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Lung Cancer Patients Have Increased 8-Hydroxydeoxyguanosine Levels in 
Peripheral Lung Tissue DNA
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The 8-hydroxydeoxyguanosine (8-OH-dG) levels in the peripheral parts of human lung tissues
were compared between lung cancer patients (n====70) and non-cancer patient controls (n====15). An
increased level of 8-OH-dG was observed in the lung cancer group, in both the adenocarcinoma
and non-adenocarcinoma (mainly squamous cell carcinoma) groups, as compared to the non-can-
cer control group. This result suggests that reactive oxygen species are partly involved in the
induction of lung carcinomas (both adenocarcinoma and non-adenocarcinoma).

Key words:    8-Hydroxydeoxyguanosine — Oxidative DNA damage — Lung cancer

Among worldwide cancer mortality rates, that of lung
cancer, which is caused by both exogenous and endoge-
nous factors,1–7) is one of the highest. Several studies have
described how environmental mutagens and carcinogens
act to induce lung cancer.4, 8) Genetic alterations in K-ras
and p53 have been shown to occur during the multi-step
process of lung carcinogenesis (namely, in hyperplasia,
metaplasia, dysplasia and carcinoma).3, 9, 10) Microsatellite
instability, as well as various forms of DNA damage, such
as bulky adducts and strand breakage, has been reported
in relation to human lung cancer.11–13)

Reactive oxygen species (ROS) cause DNA damage
and may induce genetic changes in all stages (initiation,
promotion and progression) of carcinogenesis.14) ROS are
produced by ionizing radiation, mutagens and carcino-
gens, and also during endogenous oxygen metabolism in
cells.15) 8-Hydroxydeoxyguanosine (8-OH-dG) is one of
the major forms of DNA damage induced by ROS.16, 17)

Since 8-OH-dG causes G⋅C to T⋅A transversions in vitro18)

and in vivo,19–22) as a result of 8-OH-dG⋅A mispairing, its
levels in the DNAs of animal and human organs, as well
as in human leukocyte DNA, have been measured as a
sensitive biomarker of oxidative DNA damage.23) G⋅C to
T⋅A transversions have been detected in the ras oncogene
and the p53 tumor suppressor gene in human lung
cancers.14, 24) It is suspected that ROS might be involved in
the mechanism of lung carcinogenesis.14) The 8-OH-dG
levels have been analyzed in human peripheral blood,

stomach, liver, breast, and lung tissues.25–31) However,
there have only been a few reports about human lungs,
and most of these describe the differences in the 8-OH-dG
levels between cancerous and non-cancerous tissues. If
oxidative stress is induced in the entire lung during lung
carcinogenesis, either due to environmental factors or for
genetic reasons, increased 8-OH-dG levels may be
detected within the non-cancerous tissues of lung cancer
patients. In this study, the 8-OH-dG levels in the DNA
from the peripheral parts of human lung tissues, from
both non-cancer patients and lung cancer patients, were
measured by a high-performance liquid chromatography-
electrochemical detector (HPLC-ECD) system and com-
pared.

MATERIALS AND METHODS

Materials  The DNA Extractor WB Kit was purchased
from Wako Biochemicals (Osaka). Nuclease P1 (YA 7801)
was from Yamasa Co., Choshi and acid phosphatase (type
XA, P-1435) was from Sigma Chemical Co. (St. Louis,
MO). Lung samples were obtained during surgery at the
Hospital of the University of Occupational and Environ-
mental Health, Kitakyushu, and the National Cancer Cen-
ter Hospital, Tokyo. In the cancer group, patients with
active inflammation in the lung or previous cancer, or
who had received chemotherapy or radiation therapy for
lung cancer, or had undergone an operation under general
anesthesia within the previous six months were excluded.
After resection, samples were taken from a peripheral part
of the lung, which was most distant from the cancer in the
same lobe. In the non-cancer group, patients who had
either active inflammation in the lung or a history of any
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cancer were excluded. The samples were taken from lung
resections of patients with either pneumothorax, giant
bulla, tuberculosis, inflammatory pseudotumor, interstitial
pneumonia, or bronchiectasis. All samples collected dur-
ing the operations were divided on ice into portions of
about 0.2–0.3 mg. The ice-cooled samples were trans-
ported to a laboratory and were immediately stored at
−80°C until the 8-OH-dG analysis.
Analysis of 8-OH-dG  In this study, the lung samples
were cut with scissors into small particles of about 1 mm,
and were homogenized in lysis solution with a Potter-type
homogenizer. The DNA was isolated from lung tissues
using the DNA Extractor WB Kit, according to the
method of Nakae et al.32) with slight modifications. The
extracted DNA was dissolved in 100 µl of 1 mM EDTA
and was digested with 4 µl of nuclease P1 (5 mg/ml) and
2 µl of acid phosphatase (47 mg/ml, suspension in 1.8 M
(NH4)2SO4) in the presence of 20 mM sodium acetate
buffer (pH 4.5). After an incubation at 37°C for 30 min,
the mixture was treated with 10 µl of ion exchange resin,
Muromac (Muromachi Kagaku Kogyo, Tokyo, suspen-
sion, 50 mg/ml), and centrifuged at 15,000g for 5 min.
The supernatant was transferred to a filter tube (Millipore,
Bedford, MA; Samprep C; 0.2 µm) and centrifuged at
5,000g for 5 min, then the filtrate was injected into an
HPLC column. The 8-OH-dG analysis was performed
using the HPLC-ECD method of Floyd et al.,33) modified
as described previously.26)

Statistical analysis  The differences between the two
groups were tested for statistical significance by using
Student’s t test, and P values of <0.01 were regarded as
significant.

RESULTS

The 8-OH-dG levels in the DNA of non-cancerous
human lung tissues were compared between lung cancer
patients (the cancer group) and non-cancer patients (the
control group) by the method described above. The clini-
cal characteristics of the 85 patients are summarized in
Table I. The cancer group consisted of 46 males and 24
females, with a median age of 66.6 (range, 43 to 84).
Adenocarcinoma was present in 34 cases, squamous cell
carcinoma in 28 cases, large cell carcinoma in 4 cases,
small cell carcinoma in 2 cases, and adenosquamous car-
cinoma and carcinoid in 1 case. The control group con-
sisted of 9 males and 6 females, with a median age of
61.9 (range, 49 to 71), with pneumothorax in 5 cases,
tuberculosis and inflammatory pseudotumor in 3 cases,
giant bulla in 2 cases, and interstitial pneumonia and
bronchiectasis in 1 case.

The 8-OH-dG levels in the lung tissues in the cancer
group ranged from 0.25 to 0.99 8-OH-dG/105dG. The 8-
OH-dG content in the lung tissues in the control group

ranged from 0.23 to 0.50 8-OH-dG/105dG (Table I). In the
cancer group, the 8-OH-dG levels were higher than those
of the control group (Student’s t test; P<0.01) (Figs. 1, 2).
Histologically, there was no difference between the 8-OH-
dG levels in adenocarcinoma and in squamous cell carci-
noma, and the levels of both were higher than in the con-
trol group (Fig. 2). These data indicate that the lung
cancer patients have more oxidative DNA damage as
compared to the control. No correlation was found
between the number of cigarettes smoked and the 8-OH-
dG levels in the peripheral part of the lung.

Table I. Patients’ Characteristics and 8-OH-dG Levels

Cancer group Control group

Number 70 15
Age

Mean±SD 66.6±9.0 61.9±8.8
Range 43−84 49–71

Sex
Male 46 9
Female 24 6

8-OH-dG/105dG
Mean±SD 0.52±0.17 0.37±0.08
Range 0.25−0.99 0.23−0.50

Brinkman Indexa)

Mean±SD 630±553 733±634

a) Brinkman Index: cigarettes/day×years.

Fig. 1. Relation of age and the 8-OH-dG levels in the DNA
from peripheral lung tissue: lung cancer ( ); non-cancer control
group ( ).
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DISCUSSION

The 8-OH-dG levels in the DNA of human peripheral
blood cells, as well as stomach, liver, breast and lung tis-
sues, have been measured as a marker of oxidative DNA
damage.25–31) Some reports have mentioned an increase of
8-OH-dG in the DNA from cancerous tissues as compared
to the cancer-free, normal tissues from the same
patients.29–31) However, oxidative DNA damage analysis in
the cancerous tissue is not meaningful, because oxidative
DNA damage is thought to cause genetic changes in
oncogenes and tumor suppressor genes during carcinogen-
esis.14) The measurement of the 8-OH-dG levels in non-
cancerous tissues is more important, if the entire lung is
equally exposed to oxidative stress during carcinogenesis.
The 8-OH-dG level should be higher in the non-cancerous
tissues of lung cancer patients than in those of non-cancer
patients, if ROS are involved in lung carcinogenesis. In
the present study, we found that the 8-OH-dG levels were
increased in the non-cancerous tissues of lung cancer
patients, as expected.

It is known that cellular oxidative stress is related not
only to carcinogenesis, but also to aging. A few reports
have shown a correlation between age and the 8-OH-dG
level.  Fraga et al.34) analyzed the 8-OH-dG levels in
Fischer 344 rats, and reported that the levels of 8-OH-dG
in liver, kidney, and intestine DNA increased with age.
Homma et al.35) reported that the level of 8-OH-dG in

DNA increased with cellular aging of cultured human dip-
loid fibroblasts. In the present study, however, there was
no significant correlation between the 8-OH-dG level in
the lung and age. The most frequent type of lung cancer
to develop in the central part of the lung is squamous cell
carcinoma, and its induction is related to the number of
cigarettes smoked. In contrast, the most common type of
lung cancer that develops in the peripheral part of the
lung is adenocarcinoma, and its induction is not related to
smoking.

A correlation between the number of cigarettes smoked
and the 8-OH-dG levels has been observed in the central
part of the lung.26) However, in this study we found no
significant correlation between these parameters in the
peripheral part of the lung.  These data suggest that ROS
generated by smoking are involved in the induction of
squamous cell carcinoma, but not of adenocarcinoma.

The reason why more oxidative DNA damage is
induced in the peripheral part of the lungs of cancer
patients is not known. However, two explanations are pos-
sible, namely, i) the lung tissue was attacked by more
ROS, and was exposed to more environmental mutagens
and carcinogens, such as diesel exhaust particles,36, 37) ii)
in lung cancer patients, the lung tissue has increased sen-
sitivity to ROS, and perhaps decreased ROS scavenging
ability or repair activity for oxidized DNA. In our lung
cancer patients, a higher level of 8-OH-dG was detected
in the peripheral part of the lung, even in the non-adeno-

Fig. 2. Distribution of 8-OH-dG level in normal lung tissues of cancer, squamous cell carcinoma, adenocarcinoma and control
patients. Each data point represents one individual. Bars and figures represent mean±SD. ∗ P<0.01 for difference from the control.
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carcinoma group (mainly squamous cell carcinoma), sug-
gesting that oxidative stress is induced in the entire lung,
either by environmental agents or under the influence of
genetic factors. The higher level of urinary 8-OH-dG
excretion in human cancer patients38) supports this hypoth-
esis.
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