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Abstract

Over the last decade the availability of SNP-trait associations from genome-wide associa-

tion studies has led to an array of methods for performing Mendelian randomization studies

using only summary statistics. A common feature of these methods, besides their intuitive

simplicity, is the ability to combine data from several sources, incorporate multiple variants

and account for biases due to weak instruments and pleiotropy. With the advent of large and

accessible fully-genotyped cohorts such as UK Biobank, there is now increasing interest in

understanding how best to apply these well developed summary data methods to individual

level data, and to explore the use of more sophisticated causal methods allowing for non-lin-

earity and effect modification.

In this paper we describe a general procedure for optimally applying any two sample

summary data method using one sample data. Our procedure first performs a meta-analysis

of summary data estimates that are intentionally contaminated by collider bias between the

genetic instruments and unmeasured confounders, due to conditioning on the observed

exposure. These estimates are then used to correct the standard observational association

between an exposure and outcome. Simulations are conducted to demonstrate the meth-

od’s performance against naive applications of two sample summary data MR. We apply

the approach to the UK Biobank cohort to investigate the causal role of sleep disturbance on

HbA1c levels, an important determinant of diabetes.

Our approach can be viewed as a generalization of Dudbridge et al. (Nat. Comm. 10:

1561), who developed a technique to adjust for index event bias when uncovering genetic

predictors of disease progression based on case-only data. Our work serves to clarify that in

any one sample MR analysis, it can be advantageous to estimate causal relationships by

artificially inducing and then correcting for collider bias.
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Author summary

Uncovering causal mechanisms between risk factors and disease is challenging with obser-

vational data because of unobserved confounding. Mendelian randomization offers a

potential solution by replacing an individual’s observed risk factor data with an uncon-

founded genetic proxy measure. Over the last decade an array of methods for performing

Mendelian randomization studies (MR) using publicly available summary statistics

gleaned from two separate genome-wide association studies. With the advent of large and

accessible fully-genotyped cohorts such as UK Biobank, there is now increasing interest in

understanding how best to apply these well-developed summary data methods to individ-

ual level data. In this paper we describe a general procedure for optimally applying any

summary data MR method using individual level data from one cohort study. Our

approach may at first seem nonsensical: we create summary statistics that are intentionally

biased by confounding. This bias can, however, be very accurately estimated, and the esti-

mate then used to correct the results of a standard observational analysis. We apply our

new way of performing an MR analysis to data from UK Biobank to investigate the causal

role of sleep disturbance on HbA1c levels, an important determinant of diabetes.

Introduction

Mendelian randomisation (MR) is a technique used to test for, and quantify, the causal rela-

tionship between a modifiable exposure and health outcome with observational data, by using

genetic variants as instrumental variables [1, 2]. MR circumvents the need to measure and

adjust for all variables which confound the exposure-outcome association, and is therefore

seen as an attractive additional analysis to perform alongside more traditional epidemiological

methods [3]. The following Instrumental Variable assumptions are usually invoked in order

justify testing for a causal effect of an exposure X on a health outcome Y using a set of genes, G:

• IV1: G must be associated with X;

• IV2: G must be independent of unmeasured confounding between X and Y;

• IV3: G must be independent of Y conditional on X and all confounders of the X-Y
relationship.

These assumptions are encoded in the causal diagram in Fig 1. Further linearity and homo-

geneity assumptions are needed in order to consistently estimate the magnitude of the causal

effect. When performing an MR-analysis it is best practice to pre-select SNPs for use as instru-

ments using external data, in order to avoid bias due to the winner’s curse [4]. Subsequently, if

the genetic variants are not as strongly associated with the exposure as in the discovery GWAS,

assumption IV1 will only be weakly satisfied, which leads to so-called weak instrument bias [5,

6]. This issue is mitigated as the sample size increases as long as the true association is non-

zero. When a genetic variant is in fact associated with the outcome through pathways other

than the exposure, a phenomenon known as horizontal pleiotropy [7], this is a violation of

assumptions IV2 and/or IV3. Horizontal pleiotropy is not necessarily mitigated by an increas-

ing sample size and is also harder to detect. Its presence can therefore render very precise MR

estimates hopelessly biased. Pleiotropy-robust MR methods have been a major focus of

research in recent years for this reason [8–11].
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One-sample versus Two-sample MR: Pros and cons

Obtaining access to a single cohort with measured genotype, exposure and outcome data that

is large enough to furnish an MR analysis has been difficult, historically. It has instead been far

easier to obtain summary data estimates of gene-exposure and gene-outcome associations

from two independent studies, and to perform an analysis within the ‘two-sample summary

data MR’ framework (see Fig 2). [12, 13]. This has made it an attractive option for the large

scale pursuit of MR, through software platforms such as MR-Base [14]. The relative simplicity

of these methods (which resemble a standard meta-analysis of study results) and their ability

to furnish graphical summaries for the detection and adjustment of pleiotropy [15] has also

acted to increase their popularity. Indeed, the array of pleiotropy robust two sample summary

data methods far outstrips those available for one sample individual level data MR analysis

[16]. A further advantage of two-sample over one-sample MR is that weak instruments bias

causal estimates towards the null (it is often referred to as a ‘dilution’ bias for this reason)

which is conservative [17]. Dilution bias arises precisely because uncertainty in the SNP-expo-

sure association estimates obtained from one cohort is independent of the uncertainty in

Fig 1. The IV assumptions for a genetic variant G are represented by solid lines in the directed acyclic graph

(DAG). Dotted lines represent violations of IV assumptions as described in IV2 and IV3. The causal effect of a unit

increase of the exposure, X, on the outcome, Y, is denoted by β. U represents unobserved confounders of X and Y.

https://doi.org/10.1371/journal.pgen.1009703.g001

Fig 2. In two sample summary data MR, (G − X) association estimates, b̂XGj, from one cohort are combined with

(G − Y) association estimates, b̂YGj from a separate, non-overlapping cohort, to produce a set of SNP-specific

causal estimates, b̂ j. These are combined using inverse variance weighted meta-analysis (wj being the weight) to

obtain an overall estimate b̂ IVW for the true causal effect β.

https://doi.org/10.1371/journal.pgen.1009703.g002
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SNP-outcome association estimates from a non-overlapping cohort (Fig 2). This makes the the

SNP-exposure association uncertainty akin to ‘classical’ measurement error [18] and enables

standard approaches such as Simulation Extrapolation [19, 20] or modified weighting [6, 21]

to be used to adjust for its presence. In contrast, weak instruments bias MR estimates obtained

from a one sample analysis towards the observational association because uncertainty in the

SNP-exposure and SNP-outcome association estimates are correlated. This bias is harder to

correct for and is potentially anti-conservative.

There are, however, many disadvantages of using two sample summary data compared to

individual level data from a single sample MR, some examples of which are now given: The

two-sample approach assumes the two cohorts are perfectly homogeneous [13]. If the distribu-

tion of confounders is different between the samples, this can result in severe bias [22]. Alter-

natively, it may be that the independence assumption is violated due to an unknown number

of shared subjects across the two studies [23], which cannot be easily removed [24]. Even when

the homogeneity assumption is satisfied, two sample methods can give misleading results if

the two sets of associations are not properly harmonized [25]. Often, summary statistics from

a GWAS have been adjusted for factors that might bias MR results, and the unadjusted data

are not available [26]. It may not be possible to source summary data on the exact population

needed for a particular analysis, for example on either men or women only when looking at

sex-specific outcomes) [27]. Finally, a richer array of analyses are possible with individual level

data. For example, the estimation of non-linear causal effects across the full range of the expo-

sure and the exploration of effect modification via covariates.

It is of course possible to naively apply summary data MR methods to the one-sample con-

text, estimating both the gene-exposure and gene-outcome associations in the same sample, an

analysis made increasingly easy by the advent of large open-access cohort studies such as the

UK Biobank (UKB) [28]. This avoids problems with synthesising and harmonizing data from

separate cohorts, but can result potentially anti-conservative weak instrument bias due to cor-

related error. A preliminary investigation has found that this naive approach is particularly

bad for pleiotropy robust approaches such as MR-Egger regression [29, 30]. So far, there is no

consensus on how best to implement summary data approaches in the one sample setting.

In this paper we propose a general method which we term ‘Collider-Correction’ that can

reliably apply two-sample summary data MR methods to one-sample data, whilst maintaining

the simplicity and appeal of the two-sample approach. Our method builds on the work of Dud-

bridge et. al. [31], who proposed a method to correct for ‘index event’ (or collider) bias in

genetic studies of disease progression, when all subjects included in the analysis have been

diagnosed with the disease. In this setting, the analysis is open to contamination from collider

bias. Our work serves to clarify that the procedure can be extended to any MR analysis where

the aim is to estimate the causal effect, by artificially inducing collider bias in the observational

association between X and Y and then correcting for it. This allows any two sample method to

be used in a one sample design, thereby benefiting from the plethora of weak instrument and

pleiotropy robust approaches available. We show that this approach is (a) statistically efficient

compared to artificially splitting the data in two, and (b) will deliver consistent estimates of the

causal effect whenever the assumptions of the underlying two-sample approach are satisfied.

Although our method builds on the work of Dudbridge et al, there are several major differ-

ences. Firstly, whilst Dudbridge et al focus on the unbiased estimation of the direct SNP-out-

come associations, we treat these as nuisance parameters and focus instead on estimation of

the causal effect. Secondly, whilst the underlying method we use is closely related to the

approach of Dudbridge et al when the chosen method is MR-Egger regression, our paper

shows that the underlying method can actually be applied to any MR method. Thirdly, whereas

Dudbridge et al propose a solution to adjust for weak instrument bias within the specific
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context of an MR-Egger model which relies on the InSIDE assumption [9], we propose the use

of a SIMEX procedure that can be applied to any regression model, including robust regres-

sion models that do not rely on InSIDE for identification. Of course, some recent two-sample

approaches have weak-instrument robust weighting built into them, for example MR-RAPS

[21, 32]. In this case, SIMEX adjustment is unnecessary.

A major reason for the emergence of weak instrument and pleiotropy robust two-sample

MR methods [6, 21, 32] is the avoidance of winner’s curse [4], by using one discovery GWAS

for instrument selection and two additional data sources for the two-sample MR analysis (i.e. a

‘three-sample’ design). Although this removes winner’s curse by design, it generally yields far

weaker instruments. In practice, it may be hard to obtain data from three independent,

homogenous cohorts to enact the three-sample approach, but a nice property of Collider-Cor-

rection is that it can be enacted with two-independent data sources rather than three. In

Results, we apply Collider-Correction to 1 sample individual level UK Biobank data to investi-

gate the causal role of sleep disturbance on HbA1c levels, using both overlapping and non-

overlapping GWAS data for instrument selection. In the former case winner’s curse is seen to

induce a dilution in the MR estimates that is not present in the latter case.

We see three scenarios where our Collider-Correction approach is applicable. Firstly,

when interest lies in estimation of the causal effect of an exposure X on an outcome, Y and

only summary data on ‘YadjX’ genetic associations are available (for example, waist/hip ratio

adjusted for BMI from the GIANT consortium). The second is when researchers have direct

access to individual level patient data. This is likely to become much more common over

time as further international biobank studies follow the lead of UKB in opening up data

access. Extracting the summary statistics for our approach then enables the efficient imple-

mentation of any two-sample method to the data. This is attractive because two-sample

methods are currently more numerous than one sample methods, more familiar to research-

ers and more technically advanced (especially in their ability to adjust for weak instrument

bias and pleiotropy). Furthermore, if one additional GWAS is available for instrument selec-

tion, Collider-Correction enables winner’s curse, weak instrument bias and pleiotropy to be

accounted for using two independent data sets rather than three. The third is when data cus-

todians prefer not to grant direct access to individual level data, but are willing to provide the

requisite summary statistics for implementing the Collider-Correction approach, safe in the

knowledge that the individual-level data analysis can be performed whilst maintaining data

security. Allowing large scale, rapid access to confidential data has obvious benefits to the

research community and wider society, as demonstrated through initiatives such as OpenSA-

FELY [33].

Methods

To motivate ideas, we assume the following individual level data model for the exposure X and

continuous outcome Y for subject i:

XijGi;Ui ¼
Xk

j¼1

bXGj
Gij þ bUXUi þ εXi ð1Þ

YijXi;Gi;Ui ¼ bXi þ
Xk

j¼1

ajGij þ bUYUi þ εYi ð2Þ
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¼
Xk

j¼1

ðaj þ bbXGjÞGij þ ðbbUX þ bUYÞUi þ bεXi þ εYi

¼
Xk

j¼1

bYGjGij þ ε
�

Yi ð3Þ

Here, Gi = (Gi1, . . ., Gik)
0 represents a set of k variants that predict Xi, β represents the target

estimand, reflecting the causal effect of inducing a 1-unit change in the exposure on the out-

come, and U represents unmeasured confounding predicting both X and Y. The variables εXi ,
εYi represent independent residual error terms. Since the unmeasured confounder U is com-

mon to both X and Y, the total residual errors around X|G, Y|X, G and Y|G in Eqs (1)–(3) are

correlated. This linear model tacitly assumes that the causal effect is the same for all individuals

(that is, regardless of their observed exposure level). This is referred to as ‘Homogeneity’: it is

an example of a fourth IV assumption that is needed to ‘point identify’ β (assumptions

IV1-IV3 are sufficient to test for causality only). We re-write model (2) in ‘reduced form’ as

model (3) to clarify that the underlying SNP-outcome association βYGj is equal to αj + ββXGj.
When the exposure is binary, so that X = 0, and X = 1 refer to being unexposed and exposed

respectively, we can again identify β by assuming Homogeneity. This would mean that the

effect of intervening and changing X from 1 to 0 is equal and opposite to the effect of interven-

ing and changing X from 0 to 1.

The standard approach to estimating β with individual level data is Two Stage Least Squares

(TSLS). This assumes that all instruments are valid (not pleiotropic), so that αj = 0 for all j.
TSLS firstly regresses the exposure on all k genotypes simultaneously to derive an estimate for

subject i’s genetically predicted exposure: X̂ i ¼
Pk

j¼1
b̂XGj

Gij, where b̂XGj
is the estimated asso-

ciation between SNP j and X. The outcome Y is then regressed on X̂ i and its regression coeffi-

cient is taken as the causal estimate b̂. As explained in Fig 2, when the set of k SNPs which

predict X are mutually independent (i.e. not in linkage disequilibrium), the TSLS estimate is

asymptotically equivalent to the IVW estimate [34] obtained by:

• Calculating the causal estimate b̂ j by dividing the SNP-outcome association b̂YGj (obtained

from a regression of Y on Gj) by the SNP-exposure estimate b̂XGj for each SNP and;

• Performing an inverse variance weighted meta-analysis of the k individual causal estimates,

b̂1; . . . ; b̂k.

The inverse variance weights traditionally used make the simplifying assumption that the

SNP-exposure association b̂XGj is sufficiently precise that its uncertainty can be ignored. This is

referred to as the No Measurement Error (NOME) assumption [6]. This procedure is equiva-

lent to fitting the following weighted regression model

b̂YGj ¼ bb̂XGj
þ �YGj ð4Þ

where �YGj is the mean zero residual error with Varð�YGjÞ ¼ s2
YGj ¼ Varðb̂YGjÞ and the intercept

is constrained to zero. We will refer to this as the ‘standard’ IVW approach. It is commonly

used in two sample summary data MR out of necessity because only summary statistics are

available, but not typically in the one sample setting [29].
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Inducing collider bias into SNP-outcome associations

Consider a regression of the outcome Y on G and X together (but not U). Under our assumed

data generating model:

E½YijXi;Gi� ¼ b
�Xi þ

Xk

j¼1

a�j Gij; ð5Þ

yielding estimated coefficients b̂� and â�
1
; . . . ; â�k . Since X is a function of both G and U, condi-

tioning on X induces a correlation between them [35]. This is commonly referred to as ‘col-

lider bias’ [36]. Its presence contaminates the Gj-Y association estimate with a contribution

through U so that â�j is not a consistent estimate for αj. For the same reason, b̂� is not a consis-

tent estimate for β. It instead reflects the causal effect, plus a contribution from X to Y via

U. Such ‘collider biased’ analyses are usually avoided for this reason [36]. However, it is in a

special sense advantageous to fit model (5) because under models (1) and (2), a�j , αj, β
� and β

are linked through the following linear relation:

â�j ¼ aj þ ðb � b
�
ÞbXGj

þ yj; ð6Þ

where θj is mean zero residual error with VarðyjÞ ¼ s2
a�j
¼ Varðâ�j Þ (see S1(A) Text for a

detailed derivation). This suggests the following algorithm for estimating the causal effect:

1. Regress Y on X and G to obtain the collider biased parameter estimates b̂� and â�
1
; . . . ; â�k.

2. Regress X on G to obtain estimates b̂XG1; . . . ; b̂XGk, where

b̂XGj ¼ bXGj þ dj; ð7Þ

for independent residual error term δj with mean zero and variance s2
XGj ¼ Varðb̂XGjÞ;

3. Fit the linear model:

E½â�j jb̂XGj� ¼ a0 þ ðb � b
�
Þb̂XGj

ð8Þ

under a user-specified loss function and pleiotropy-identifying assumption in order to

obtain an estimate for the Collider-Correction term (β − β�).

4. Adjust the observational estimate to obtain an estimate for the causal effect β via:

b̂ ¼ b̂
�
þ db � b

� ð9Þ

The above procedure, which we call ‘Collider-Correction’ is a modification and generalisa-

tion of the Dudbridge approach [31]. In step 3 and 4 we instead focus on estimation of the Col-

lider-Correction term and the causal parameter β rather than, as Dudbridge et al do, the

pleiotropic effects. Crucially, we clarify that, as long as the model for Y given X and G in step 1

is correctly specified, the correlation between the residual error in model (6) and residual error

in the first-stage model (7) will have a mean of zero. To illustrate this we simulated 500 inde-

pendent sets of data from models (1)–(2), each containing individual level data on 10,000 sub-

jects. We fixed the number of SNPs to k = 50: each SNP was bi-allelic (taking the values 0,1 or

2), mutually uncorrelated with other SNPs, had a minor allele frequency of 0.3, and collectively

explained 1.5% of the variance in the exposure. The correlation between the residual errors in
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model (1) and (2) was approximately 0.5 to reflect moderate confounding. SNP-exposure and

SNP outcome association parameters βXGj and αj were generated from dependent distribu-

tions, so that their average correlation was approximately 0.45. This is a clear violation of the

InSIDE assumption that the sample covariance dCovðaj; bXGÞ is zero [6, 9, 13]. We then applied

Step 1 and 2 of the Collider-Correction algorithm to estimate the â�j and b̂XGj terms. Fig 3A

shows, for a single simulated data set, the extent of correlation between the 50 βXGj and αj. Fig

3B shows across all 500 independent data sets, the sample correlation between the first stage

residual dj ¼ b̂XGj � bXGj and both:

• The Collider-Correction residual: yj ¼ â
�
j � aj � ðb � b

�
ÞbXGj (shown in black);

• The ‘standard’ SNP-outcome residual: �YGj ¼ b̂YGj � aj � bbXGj (shown in red).

We see that the mean correlation of the Collider-Correction residual with 1st stage residual

is zero whereas the mean correlation of the standard SNP-outcome residual with the 1st stage

residual is 0.5. This residual error independence property is advantageous because it means

that step 3 of the Collider-Correction algorithm can be implemented using any pleiotropy

robust two-sample summary data MR method, where the estimand of interest is β − β� rather

than the causal effect β directly. Crucially, the residual error independence property means

that weak instrument bias will induce a dilution in the slope estimate db � b
�

towards zero,

because it can be viewed as a consequence of ‘classical’ measurement error. This makes it easy

to quantify and correct for using standard methods, as we will subsequently discuss.

In the toy example above we purposefully generated the data so that the InSIDE assumption

was violated across the entire set of SNPs to demonstrate that residual error independence

does not rely on InSIDE. However, the success of any subsequently applied Collider-Corrected

two sample approach in consistently estimating the causal effect β (i.e. so that it is asymptoti-

cally unbiased) will of course depend on the pleiotropy identifying assumption being met, just

as if it were being applied in a standard two-sample setting. Although the Collider-Correction

algorithm is generalisable in theory to any MR analysis method, we now describe several

canonical implementations, which require that the InSIDE assumption is satisfied across either

the entire set of SNPs or a subset of SNPs.

Fig 3. (A = Left): Scatter plot of βXGj and αj terms for a single simulated data set. (B = Right): Sample correlation

between d̂ j and ŷ j (black) and d̂ j and �̂YGj (red).

https://doi.org/10.1371/journal.pgen.1009703.g003
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Implementing Collider-Correction

Collider-Corrected IVW implementation. To implement the Collider-Corrected IVW

approach we set the parameter α0 to zero in Eq (8) and estimate the slope (β − β�) using

weighted least squares via the model:

â�j ¼ ðb � b
�
Þb̂XGj

þ y
�

j ð10Þ

where y
�

j is mean zero residual error with an assumed variance s2
a�j
¼ Varðâ�j Þ. Note that under

data-generating model (6) y
�

j is actually equal to θj + αj. Under the assumption that the mean

pleiotropic effect is zero and the InSIDE assumption is satisfied, the residual error indepen-

dence property of Collider-Correction will mean that y
�

j is also independent of uncertainty in

b̂XGj
so that (β − β�) can be consistently estimated. The IVW approach then quantifies addi-

tional uncertainty in the estimate for (β − β�) due to the presence of pleiotropy, by increasing

its variance by a factor ϕ proportional to the variance of the estimated residual Varðŷ jÞ when-

ever this variance is greater than 1. This is equivalent to fitting a multiplicative random effects

model [13].

The IVW estimate uses ‘1st order weights’ that ignore uncertainty in the SNP-exposure

association estimate by assuming that its variance s2
XGj � 0. This is referred to as the NO Mea-

surement Error (NOME) assumption [6]. When this is violated the estimate db � b
�

from

model (10) will be diluted towards zero by a factor of ð�F � 1Þ=�F , where:

�F ¼
Xk

j¼1

b̂2
XGj

s2
XGj

ð11Þ

See Section 3.2 in [21] for a more detailed explanation. Note that, whilst the Collider-Cor-

rection slope is diluted towards zero in the presence of weak instrument bias, the causal esti-

mate itself is still biased toward the observational association estimate b̂�, because the causal

effect calculated in Step 4 of the Collider-Correction algorithm is the sum of b̂� and db � b
�
. A

simple and general method for weak instrument bias adjustment that can be applied directly

to the IVW estimate from model (10) is Simulation Extrapolation (SIMEX) [19]. Under

SIMEX, a parametric bootstrap is used to generate ‘pseudo’ SNP-exposure associations, each

one centred on the observed estimate, but with an increasing amount of uncertainty (i.e. with

larger and larger values of s2
XGj). This subsequently induces an increasing dilution in the IVW

estimate for (β − β�). A global model is then fitted to the entire set of simulated data in order to

extrapolate back to the estimate for (β − β�) that would have been obtained if there were no

uncertainty in the SNP-exposure associations (i.e. s2
XGj ¼ 0, NOME satisfied). SIMEX is attrac-

tive because it can be applied to any regression model (and hence many MR methods), and

reliable software is available in standard packages, such as R and Stata.

Connecting IVW to LIML and MR-RAPS. An alternative to SIMEX in the special case of

the IVW approach is to find the values of (β − β�) and s2
a�
¼ Varða�j Þ that minimises the

weighted sum of squared residuals in the extended model (12):

â�j ¼ ðb � b
�
Þb̂XGj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb � b

�
Þs2

XGj þ sa�j
þ zs2

a�

q
�j ð12Þ

When z = 0 in (12), the pleiotropy variance s2
a�
¼ Varða�j Þ is fixed to zero and the above proce-

dure is equivalent to performing Limited Information Maximum Likelihood (LIML) with
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summary data (see Section 3.1 in [21]). Furthermore, the weighted sum of squared residuals

from (12) follows a w2
L� 1

distribution when the assumption that Varða�j Þ ¼ 0 is satisfied, thus

providing a simple weak instrument bias robust test for the presence of pleiotropy. This is

referred to as the ‘exact’ Q statistic [6] which is similar to the simulation-based MR-PRESSO

test for ‘global’ pleiotropy [37, 38].

Unfortunately, when pleiotropy is present so that Varða�j Þ 6¼ 0, then the LIML estimate will

be biased [6]. In order to account for both weak instrument bias and non-zero pleiotropy, z
can be set to 1 so that the squared residual minimisation is over both (β − β�) and s2

a�
. This is

equivalent to applying ‘MR-RAPS’ [21] when applied to the Collider-Correction summary sta-

tistics. MR-RAPS actually uses an approximation to the least-squares method because the max-

imum likelihood estimates are inherently unstable, this entails the use of a score function to

proxy for the likelihood and a penalization term to dampen the effect of large residuals.

Collider-Corrected MR-Egger implementation

In order to account for pleiotropy with a non-zero mean but under the InSIDE assumption,

we could instead allow the intercept α0 and slope (β − β�) to be freely estimated via weighted

least squares by fitting a Collider-Correction MR-Egger model [9]

â�j ¼ a0 þ ðb � b
�
Þb̂XGj

þ y
�

j ; ð13Þ

where y
�

j is mean zero residual error with an assumed variance s2
a�j
¼ Varðâ�j Þ. Note that under

data-generating model (7) y
�

j is actually equal to θj + αj − α0. Using the same argument as for

the IVW model, when InSIDE is satisfied this will consistently estimate the Collider-Correc-

tion slope (adjusted for α0) and from there, the causal effect. Additional uncertainty due to

pleiotropy can again be handled using a multiplicative random effects model [13]. To assess

the vulnerability of the MR-Egger regression estimates to weak instrument bias due to viola-

tion of the NOME assumption, we use the I2
GX statistic [5]:

I2
GX ¼

QGX � ðk � 1Þ

QGX
;where QGX ¼

Xk

j¼1

ðb̂XGj �
�bXGjÞ

2

s2
XGj

ð14Þ

The expected dilution in the Collider-Correction db � b
�

due to weak instruments is equal

to ðb � b
�
ÞI2

GX. This can easily be adjusted for by applying SIMEX to model (13), just as for the

IVW approach.

Collider-Corrected robust regression

IVW MR-Egger and MR-RAPS rely on the InSIDE assumption to consistently estimate the

causal effect. This may be violated in practice, hence the rationale for the development of alter-

native, robust methods such as the Weighted Median [10]. In the two-sample summary data

context it can consistently estimate the causal effect if the majority of the ‘weight’ in the MR

analysis stems from genetic variants that are not pleiotropic. That is, the existence of a SNP

subset S is assumed for which dCovj2Sðaj; bXGjÞ ¼
dCovSð0; bXGjÞ ¼ 0, but InSIDE is allowed to be

violated for SNPs not in subset S. The downside of weighted median approach is that it is not

directly equivalent to a regression model, which in turn means that we can not benefit from a

procedure like SIMEX to perform a weak instrument bias adjustment. However, there is a

close connection between the median and minimisation using a Least Absolute Deviation

(LAD), or L1-norm. We therefore propose the use of LAD regression [39] instead of least
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squares, at Step 3 of the Collider-Correction algorithm, with α0 set to zero. This is close in

spirit to the Weighted Median, and is amenable to SIMEX-adjustment too. The exact ‘break-

down point’ of LAD regression (or the proportion of pleiotropic SNPs above which LAD

regression will not deliver a consistent estimate) depends on the data generating model, but is

bounded between 1/k (k being the number of SNPs) and 1/2.

Simulation studies

In order to confirm our theoretical results and assess the performance of the Collider-Correc-

tion algorithm, data sets of between 5000 and 50,000 individuals were generated under models

(1) and (2) as described previously. Across all simulations:

• The causal effect of inducing a one-unit change in the exposure on the outcome, β, was set to

0.5 for all individuals;

• The correlation between the residual errors in model (1) and (2) was set to approximately

0.9 to reflect strong confounding;

• The observational estimate for b̂� and the true Collider-Correction term β − β� were approx-

imately 1.12 and -0.62 respectively.

To showcase the ability of IVW-based approaches, MR-Egger regression and LAD regres-

sion, pleiotropy parameters and SNP-exposure associations were generated under three dis-

tinct models:

• For IVW simulations, pleiotropic effect parameters α1, . . ., α50 were generated with a zero

mean independently of the SNP-exposure associations βXG1, . . ., βXG50 (InSIDE satisfied);

• For MR-Egger simulations, pleiotropic effect parameters α1, . . ., α50 were generated with a

non-zero mean independently of the SNP-exposure associations βXG1, . . ., βXG50 (InSIDE

satisfied);

• For LAD regression simulations, pleiotropic effect parameters α1, . . ., α15 were generated

with a non-zero mean dependent on the SNP-exposure associations βXG1, . . ., βXG15 (with an

average correlation of 0.5) whilst α16, . . ., α50 were set to 0. InSIDE was therefore strongly

violated across SNPs 1:15, satisfied across SNPs 16:50 and violated across all SNPs,

respectively.

IVW simulation results. Fig 4 shows, for a range of sample sizes the average value across

1000 independent data sets of: (a) The standard IVW estimate (black line); (b) the SIMEX

adjusted standard IVW estimate (blue line); (c) the Collider-Corrected IVW estimate (red

line); (d) the Collider-Corrected IVW estimate with SIMEX correction (green line); (e) the

TSLS estimate (orange line) and (f) the Collider-Corrected MR-RAPS estimate (implemented

using the ‘Tukey’ penalization option). We see that methods (a), (c) and (e) give approximately

the same answer, and are therefore hard to individually distinguish in the figure. The approxi-

mate equivalence of the TSLS and IVW approaches with uncorrelated SNPs is well known, but

it is also reassuring that our two step approach is also equivalent. We also see that applying a

direct SIMEX correction to method (a) (i.e. method (b)) dramatically increases the bias of the

causal estimate beyond even that of the observational estimate for small sample sizes. This bias

is slow to diminish as the sample size grows. This poor performance is because uncertainty in

the SNP-exposure association estimates can not be viewed as classical measurement error

within a standard IVW model. Conversely, we see that applying a SIMEX correction to the
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Collider-Corrected IVW estimate (c) (i.e method (d)) yields a steadily decreasing bias which is

essentially zero when the mean F statistic across the instruments is larger than 5. The Collider-

Corrected MR-RAPS estimate performs very well too, and is essentially unbiased for mean F
statistics greater than 3.5.

Fig 5 gives further intuition on why the correction process works. The black line shows the

estimated Collider-Correction db � b
�

as a function of the given sample size. The blue line

Fig 4. Performance of IVW implementations (including the Collider-Correction algorithm) using one-sample

data.

https://doi.org/10.1371/journal.pgen.1009703.g004

Fig 5. An illustration that the Collider-Correction slope’s dilution can be accurately predicted using the F-

statistic.

https://doi.org/10.1371/journal.pgen.1009703.g005
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shows the true Collider-Correction multiplied by the expected dilution factor
�F � 1

�F , which varies

as a function of the sample size. The fact that the two lines are in good agreement indicates

that the dilution in db � b
�

can be perfectly predicted by the F-statistic formula and underlines

why SIMEX can be used to correct for it. Fig 6 shows the performance of the IVW estimate

implemented using the (one sample) Collider-Correction algorithm, versus that obtained

from artificially splitting the data in two, and applying the ‘standard’ IVW approach. That is,

calculating SNP-exposure associations in one half, SNP-outcome associations in the other half

and combining in the usual manner. This ensures that the residual error independence prop-

erty is satisfied, as it is for the one sample Collider-Correction approach. Results for each

method are shown with and without SIMEX correction. We see that the absolute bias of the

Collider-Correction implementations is less than that of the two-sample implementation.

However, the two estimation strategies differ more substantially in terms of precision, as

shown in Fig 7. Collider-correction of one sample data is shown to be far more efficient than

sampling splitting.

Figs 8A and 9A show the corresponding standard deviation and mean-squared error (a

measure of accuracy that equals an estimate’s variance plus the squared bias) for all IVW-

based methods across the same set of simulations. They show that whilst the MR-RAPS esti-

mate is less biased for small sample sizes than the Collider-Corrected IVW method with

SIMEX adjustment, it is more variable and less accurate.

MR-Egger simulation results. Fig 10 shows for a range of sample sizes the average value

across 1000 independent data sets of: (a) The standard (one-sample) MR-Egger estimate

(black line); (b) the SIMEX adjusted standard MR-Egger estimate (blue line); (c) the Collider-

Corrected MR-Egger estimate (red line) and (d) the Collider-Corrected MR-Egger estimate

with SIMEX correction (green line). As the sample size increases the I2
GX statistic increases

from 0.1 to 0.5. This signals that the 50 SNPs get collectively stronger as a set of instruments

within MR-Egger as the sample size increases, but even at the largest sample size we expect a

dilution of 50% in the MR-Egger slope. Again, we see that standard and Collider-Corrected

MR-Egger methods give the same results, but the two approaches differ greatly under SIMEX

Fig 6. A comparison of the one sample Collider-Correction versus two-sample IVW approaches in terms of bias.

https://doi.org/10.1371/journal.pgen.1009703.g006
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correction, with the SIMEX adjusted Collider-Corrected estimate being least biased. In Fig 11

we show how dilution in the Collider-Corrected slope estimate db � b
�

for MR-Egger can be

accurately quantified using the I2
GX statistic, just as the F-statistic predicts the dilution for IVW.

This explains why SIMEX adjustment works.

Fig 7. A comparison of the one sample Collider-Correction versus two-sample IVW approaches in terms of

efficiency.

https://doi.org/10.1371/journal.pgen.1009703.g007

Fig 8. Monte-Carlo standard deviations for all IVW (A = top-left), MR-Egger (B = top-right) and LAD regression

(C = bottom) estimators.

https://doi.org/10.1371/journal.pgen.1009703.g008
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Figs 8B and 9B show the corresponding standard deviation and mean squared error for all

MR-Egger-based methods across the same set of simulations. Standard and Collider-Corrected

MR-Egger are seen to have the joint smallest variance, but Collider-Corrected MR-Egger with

SIMEX adjustment has the smallest mean-squared error because it is far less biased.

LAD-regression simulation results. Fig 12 shows for a range of sample sizes the average

value across 1000 independent data sets of: (a) The standard (one-sample) LAD-regression

Fig 9. Mean Squared Error for all IVW (A = top-left), MR-Egger (B = top-right) and LAD regression (C = bottom)

estimators.

https://doi.org/10.1371/journal.pgen.1009703.g009

Fig 10. Performance of the MR-Egger implementation of the Collider-Correction algorithm under a directional

pleiotropy scenario.

https://doi.org/10.1371/journal.pgen.1009703.g010
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estimate (black line); (b) the SIMEX adjusted standard LAD regression estimate (blue line);

(c) the Collider-Corrected LAD regression estimate (red line) and (d) the Collider-Corrected

LAD regression estimate with SIMEX correction (green line). For comparison we also show

(e) the standard IVW estimate: its bias does not approach zero as the sample size increases

because of the presence of non-zero mean pleiotropy violating InSIDE, which is the very moti-

vation for LAD regression. As in the previous simulations, standard and Collider-Corrected

Fig 11. An illustration that the Collider-Correction slope’s dilution can be accurately predicted using the I2
GX

statistic.

https://doi.org/10.1371/journal.pgen.1009703.g011

Fig 12. Performance of the LAD-regression implementation algorithm under InSIDE violating pleiotropy.

https://doi.org/10.1371/journal.pgen.1009703.g012
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LAD regression give identical point estimates on average, but when SIMEX adjustment is

applied the two estimates diverge substantially. Collider-Corrected LAD regression with

SIMEX adjustment results in the least biased estimates of all.

Fig 13 plots the mean dilution in the Collider-Corrected LAD regression estimate, versus

that predicted by the IVW dilution factor
�F � 1

�F . The fact that the observed dilution is below the

expected IVW dilution illustrates that LAD regression is more vulnerable to weak instrument

bias, because it is a less efficient but more robust technique. This emphasises the importance of

being able to address its weak instrument bias.

Figs 8C and 9C show the corresponding standard deviation and mean-squared error for all

LAD regression-based methods across the same set of simulations. The same pattern of higher

variance but lower mean-squared error is seen for the SIMEX adjusted Collider-Corrected

LAD regression approach as in the MR-Egger case.

The MR-RAPS approach can, in theory, consistently estimate the causal effect when a small

proportion of SNPs are pleiotropic and violate the InSIDE assumption, as long as their contri-

bution is strongly penalized by its robust loss function. In order to test this we also calculated

the MR-RAPS estimate when applied to the simulated data for LAD regression. MR-RAPS was

seen to work well for a proportion of simulated data sets, but its estimates were unstable: in

many cases they were an order of magnitude larger than the true value of 0.5. To illustrate this,

Fig 14 shows the distribution of its estimates at the largest sample size of 50,000 subjects,

where it was most stable. Even in this case substantial instability is observed.

R code for reproducing the simulation study results is available in S1 Code.

Results: Assessing the causal role of insomnia on HbA1c

Observationally, sub-optimal sleep (i.e., low sleep quantity and quality) has been found to be

associated with hyperglycaemia [40–42] and increased diabetes risk [43]. Insomnia, defined as

difficulty initiating or maintaining sleep, is one of the most important indices of sleep quality

[44]. It has been associated with type 2 diabetes in observational studies [44] and in a previous

Fig 13. An illustration that the Collider-Correction slope’s dilution under a LAD-regression analysis can be

approximately (but not exactly) predicted using the F-statistic.

https://doi.org/10.1371/journal.pgen.1009703.g013
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Mendelian randomization study [45]. However, it is unclear whether associations with insom-

nia are mediated through HbA1c in the general population, whose glucose levels may not meet

the threshold criteria for a formal diabetes diagnosis. As such, we focus on a potentially causal

role of insomnia on HbA1c, a well-established clinical assessment of long-term glycaemic reg-

ulation that is central to the diagnosis of diabetes [46]. To address this question we use individ-

ual level data on approximately 320,000 individuals in UK Biobank to furnish a one sample

Mendelian randomization study.

Two hundred and forty-eight independent genetic variants at 202 loci were associated with

self-reported insomnia at or below the standard genome-wide significance threshold (p-

value<5 × 10−8) in a recent GWAS of over 1.33 million UK Biobank and 23andMe individuals

reported by Jansen [45] which collectively explained 2.6% of the total trait variance. SNP-expo-

sure associations were measured on the log-odds scale using logistic regression. Among this

set of variants, 240 SNPs were in principle available for use as instruments in UK Biobank. In

this cohort, participants were asked: “Do you have trouble falling asleep at night or do you

wake up in the middle of the night?” with responses “Never/rarely”, “Sometimes”, “Usually”,

or “Prefer not to answer”. Those who responded “Prefer not to answer” were set to missing.

To reflect the Jansen analysis, the remaining entries were treated as a binary variable for

insomnia symptoms, with “Never/rarely”, “Sometimes”, and “Usually” coded as 0, 0, and 1,

respectively and a logistic regression performed. HbA1c measurements were obtained from a

panel of biomarkers assayed from blood samples collected at baseline from UK Biobank partic-

ipants. HbA1c (mmol/mol) was measured in red blood cells by HPLC analysis using Bio-Rad

VARIANT II Turbo and log-transformed.

Instrument selection and winner’s curse

The mean F statistic for the 240 genetic instruments in the original GWAS was 41, but in order

to avoid winner’s curse we did not want to incorporate these estimates directly into our MR

analysis. In UK Biobank the same SNPs had an �F of approximately 8.3 and an I2
GX statistic of

Fig 14. Distribution of MR-RAPS estimates at sample size = 50,000 when the data were generated under the LAD

regression model. (A = Left: all estimates, B = Right: estimates less than 1.

https://doi.org/10.1371/journal.pgen.1009703.g014
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approximately 40%, meaning that the MR analysis was susceptible to bias due to both weak

instrument and pleiotropy. This motivates the use of our Collider-Correction method for

causal estimation. However, the original Jansen GWAS combined data from the UK Biobank

(n = 386,533) and 23andMe (n = 944,477) using METAL [47]. As such, there was an approxi-

mate 23% overlap between data used for SNP discovery and for estimation in our MR model

[4]. To additionally assess the impact of winner’s curse for this reason we performed our subse-

quent analysis using (a) all 240 SNPs and (b) a subset of 112 SNPs that were only genome-wide

significant using only the 23andMe portion of the Jansen data. Analysis (b) is completely pro-

tected from winner’s curse whereas (a) is not. The downside of analysis (b) is that, with an �F of

6.8, it is even more susceptible to weak-instrument bias.

Methods used

We applied the TSLS, IVW, MR-Egger, LAD regression and MR-RAPS approaches to the

data. The IVW, MR-Egger and LAD regression approaches were implemented in three ways

(1) The ‘Standard’ 1-sample approach (i.e. using all the data to estimate SNP-exposure and

SNP-outcome associations); (2) the Collider-Correction algorithm and (3) Collider-Correc-

tion with SIMEX adjustment. Note that MR-RAPS incorporates an internal weak instrument

bias adjustment and there is no need to additionally apply a SIMEX algorithm to it. Along

with MR-RAPS, we refer to approach (3) as the ‘gold-standard’ methods.

Causal estimates

SNP exposure associations b̂XGj were obtained from a logistic regression of insomnia on the set

of SNPs as well age at recruitment, sex, assessment centre, 10 genetic principal components,

and genotyping chip. Estimates for collider biased SNP outcome associations â�j were obtained

from a multivariable regression of HbA1c on observed insomnia severity, all genetic variants

and the same additional covariates. This second regression additionally yielded an estimate

for the collider biased observational association between insomnia severity and HbA1c of

b̂� ¼ 0:012 (S.E. = 0.00057).

Fig 15 plots the collider biased SNP-outcome associations versus the SNP-exposure associa-

tions for analysis (a). Overlaid on the plot are the weak-instrument and pleiotropy adjusted

Collider-Correction slopes db � b
�

estimated by the four gold standard methods. The Q statis-

tic is 809 (df = 239) providing overwhelming evidence of heterogeneity due to pleiotropy. The

13 SNPs circled in black contribute a component to this global statistic with a bonferroni cor-

rected p-value below (5/240)% and could therefore be classed as outliers. Adjusted causal effect

estimates can be found in Table 1. Across all methods, we see a consistent picture: a unit

increase in the log-odds of insomnia leads to an increase of between 0.17 and 0.24 units of log

mmol/mol HbA1c. All estimates are further from the null than the collider biased observa-

tional association, b̂�. However the results highlight that, without weak-instrument adjust-

ment, all summary data MR-methods are biased in the direction of b̂�.

Table 1 (rows 6:10) and Fig 16 show the MR results for analysis (b) using only the 112 SNPs

identified in Jansen from 23andMe data, which are immune to the dilution bias caused by win-

ner’s curse. These SNPs have a weaker mean F statistic of 6.88 but a higher I2
GX statistic of 52%.

All causal estimates are seen to increase when compared to analysis (a). This is because the

winner’s curse which is present in (a) leads to an over-estimation of the SNP-exposure associa-

tion (which forms the denominator of the standard ratio estimate for β) and thus an underesti-

mation of the causal effect. Again, across all methods, we see consistent evidence that the

insomnia causally increases HbA1c.
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In total there were 14 outlier SNPs (13 SNPs in analysis (a) and (6) in analysis (b), respec-

tively), which were investigated using the GWAS Catalog (https://www.ebi.ac.uk/gwas/), a full

list of which can be found in S1(B) Text and S1 Data. Most of these SNPs are only associated

with insomnia except rs10758593 (type 1 and type 2 diabetes), rs12917449 (type 2 diabetes),

rs1861412 (BMI) and rs429358 (70+ traits). This provides some biological evidence for the

existence of pleiotropy, which further underlines the utility of using robust methods that

account for its presence.

Discussion

In this paper we clarify how the principle of Collider-Correction offers a vehicle for applying

any two-sample summary data MR method to one sample data, making it easy to account for

both pleiotropy and weak instrument bias. Our method is closely related to the approach of

Dudbridge et al [31] for genetic studies of disease progression, and primarily serves to empha-

sise that this procedure is in fact applicable to any MR analysis. We used our new method to

provide important insights into the role of insomnia on glycated haemoglobin and, by exten-

sion, on incident diabetes.

A nice feature of our approach is that the Collider-Correction term β − β� will be large (and

therefore the Collider-Corrected estimate will be clearly distinct from the observational associ-

ation) precisely when there is strong confounding. Conversely, when there is weak confound-

ing, or the confounding has been sufficiently adjusted for, β − β� will be zero and Collider-

Correction estimate will equal the observational association. In this case, the observational

association then becomes a consistent and likely very efficient estimate of the true causal effect.

Collider-Correction therefore naturally promotes the triangulation and synthesis of observa-

tional and MR estimates, which can estimate the true causal effect with distinct but comple-

mentary assumptions.

Fig 15. Collider biased SNP outcome associations, â�j , versus SNP-exposure associations, b̂XGj for 240 SNPs that

were genome-wide significant using 23andMe and UKB data.

https://doi.org/10.1371/journal.pgen.1009703.g015
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We showcased the Collider-Correction approach using four univariate MR approaches that

estimate a single causal effect parameter. At the cutting-edge of MR methods research, new

approaches are attempting to: estimate causal effects identified by different clusters of SNPs

[32, 48, 49]; simultaneously estimate causal effects via multiple exposures [50, 51], or quantify

non-linear effects of an exposure [52]. The Collider-Correction algorithm can in principle be

adapted to fit all of these multi-parameter approaches and this is an important topic of future

research.

The insomnia data was affected by a small amount of winner’s curse, which we removed by

design in a sensitivity analysis by restricting our SNP set to those obtained from a purely inde-

pendent data source. More sophisticated approaches to adjusting for winner’s curse are possi-

ble by incorporating the original Discovery data. For example, Bowden and Dudbridge [4]

describe the most statistically efficient way to combine SNP discovery and validation data

from two non-overlapping GWAS studies and remove winner’s curse. As further work, we

plan to extend this approach and combine it with Collider-Correction.

Table 1. Point estimates, standard errors and p-values for the: TSLS, IVW, MR-Egger, LAD-regression and

MR-RAPS methods. Estimates reflect the average causal effect of a unit increase in the log-odds of insomnia on

HbA1c levels across the population. ‘Standard’ = standard 1-sample analysis. Top rows: Analysis (a)—All 240 SNPs

from Jansen et al used. Bottom rows: Analysis (b)—only genome wide significant SNPs from 23andMe data (ignoring

UK Biobank) used.

Method Estimate S.E p-value

Analysis (a): 23andMe + UK Biobank significant SNPs

# SNPs: 240, �F ¼ 8:36, Q(p-value) = 809 (<2 × 10−16), I2
GX ¼ 41:0%

β� 0.012 0.00057 < 2 × 10−16

TSLS 0.016 0.002 < 1 × 10−16

Standard IVW 0.013 0.008 5.04 × 10−7

Standard MR-Egger 0.007 0.005 1.3 × 10−1

Standard LAD 0.011 0.004 2.09 × 10−3

Collider-Corrected IVW 0.022 0.0028 1.1 × 10−15

Collider-Corrected IVW (SIMEX) 0.024 0.0031 3.1 × 10−14

Collider-Corrected MR-Egger 0.015 0.0060 1.3 × 10−2

Collider-Corrected MR-Egger (SIMEX) 0.017 0.0085 4.5 × 10−2

Collider-Corrected LAD 0.020 0.0036 2.0 × 10−8

Collider-Corrected LAD (SIMEX) 0.021 0.0024 < 2 × 10−16

Collider-Corrected MR-RAPs 0.020 0.0026 3.1 × 10−15

Analysis (b) 23andMe significant SNPs only

# SNPs: 112, �F ¼ 6:88, Q(p-value) = 385 (<2 × 10−16), I2
GX ¼ 52:1%

β� 0.012 0.00057 < 2 × 10−16

TSLS 0.017 0.003 2.39 × 10−10

Standard IVW 0.014 0.004 5.23 × 10−4

Standard MR-Egger 0.008 0.006 1.76 × 10−1

Standard LAD 0.012 0.006 3.30 × 10−2

Collider-Corrected IVW 0.024 0.0045 1.2 × 10−7

Collider-Corrected IVW (SIMEX) 0.026 0.0051 3.3 × 10−7

Collider-Corrected MR-Egger 0.020 0.0083 1.8 × 10−2

Collider-Corrected MR-Egger (SIMEX) 0.023 0.0110 4.5 × 10−2

Collider-Corrected LAD 0.021 0.0056 1.5 × 10−4

Collider-Corrected LAD (SIMEX) 0.024 0.0042 1.4 × 10−8

Collider-Corrected MR-RAPs 0.023 0.0043 3.6 × 10−8

https://doi.org/10.1371/journal.pgen.1009703.t001
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Often in MR analyses the outcome of interest is binary and a logistic regression model is

used in place of the linear model to estimate the causal effect on the odds ratio scale. In this

case, the interpretation of causal estimates from a resulting Collider-Correction analysis

will be more nuanced for the following reason. Even if we replaced the assumed linear out-

come model in Eq (2) with a logistic model, so that β reflected the true causal log-odds ratio

for a unit increase in the exposure experienced by each individual, the causal effect estimate

(which is a population average) will be diluted by a factor that is proportional to the vari-

ance of the residual error in the model not explained by the genetically predicted exposure.

This is due to the fact that the odds ratio is a non-collapsible measure [53]. Although this

dilution is a very general phenomenon that affects all logistic regression based analysis,

three obvious options exist to the applied researcher if implementing Collider-Correction

in the binary outcome case. The first would be to simply accept the interpretation of the

causal estimate as a population average effect. The second would be to attempt to better

approximate the individual causal effect by additionally adjusting for the first stage residual,

(that is the observed exposure minus its genetically predicted value) in the second stage

logistic model. This is referred to as the Control Function or adjusted IV approach [54].

The third option would be to estimate the causal effect on a risk difference scale. Since the

risk difference is a collapsible measure, individual and population average effects are the

same. Risk difference estimates can be estimated either by fitting a linear probability model

or by extracting the risk difference contrast from the logistic model. This latter approach

can be implemented using the margins() package in R. A thorough investigation of the

performance of Collider-Correction in the binary outcome setting is an interesting avenue

for future research.

Fig 16. Collider biased SNP outcome associations, â�j , versus SNP-exposure associations, b̂XGj for 112 SNPs that

were genome-wide significant using 23andMe data only.

https://doi.org/10.1371/journal.pgen.1009703.g016

PLOS GENETICS Exploiting collider bias in Mendelian randomization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009703 August 9, 2021 22 / 26

https://doi.org/10.1371/journal.pgen.1009703.g016
https://doi.org/10.1371/journal.pgen.1009703


Supporting information

S1 Text. A: A formal proof of the Collider-Correction formulae. B: A list of outlying SNPs

detected in analysis (a) and analysis (b) of the data example.

(PDF)

S1 Data. Additional functional information on the outlying SNPs detected in analysis (a)

and analysis (b) of the data example.

(ZIP)

S1 Code. R scripts for re-creating the simulation study results in the paper.

(R)

Author Contributions

Conceptualization: Ciarrah Barry, Frank Dudbridge, Jack Bowden.

Data curation: Junxi Liu.

Formal analysis: Ciarrah Barry, Junxi Liu, Deborah A. Lawlor, Jack Bowden.

Funding acquisition: Martin K. Rutter, Deborah A. Lawlor, Jack Bowden.

Investigation: Junxi Liu, Rebecca Richmond, Martin K. Rutter, Deborah A. Lawlor, Jack

Bowden.

Methodology: Ciarrah Barry, Frank Dudbridge, Jack Bowden.

Project administration: Martin K. Rutter.

Software: Junxi Liu, Jack Bowden.

Supervision: Rebecca Richmond, Martin K. Rutter, Deborah A. Lawlor, Jack Bowden.

Writing – original draft: Junxi Liu, Jack Bowden.

Writing – review & editing: Junxi Liu, Rebecca Richmond, Martin K. Rutter, Deborah A.

Lawlor, Frank Dudbridge, Jack Bowden.

References
1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to under-

standing environmental determinants of disease? International Journal of Epidemiology 2003; 32:1–

22. https://doi.org/10.1093/ije/dyg070

2. Sheehan N, Didelez V, Burton P, Tobin M. Mendelian Randomisation and Causal Inference in Observa-

tional Epidemiology PLOS Medicine 2008; 5:1–6. https://doi.org/10.1371/journal.pmed.0050177

PMID: 18752343

3. Davey Smith G, Lawlor D, Harbord R, Timpson N, Day I, Ebrahim S. Clustered Environments and Ran-

domized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology PLOS

Medicine 2007; 4:1–8.

4. Bowden J, Dudbridge F. Unbiased estimation of odds ratios: combining genomewide association scans

with replication studies Genetic Epidemiology 2009; 33:406–418 https://doi.org/10.1002/gepi.20394

PMID: 19140132

5. Bowden J, Del Greco F, Minelli C, Davey Smith G, Sheehan N, Thompson J Assessing the suitability of

summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role

of the I2 statistic IJE 2016; 45:1961–1974 https://doi.org/10.1093/ije/dyw220 PMID: 27616674

6. Bowden J, Del Greco F, Minelli C, Zhao Q, Lawlor D, Sheehan N, Thompson J, Davey Smith G. Improv-

ing the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME

assumption IJE 2018; 48:728–742

7. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomi-

zation studies HMG 2018; 27:R195–R208 https://doi.org/10.1093/hmg/ddy163 PMID: 29771313

PLOS GENETICS Exploiting collider bias in Mendelian randomization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009703 August 9, 2021 23 / 26

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009703.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009703.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009703.s003
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1371/journal.pmed.0050177
http://www.ncbi.nlm.nih.gov/pubmed/18752343
https://doi.org/10.1002/gepi.20394
http://www.ncbi.nlm.nih.gov/pubmed/19140132
https://doi.org/10.1093/ije/dyw220
http://www.ncbi.nlm.nih.gov/pubmed/27616674
https://doi.org/10.1093/hmg/ddy163
http://www.ncbi.nlm.nih.gov/pubmed/29771313
https://doi.org/10.1371/journal.pgen.1009703


8. Kang H, Zhang A, Cai T, Small D. Instrumental Variables Estimation With Some Invalid Instruments

and its Application to Mendelian Randomization JASA 2016; 111:132–144 https://doi.org/10.1080/

01621459.2014.994705

9. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estima-

tion and bias detection through Egger regression IJE 2015; 44:512–525 https://doi.org/10.1093/ije/

dyv080 PMID: 26050253

10. Bowden J, Davey Smith G, Haycock P, Burgess S. Consistent Estimation in Mendelian Randomization

with Some Invalid Instruments Using a Weighted Median Estimator Genetic Epidemiology 2016;

40:304–314 https://doi.org/10.1002/gepi.21965 PMID: 27061298

11. Bowden J, Hartwig F, Davey Smith G. Robust inference in summary data Mendelian randomization via

the zero modal pleiotropy assumption IJE 2017; 46:1985–1998 https://doi.org/10.1093/ije/dyx102

PMID: 29040600

12. Burgess S, Butterworth A, Thompson S. Mendelian Randomization Analysis With Multiple Genetic Vari-

ants Using Summarized Data Genetic Epidemiology 2013; 37:685–665 https://doi.org/10.1002/gepi.

21758 PMID: 24114802

13. Bowden J, Del Greco F, Minelli C, Davey Smith G, Sheehan N, Thompson J A framework for the investi-

gation of pleiotropy in two-sample summary data Mendelian randomization. Statistics in Medicine 2017;

36:1783–1802. https://doi.org/10.1002/sim.7221 PMID: 28114746

14. Hemani G, Zheng J, Elsworth B, Wade K, Haberland V, Baird D et al The MR-Base platform supports

systematic causal inference across the human phenome. e-Life 2018; 7:e34408 https://doi.org/10.

7554/eLife.34408 PMID: 29846171

15. Bowden J, Spiller W, Del Greco F, Sheehan N, Thompson J, Minelli C, Davey Smith G. Improving the

visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the

Radial plot and Radial regression IJE 2018; 47:1264–1278

16. Lawlor D, Wade K, Borges M, Palmer T, Hartwig F, Hemani G. A Mendelian Randomization Dictionary

Useful Definitions and Descriptions for Undertaking, Understanding and Interpreting Mendelian Ran-

domization Studies OSF Preprints 2019

17. Inoue A, Solon G. Two-sample Instrumental Variable Estimators The Review of Economics and Statis-

tics 2010; 92:557–561 https://doi.org/10.1162/REST_a_00011

18. Hyslop R, Imbens G. Bias from Classical and Other Forms of Measurement Error Journal of Business &

Economic Statistics 2001; 19:475–481 https://doi.org/10.1198/07350010152596727

19. Cook J, Stefanski L Simulation-Extrapolation Estimation in Parametric Measurement Error Models

JASA 1994; 89: 1314–1328 https://doi.org/10.1080/01621459.1994.10476871

20. Hardin J, Schmiediche H, Carroll R. The Simulation Extrapolation Method for Fitting Generalized Linear

Models with Additive Measurement Error The Stata Journal 2003; 3:373–385 https://doi.org/10.1177/

1536867X0300300406

21. Zhao Q, Wang J, Hemani G, Bowden J, Small D. Statistical inference in two-sample summary-data

Mendelian randomization using robust adjusted profile score The Annals of Statistics 2020; 48: 1742–

1769 https://doi.org/10.1214/19-AOS1866

22. Zhao Q, Wang J, Spiller W, Bowden J, Small D. Two-Sample Instrumental Variable Analyses Using

Heterogeneous Samples Statistical Science 2019; 34: 317–333 https://doi.org/10.1214/18-STS692

23. The CARDIoGRAMplusC4D ConsortiumA comprehensive 1,000 Genomes-based genome-wide asso-

ciation meta-analysis of coronary artery diseaseNature Genetics2015; 47: 1121–1130 https://doi.org/

10.1038/ng.3396 PMID: 26343387

24. Leblanc M, Zuber V, Thompson W, Andreassen O, Frigessi A, Andreassen B. et al A correction for sam-

ple overlap in genome-wide association studies in a polygenic pleiotropy-informed framework BMC

Genomics 2018; 19: 1471–2164 https://doi.org/10.1186/s12864-018-4859-7

25. Hartwig F, Davies N, Hemani G, Davey Smith G. Two-sample Mendelian randomization: avoiding the

downsides of a powerful, widely applicable but potentially fallible technique IJE 2016; 45: 1717–1726

https://doi.org/10.1093/ije/dyx028 PMID: 28338968

26. Hartwig F, Tilling K, Davey Smith G Lawlor D, Borges M Bias in two-sample Mendelian randomization

by using covariable-adjusted summary associations IJE 2021; In Press PMID: 33619569

27. Lawlor D. Commentary: Two-sample Mendelian randomization: opportunities and challenges IJE 2016;

45:908–915 https://doi.org/10.1093/ije/dyw127 PMID: 27427429

28. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J et al. UK Biobank: An Open Access

Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age

PLOS Medicine 2015; 12: 1–10 https://doi.org/10.1371/journal.pmed.1001779 PMID: 25826379

PLOS GENETICS Exploiting collider bias in Mendelian randomization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009703 August 9, 2021 24 / 26

https://doi.org/10.1080/01621459.2014.994705
https://doi.org/10.1080/01621459.2014.994705
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1093/ije/dyv080
http://www.ncbi.nlm.nih.gov/pubmed/26050253
https://doi.org/10.1002/gepi.21965
http://www.ncbi.nlm.nih.gov/pubmed/27061298
https://doi.org/10.1093/ije/dyx102
http://www.ncbi.nlm.nih.gov/pubmed/29040600
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1002/gepi.21758
http://www.ncbi.nlm.nih.gov/pubmed/24114802
https://doi.org/10.1002/sim.7221
http://www.ncbi.nlm.nih.gov/pubmed/28114746
https://doi.org/10.7554/eLife.34408
https://doi.org/10.7554/eLife.34408
http://www.ncbi.nlm.nih.gov/pubmed/29846171
https://doi.org/10.1162/REST_a_00011
https://doi.org/10.1198/07350010152596727
https://doi.org/10.1080/01621459.1994.10476871
https://doi.org/10.1177/1536867X0300300406
https://doi.org/10.1177/1536867X0300300406
https://doi.org/10.1214/19-AOS1866
https://doi.org/10.1214/18-STS692
https://doi.org/10.1038/ng.3396
https://doi.org/10.1038/ng.3396
http://www.ncbi.nlm.nih.gov/pubmed/26343387
https://doi.org/10.1186/s12864-018-4859-7
https://doi.org/10.1093/ije/dyx028
http://www.ncbi.nlm.nih.gov/pubmed/28338968
http://www.ncbi.nlm.nih.gov/pubmed/33619569
https://doi.org/10.1093/ije/dyw127
http://www.ncbi.nlm.nih.gov/pubmed/27427429
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
https://doi.org/10.1371/journal.pgen.1009703


29. Minelli C, Del Greco F, van der Plaat D, Bowden J, Sheehan N, Thompson J. The use of two-sample

methods for Mendelian randomization analyses on single large datasets IJE 2021; In Press PMID:

33899104

30. Hartwig F, Davies N. Why internal weights should be avoided (not only) in MR-Egger regression IJE

2016; 45: 1676–1678

31. Dudbridge F, Allen R, Sheehan N, Schmidt F, Lee J, Jenkins R et al Adjustment for index event bias in

genome-wide association studies of subsequent events Nature Communications 2019; 10 1561

https://doi.org/10.1038/s41467-019-09381-w PMID: 30952951

32. Shapland C, Zhao Q, Bowden J. Profile-likelihood Bayesian model averaging for two-sample summary

data Mendelian randomization in the presence of horizontal pleiotropy Biorxiv 2020

33. Williamson E, Walker A, Bhaskaran K, Bacon S, Bates C, Morton C et al. Factors associated with

COVID-19-related death using OpenSAFELY Nature 2020; 584 430–436 https://doi.org/10.1038/

s41586-020-2521-4 PMID: 32640463

34. Burgess S and Bowden J Integrating summarized data from multiple genetic variants in Mendelian ran-

domization: bias and coverage properties of inverse-variance weighted methods arXiv 2015;

1512.04486

35. Pearl J. Causal inference in statistics: An overview Statistics Surveys 2009; 3: 96–146 https://doi.org/

10.1214/09-SS057

36. Munafo M, Tilling K, Taylor A, Evans D, Davey Smith G. Collider scope: when selection bias can sub-

stantially influence observed associations IJE 2017; 47: 226–235

37. Verbank M, Chen C, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relation-

ships inferred from Mendelian randomization between complex traits and diseases Nature Genetics

2018; 50: 693–698 https://doi.org/10.1038/s41588-018-0099-7

38. Bowden J, Hemani G, Davey Smith G, Invited Commentary: Detecting Individual and Global Horizontal

Pleiotropy in Mendelian Randomization—A Job for the Humble Heterogeneity Statistic? American Jour-

nal of Epidemiology 2018; 187: 2681–2685 https://doi.org/10.1093/aje/kwy185 PMID: 30188969

39. Giloni A, Padberg M The Finite Sample Breakdown Point of L-1 Regression SIAM Journal on Optimiza-

tion 2004; 14: 1028–1042 https://doi.org/10.1137/S1052623403424156

40. Spiegel K, Leproult R, Van Cauter E Impact of sleep debt on metabolic and endocrine function Lancet

1999; 354: 1435–1439 https://doi.org/10.1016/S0140-6736(99)01376-8 PMID: 10543671

41. Stamatakis K, Punjabi N Effects of sleep fragmentation on glucose metabolism in normal subjects

Chest 2010; 137: 95–101 https://doi.org/10.1378/chest.09-0791 PMID: 19542260

42. Nedeltcheva A, Kessler L, Imperial J, Penev P. Exposure to Recurrent Sleep Restriction in the Setting

of High Caloric Intake and Physical Inactivity Results in Increased Insulin Resistance and Reduced Glu-

cose Tolerance The Journal of Clinical Endocrinology & Metabolism 2009; 94: 3242–3250 https://doi.

org/10.1210/jc.2009-0483 PMID: 19567526

43. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W et al. Sleep Duration and Risk of Type 2 Diabetes: A Meta-

analysis of Prospective Studies Diabetes Care; 38: 529–537 https://doi.org/10.2337/dc14-2073 PMID:

25715415

44. Green M, Espie C, Popham F, Robertson T, Benzeval M Insomnia symptoms as a cause of type 2 dia-

betes Incidence: a 20?year cohort study BMC Psychiatry 2017; 17: 94 https://doi.org/10.1186/s12888-

017-1268-4 PMID: 28302102

45. Jansen P, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag A et al. Genome-wide analysis

of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways Nature Genetics

2019; 51: 394–403 https://doi.org/10.1038/s41588-018-0333-3 PMID: 30804565

46. Guidance Diagnosis and Classification of Diabetes MellitusDiabetes Care2004; 27: s5–s10 https://doi.

org/10.2337/diacare.27.2007.S5 PMID: 14693921

47. Willer C, Li Y, Abecasis G. METAL: fast and efficient meta-analysis of genomewide association scans

Bioinformatics 2010; 26: 2190–2191 https://doi.org/10.1093/bioinformatics/btq340 PMID: 20616382

48. Qi G, Chatterjee N Mendelian randomization analysis using mixture models for robust and efficient esti-

mation of causal effects Nature Communications 2019; 10: 1941 https://doi.org/10.1038/s41467-019-

09432-2 PMID: 31028273

49. Burgess S, Foley C, Allara E, Staley J, Howson J A robust and efficient method for Mendelian randomi-

zation with hundreds of genetic variants Nature Communications 2020; 11: 376 https://doi.org/10.1038/

s41467-019-14156-4 PMID: 31953392

50. Sanderson E, Davey Smith G, Windmeijer F, Bowden J An examination of multivariable Mendelian ran-

domization in the single-sample and two-sample summary data settings IJE 2018; 48: 713–727

PLOS GENETICS Exploiting collider bias in Mendelian randomization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009703 August 9, 2021 25 / 26

http://www.ncbi.nlm.nih.gov/pubmed/33899104
https://doi.org/10.1038/s41467-019-09381-w
http://www.ncbi.nlm.nih.gov/pubmed/30952951
https://doi.org/10.1038/s41586-020-2521-4
https://doi.org/10.1038/s41586-020-2521-4
http://www.ncbi.nlm.nih.gov/pubmed/32640463
https://doi.org/10.1214/09-SS057
https://doi.org/10.1214/09-SS057
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1093/aje/kwy185
http://www.ncbi.nlm.nih.gov/pubmed/30188969
https://doi.org/10.1137/S1052623403424156
https://doi.org/10.1016/S0140-6736(99)01376-8
http://www.ncbi.nlm.nih.gov/pubmed/10543671
https://doi.org/10.1378/chest.09-0791
http://www.ncbi.nlm.nih.gov/pubmed/19542260
https://doi.org/10.1210/jc.2009-0483
https://doi.org/10.1210/jc.2009-0483
http://www.ncbi.nlm.nih.gov/pubmed/19567526
https://doi.org/10.2337/dc14-2073
http://www.ncbi.nlm.nih.gov/pubmed/25715415
https://doi.org/10.1186/s12888-017-1268-4
https://doi.org/10.1186/s12888-017-1268-4
http://www.ncbi.nlm.nih.gov/pubmed/28302102
https://doi.org/10.1038/s41588-018-0333-3
http://www.ncbi.nlm.nih.gov/pubmed/30804565
https://doi.org/10.2337/diacare.27.2007.S5
https://doi.org/10.2337/diacare.27.2007.S5
http://www.ncbi.nlm.nih.gov/pubmed/14693921
https://doi.org/10.1093/bioinformatics/btq340
http://www.ncbi.nlm.nih.gov/pubmed/20616382
https://doi.org/10.1038/s41467-019-09432-2
https://doi.org/10.1038/s41467-019-09432-2
http://www.ncbi.nlm.nih.gov/pubmed/31028273
https://doi.org/10.1038/s41467-019-14156-4
https://doi.org/10.1038/s41467-019-14156-4
http://www.ncbi.nlm.nih.gov/pubmed/31953392
https://doi.org/10.1371/journal.pgen.1009703


51. Wang J, Zhao Q, Bowden J, Hemani G, Davey Smith G, Small D et al. Causal Inference for Heritable

Phenotypic Risk Factors Using Heterogeneous Genetic Instruments PLOS Genetics 2021, In Press

https://doi.org/10.1371/journal.pgen.1009575 PMID: 34157017

52. Staley J, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relation-

ship using instrumental variables with application to Mendelian randomization Genetic Epidemiology

(2017); 41: 341–352 https://doi.org/10.1002/gepi.22041 PMID: 28317167

53. Vansteelandt S, Bowden J, Babanezhad M, Goetghebeur E. On Instrumental Variables Estimation of

Causal Odds Ratios Statistical Science 2011; 26: 403–422 https://doi.org/10.1214/11-STS360

54. Palmer T, Thompson J, Tobin M, Sheehan N, Burton P Adjusting for bias and unmeasured confounding

in Mendelian randomization studies with binary responses IJE 2008; 37: 1161–1168 PMID: 18463132

PLOS GENETICS Exploiting collider bias in Mendelian randomization

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009703 August 9, 2021 26 / 26

https://doi.org/10.1371/journal.pgen.1009575
http://www.ncbi.nlm.nih.gov/pubmed/34157017
https://doi.org/10.1002/gepi.22041
http://www.ncbi.nlm.nih.gov/pubmed/28317167
https://doi.org/10.1214/11-STS360
http://www.ncbi.nlm.nih.gov/pubmed/18463132
https://doi.org/10.1371/journal.pgen.1009703

