the predictor variables used in the SVM. Further char-
acterization of the inter- and intrarater reliability is shown in 
Figure 3, which demonstrates the difference in rating trends 
of the human scorers. Figure 3B shows 8 example events 
pulled from the 50 events presented to each human scorer 
10 times. For each of the 2500 events presented to human 

F I G U R E   2   Each of the 2500 human-scored events labeled by agreed SWD (red), consensus agreed nonSWD (blue), and consensus disagreed 
(green) shown as a 2-dimensional cross-section in predictor space for 6 of the 12 predictor variables used to characterize an SWD event. The 
diagonal shows the histograms for each category of label for each of the 6 predictor variables. Notice how disagreed-upon events tend to align with 
SWD rather than nonSWD events.
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scorers, agreed-upon SWD events have high values for both 
the maximum values in 4.4-8.2 Hz and 17.6-32.8 Hz ranges, 
whereas agreed-upon nonSWD events have a low maximum 
value for these bands (Figure 3B). Intra- and interrater reli-
ability data are shown in Figure 3C-E. Interrater reliability 
on the 50 repeated events (REs) data (Figure 3D) agreed with 
the trend in distribution of human agreement for all of the 
2500 events presented (low-resolution data). Average int-
rarater reliability across all scorers was 100% for 13 of 50 
REs (Figure 3E). Thirteen of the 50 REs had an average 
intrarater agreement of 90% or less across all scorers. For 
individual scorers, intrarater agreement was as low as 50% 
for the most ambiguous events. Average Intrarater reliability 
was 94% across all scorers and all 50 repeated events.

3.2  |  Comparing automated and manual 
scoring of preselected events
Although only one of many possible clustering methods,  
K-means, a more traditional clustering method, failed to  
partition the data similarly to the human scorers (notice the 
“fuzziness” in SWD/nonSWD scoring in Figure 3A) but rather 
drew a hard line between SWD/nonSWD events (Figure 4A). 
The output of the SVM trained with human labels dem-
onstrates a similar “fuzziness” in scoring as human scorers 
(Figure 4B). In fact, the SVM classification associated with 
events (eg, distance to the nearest support vector) is strongly 

correlated with human interrater reliability (Figure 4C). 
In comparing labels from our final SVM algorithm and the 
human consensus labels, the sensitivity (equal to the number 
of true positives, the SWD events agreed upon between SVM 
and the human consensus labels, divided by the total number 
of SWD events from the human consensus labels) was 0.98. 
The specificity (equal to the number of true negatives, the 
nonSWD events agreed upon between SVM and the human 
consensus labels, divided by the total number of nonSWD 
events from the human consensus labels) was 0.95. The preci-
sion (equal to the true positives divided by the sum of the true 
positives and false positives, the number of events classified 
as SWD by the SVM but nonSWD by the human consensus 
labels) was 0.83. The values for sensitivity, specificity, and 
precision presented here were calculated using events identi-
fied by Stage 1 of the algorithm, and although these are useful 
metrics they should not be interpreted as the sensitivity and 
specificity of the algorithm as compared to unaided human 
scoring of SWDs (see next section). Figure 4D shows the coef-
ficients for the LASSO regression. The absolute value of these 
coefficients indicates the relative importance of each variable, 
whereas the sign indicates whether a large versus small value 
of that variable was most predictive of the SVM classification 
scores. Negative coefficients do not indicate that the magni-
tude for those variables was lower for SWDs than nonSWDs 
on average. Figure 4E-F shows the ROC and precision-recall 
curves between the 2500 events scored by each of the human 

F I G U R E   3   A characterization of the variability of human classification of SWD events. A, Each of the 2500 events as labeled by human 
scorers 1-3. Note the dramatic variability in labeling between each of the scorers. B, Examples of 8 events identified as “putative” SWD events 
by the first stage of the algorithm. The colored bar below each trace represents the start and end of each event, where color shows the degree of 
agreement between human scorers. This color scale matches that above Panel C. C, Each of the 2500 putative SWD events presented to each human 
scorer, plotted by the maximum value of the wavelet transform from ~ 4.4-8.2 Hz vs the maximum value of the wavelet transform from ~ 17.6-
32.8 Hz. The numbers mark locations of the 8 example events from panel B. D, The average interrater agreement for each of the 50 repeated events 
(REs, large circles) plotted over the same data. Note that the agreement between raters approaches a coin flip (green) near the intersection of the 
strong SWD and nonSWD events. E, The average intrarater reliability for the same 50 REs as shown in panel D. Note the shifting scale associated 
with the color bars above panels C, D, and E
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scorers and the SVM scores. The average agreement between 
humans was similar to that between humans and K-means but 
lower than the average agreement between the SVM and the 
humans. The standard deviation of the agreement between the 
SVM and the human scorers is lower than between the human 
scorers themselves, indicating that the SVM agrees with the 
humans better than they agree with themselves (Figure 4G).

3.3  |  Comparing automated scoring with 
unaided manual scoring
Figure 4H shows a comparison between performance of 
the scoring of 5 unannotated (without computer assistance) 

24-hour EEG records by humans (S1 and S4) with the Stage 1 
events and the Stage 2 SVM results. Stage 1 of the algorithm 
compared with the unaided human scoring had a precision of 
0.22 and a recall (equal to the true positives divided by the 
sum of the true positives and false negatives) of 0.87. Stage 
2 of the algorithm compared with the unaided human scoring 
had a precision of 0.59 and a recall of 0.68. Epochs contain-
ing SWD events identified by humans but missed by Stage 
1 of the algorithm (Stage 1 FN, 290 collective epochs con-
taining 244 unique events) events within those epochs have 
significantly different characteristics (values for predictor 
variables used in the SVM) than those events within epochs 
identified as Stage 2 TP (1490 collective epochs containing 
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1150 unique events) or Stage 2 TN (240227 collective epochs 
containing 3143 unique events) (MANOVA dimension = 2, 
P-values < 0.001, Figure 4H).

3.4  |  Application of the algorithm
We applied the algorithm to analyze SWDs in a set of 60, 24-
hour EEG recordings from RR and RQ animals, 50 of which 
were not used for SVM development. The algorithm analyzed 
these records in ~3 minutes per 24-hour record. Figure 5 
shows the application of our algorithm on a representative 
24-hour record from an RQ animal. In addition, using the 
output of the algorithm on an RQ animal, we demonstrated 
the relatedness of SWD and nonSWD events (as labeled by 
the SVM) to sleep staging. We found strong and abrupt re-
lationships between SWDs and each power band that some-
times preceded the SWD by several minutes (Figure 5D-K).

We found an average of 737.51 ± 482.28 events per 24-
hour RQ record (n = 8 animals, 45, 24-hour records), of 
which 194.09 ± 169.37 of were classified as SWDs (>0 
SVM score). In RR animals (n = 3 animals, 14, 24-hour 
records), we found 409.64 ± 207.28 possible events per 24-
hour record, of which 26.79 ± 21.18 were classified as SWD 
events. The events identified as SWDs had a significantly 
lower SVM score in RR animals (0.797 ± 0.445) than in 
RQ animals (0.519 ± 0.376, t = 24.39, df = 17410, P-value 
<0.001). Despite having a lower average SVM score, SWDs 
identified in RR animals show strong visual SWD charac-
teristics (Figure 6A) and show similar temporal relationships 
with delta, theta, sigma, and gamma power bands as events 
from RQ animals (data not shown). Despite being very sim-
ilar, compared to RQ animals, events from RR animals do 
have a significantly different multivariate profile for the 12 
continuous wavelet transform cwt-based predictor variables 
(MANOVA dfchi-square = 12, chi-square value = 984.27, 

P-value < 0.001, Figure 6B). However, these differences 
appear to be relatively small compared to those differences 
observed between TPs and TN/FNs presented in Figure 4H.

4  |   DISCUSSION

We have developed an automated, SVM-based algorithm 
for the detection of SWDs that leverages human agreement 
in the scoring of machine-preselected events to develop a 
continuous, confidence-based score in addition to a binary 
classification (SWD/nonSWD). The algorithm was trained 
using a dataset with 2500 putative events and labels (SWD 
or nonSWD) from 4 expert human scorers, using fivefold 
internal cross validation, and tested against the perfor-
mance of 2 human scorers (S1 and S4) on multiple, un-
annotated (no computer information), and out-of-training 
data records. The resultant SVM agreed with humans as 
well as they agreed with each other when scoring machine-
preselected events (~70%), but unlike the other classifica-
tion technique that we investigated (K-means, Figure 4A), 
the SVM did not draw sharp boundaries in predictor space 
between regions containing SWDs vs nonSWDs. Instead, it 
drew fuzzy, tightly interleaved boundaries similar to those 
of human scorers. The algorithm also correlated well with 
the uncertainty of individual humans when presented with 
repetitions of the same waveforms, thus capturing ~77% 
of the ambiguity in human perception of SWD waveforms 
(Figure 4C). Although other groups have developed algo-
rithms for the detection of SWDs,16–19 to the best of our 
knowledge, no other group has designed an algorithm to 
mirror human confidence in scoring.

Of course, there are a few limitations and concerns to ad-
dress about our algorithm. Most notable is the fact that the 
primary focus of our attention in this article is on highlighting 

F I G U R E   4   Support vector machine (SVM)–based approach to SWD classification. A, B, each of the 2500 potential SWD events displayed 
by the maximum value of the wavelet transform from ~4.4-8.2 Hz vs the maximum value of the wavelet transform from ~17.6-32.8 Hz. A, Shows 
events as clustered by K-means clustering using the 12 wavelet transform predictor variables. B, Events labeled by an SVM trained with the human 
scoring labels and fit with a Gaussian kernel. The numbers 1-8 are overlaid to show the SVMs classification of the 8 example events from Figure 2. 
C, The relationship between the distance to nearest support vector (x axis, 2 is more likely SWD) and the average intrarater reliability (from 
Figure 2C) for the 50 repeated events. D, The coefficients from a LASSO regression, which highlights the relative importance (absolute value of 
coefficients) and relative magnitude (sign of coefficients) of the variables as compared to the SVM scores. E, Receiver-operating characteristic and 
F, precision-recall curves showing the performance of each human scorer and the human consensus labels (HC) as compared to the SVM scores. 
G, The agreement matrix for classification of 2500 potential SWD events as classified by 4 human scorers (S1-S4), an SVM trained with the KM 
labels, and the human consensus data (HC, the events on which all human scorers agreed). Note that the agreement between all of the humans 
(orange) was comparable to that between the SVM classification and the humans (red), although the agreement between the SVM and the humans 
shows much lower variability than the agreement between the humans alone. H, Confusion matrices comparing the epoch-by-epoch scoring of 
events identified by Stage 1 of the algorithm (top matrix) and events classified as SWD by the Stage 2 SVM (bottom matrix) and S1/S4 scoring of 
5, 24-h EEG records representing 2 RQ and 2 WT animals. The Youden's J statistic (sensitivity + specificity −1) between S1 and S4 equals 0.80. 
S1 and S4 scored these files without the any information from the algorithm regarding putative SWD events. Events within epochs identified as 
Stage 2 TP (red), Stage 1 FN (cyan), and Stage 2 TN (blue) have significantly different multivariate means for the 12 predictor variables used by the 
SVM for event classification (lower-right plot)
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the performance of the SVM with the human scoring of 
machine-preselected events rather than on the performance 
between the SVM and unaided human scoring of raw EEG. 

As stated earlier, our thorough description of the intra- and in-
terrater variability in the scoring of events is perhaps the most 
important contribution of this study to the current state of 

F I G U R E   5   Implementation of the SWD detection algorithm on a 24-h EEG recording from a mutant γ2R43Q mouse with absence epilepsy 
and a demonstration of the high-resolution data provided the “distance to support vector (SV)” measure associated with each identified event. A, 
A hypnogram showing WAKE (blue), nREM (green), and REM (magenta) epochs (4 s) manually scored by R.M. B, A visual representation of 
the events identified by the SVM-based algorithm. The vertical height of each bar represents the distance to nearest support vector. Values >0 are 
likely to be SWDs, whereas events <0 are likely nonSWD events. The color at the end of each vertical bar shows the sleep stage associated with 
the identified event. The histogram on the right of Panel C shows the distribution of event scores, and colors are representative of the categories of 
events used in panels D-K. C, Shows the average number of SWDs (score >0) per hour for all sleep stages (red, larger circles), WAKE, nREM, and 
REM sleep stages. Notice the pattern of increased SWD events during lights-on periods (07:00-18:00, normal sleep time for mice) as compared to 
the lights-off period. The event-triggered average of delta (D, H), theta (E, I), sigma (F, J), and γ (G, K) power (calculated in 4 s epochs) for events 
at several sets of distances from the nearest support vector where redder colors are more likely to be SWDs (red: >1 to 2, yellow: >0.5 to 1, lime: 0 
to 0.5, green: 0 to −0.5, cyan: <−0.5 to −1, blue: <−1 to −2). Note that the color scale in this figure matches the color scale in Panel B of Figure 3. 
The black trace in each of these panels shows the null-hypothesis: the event-triggered average of each power value for 100 randomly selected 
epochs in the EEG record. Events with the largest positive distance to SV (red) show a strong relationship to all power bands during lights-on (white 
panels) and lights-off (gray panels) and this relationship deteriorates as event distances decrease. Note that all events identified by the algorithm 
show some sort of temporal relationship with theta and sigma power as compared to randomly selected EEG locations. Further investigation is 
needed to identify the relationship of each group of these events to absence epilepsy
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event detection in absence epilepsy. Given that we show how 
variably humans perform on the scoring events presented in 
such a controlled setting, it is not surprising that performance 
metrics comparing unaided human scoring of SWDs to our 
algorithm are suboptimal. Regardless, the performance met-
rics comparing the SVM with unaided human scoring are 
very important and are not to be ignored. Indeed, our method 
may have produced better results if we had performed a rig-
orous optimization in order to set the Stage 1 parameters—a 
potential weakness of this work. However, optimization of pa-
rameters to data scoring in such an uncontrolled fashion (eg, 
humans often view EEG records at different time and ampli-
tude scales when scoring) may not necessarily lead to a bet-
ter understanding of ground truth in SWD detection. Rather, 
the true definition of SWDs should arise from comparison of 
rigorously definable events (eg, events defined as having a 
particular set of predictor variables) with other known EEG 
features (such as we have demonstrated in Figure 5) or treat-
ments (eg, ethosuximide) known to alter SWDs. We believe 
that our work sets a framework for investigating a rigorously 
selected and definable set of SWDs and we plan to follow this 
line of research in future work.

Although we believe that this method performs well 
on data from the γ2R43Q model of absence epilepsy, we 
have yet to fully test it in other models of absence epilepsy. 
Continued development will include testing and expansion 
to other animal models as well as to human EEG. We an-
ticipate that Stage 1 (event detection) should work well for 
most types of absence seizures exhibiting a ~6 Hz character 
(as occurs in rodents). The frequency range of interest can 
be easily adjusted for different data sets. However, for Stage 
2 (the SVM classification), some retraining of the algorithm 
may be necessary, using human scoring on a very small sub-
set of data that are representative of the different types of 
subjects/treatments being analyzed. In this current version, 
we selected a set of optimization parameters and SVM kernel 

that best fit the characteristics of human scoring. In general, 
modification of the hyperparameters or kernel can make an 
SVM more generalizable.25 Continued development of this 
algorithm may also include components shown to be import-
ant for other SWD detection algorithms such as using phase 
information from the wavelet transform such as was done by 
Richard et al.16 In addition, some concern may exist about 
the nonstandard normalization procedure used in this algo-
rithm. Although we are confident in this normalization and 
are not removing or cleaning the data through this procedure 
(besides the stated filters), the matter certainly deserves more 
attention and is one focus of our ongoing research.

Despite its limitations, we have used this algorithm to 
highlight a few important aspects of SWDs that would have 
been difficult to identify solely with human classification. 
Our data show that events along the spectrum of the SVM 
score (and thus SWD confidence) show temporal and pro-
portional correlations with abrupt changes in EEG power 
bands. Although these correlations are most prominent in 
SWDs with the highest SVM scores, events with lower scores 
(and even those below threshold) continue to show correla-
tions, albeit with smaller effects. Qualitatively similar tem-
poral patterns were observed in all of the γ2R43Q animals 
analyzed in this study (data not shown). Thus, the SVM re-
veals physiologically relevant changes in brain activity that 
are commonly used in the scoring of sleep and shows that 
these changes are temporally linked to, and could potentially 
be used to predict, the occurrence of SWDs. It is notable 
that our findings align with previous work showing shifts in 
phase-amplitude coupling up to a minute prior to SWDs,29 
and that SWDs are related to sleep timing.30 Furthermore, 
our algorithm includes SWDs and SWD-like activity of short 
duration, which are discarded by most studies.16 We also 
identified SWD-like events in wild-type mice, consistent 
with the hypothesis that SWD events represent a corruption 
of otherwise normal brain processes.31 Given this hypothesis, 

F I G U R E   6   A, Four SWD-like events 
from a 24-h record of a wild-type (RR) 
animal as identified by the SWD-detection 
algorithm. B, Means and standard deviations 
for the 12 predictor variables calculated 
for SWD events found by our algorithm in 
RR (black circles, n = 3 animals, 14 24-h 
records) and RQ (red circles, n = 8 animals, 
45 24-h records) animals
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finding examples of SWDs in wild-type mice with low inten-
sity (ie, smaller distance to nearest SV) is to be expected. In 
addition,32 found that 8 of 27 strains of wild-type mice had 
SWDs including several from the C57-related backgrounds. 
Although low-intensity events show temporal relationships 
with several EEG power bands that coincide with confident 
SWD events (data not shown), further research is needed to 
understand if the SWDs observed in RR animals are related 
to the same processes as those that generate SWDs in absence 
epilepsy or if they are representative of other normal physio-
logic processes.
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