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Abstract

Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies were

the inherited conditions found mostly in African. However, few epidemiological data of these

disorders was reported in Equatorial Guinea (EQG). This study aimed to assess the preva-

lence and healthy effects of G6PD deficiency and hemoglobinopathies among the people

on malaria endemic Bioko Island, EQG.

Materials and Methods

Blood samples from 4,144 unrelated subjects were analyzed for G6PD deficieny by fluores-

cence spot test (FST), high-resolution melting assay and PCR-DNA sequencing. In addi-

tion, 1,186 samples were randomly selected from the 4,144 subjects for detection of

hemoglobin S (HbS), HbC, and α-thalassemia deletion by complete blood count, PCR-DNA

sequencing and reverse dot blot (RDB).

Results

The prevalence of malaria and anemia was 12.6% (522/4,144) and 32.8% (389/1,186), re-

spectively. Overall, 8.7% subjects (359/4,144) were G6PD-deficient by FST, including 9.0%

(249/2,758) males and 7.9% (110/1,386) females. Among the 359 G6PD-deficient individuals

molecularly studied, the G6PD A-(G202A/A376G) were detected in 356 cases (99.2%), G6PD

Betica (T968C/A376G) in 3 cases. Among the 1,186 subjects, 201 cases were HbS heterozy-

gotes, 35 cases were HbC heterozygotes, and 2 cases were HbCS double heterozygotes;
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452 cases showed heterozygous α-thalassemia 3.7 kb deletion (-α3.7 kb deletion) and 85 ho-

mozygous - α3.7 kb deletion. The overall allele frequencies were HbS 17.1% (203/1186); HbC,

3.1% (37/1186); and –α3.7 kb deletion 52.4% (622/1186), respectively.

Conclusions

High G6PD deficiency in this population indicate that diagnosis and management of G6PD

deficiency is necessary on Bioko Island. Obligatory newborn screening, prenatal screening

and counseling for these genetic disorders, especially HbS, are needed on the island.

Introduction
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies are wide-
spread human erythrocyte genetic diseases affecting millions of people [1,2]. The geographical
distribution of G6PD deficiency and hemoglobinopathies (mainly sickle cell disease and thalas-
semia) is closely related to the past and present prevalence of malaria because of a selective ad-
vantage against malaria infection [3,4]. Individuals with these disorders show reduced malaria
infection, disease severity or parasitic burden [4,5].

G6PD deficiency is prevalent in Africa, the Middle East, the Mediterranean and Southeast Asia
[3]. Among the approximately 200 G6PD variant alleles have been described in the world, G6PD
A- variant (G202A/A376G) predominates in sub-Saharan Africa where it affects 15 to 20% of the
African population [6]. A recent study conducted in The Gambia, found that another variant,
G6PD Betica (T968C/A376G), was the most common cause of G6PD deficiency in that part of
continent [7], which suggested a regional genotypic difference of G6PD deficiency in Africa. Pri-
maquine (PQ) has been the most commonly used 8-aminoquinoline anti-malarial drug. Over the
past 60 years, PQ has been used to treat the liver stages (hypnozoites) of Plasmodium vivax and
Plasmodium ovalemalaria to prevent relapses, and as a single-dose or short-course gametocytoci-
dal drug with the goal of reducing transmission of falciparummalaria. Despite the therapeutic ad-
vantages of PQ, the wider use of the drug is restricted by their toxicity profile. The most important
adverse effect of PQ is dose-related hemolysis, which could potentially create significant morbidity
and undermine confidence in PQ prescription [8]. Therefore, the diagnosis and management of
G6PD deficiency is important for malaria control, which will require the wider use of PQ for both
reducing P. falciparum transmission and achieving the radical cure of Plasmodium vivax.

Anemia in children continues to be a major public health challenge in most developing
countries, particularly Africa [9]. Although iron deficiency is the most common cause of
anemia, many other factors, including malaria, vitamin A deficiency and hemoglobinopa-
thies play important roles in different settings. Sickle cell disease is the largest public health
concern [10,11]. An estimated 275,000 people in Africa are born with sick cell disease yearly,
approximately 85% of the global affected cases [12]. Hemoglobin S (HbS) is a structural var-
iant of healthy hemoglobin (HbA), which results from a GAG>GTGmutation at codon 20 of
β-globin gene. Heterozygote individuals (HbAS) are generally asymptomatic, and homozy-
gote individuals (HbSS) have lifelong acute and chronic complications [13,14]. α+-thalasse-
mia is the other common hemoglobinopathy in Africa [2]. Heterozygous α+-thalassemia
causes slight hematological changes and homozygote carriers show mild microcytic anemia.
Although these genetic disorders are a major public health problem and social burden for
people in endemic regions, few data are available about the genetic frequencies of these dis-
orders in some sub-Sahara regions.
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Equatorial Guinea (EQG) is a country located in central Africa, with an area of 28,068 km2.
It is divided into a mainland territory, which is bordered by Cameroon to the north and Gabon
to the east and south, and five small islands, including Bioko, Corisco, Annobón, Elobey Chico
and Elobey Grande. Although innovative malaria control programs in EQG have had a marked
impact on malaria infection and mortality, malaria due to Plasmodium falciparum is still the
major public health problem in the country. TheWorld Health Organization (WHO) estimates
that the probability of dying among children under 5 years of age in EQG is 205 of 1,000 live
births, with 24% of death attributable to malaria [15]. Because of limited local medical resources,
no systematic investigation of G6PD deficiency and hemoglobinopathies was reported in the
country.

Here, we performed a large-scale molecular epidemiological survey of G6PD deficiency and
hemoglobinopathies in 4,144 subjects, which firstly allows a sight into the prevalence and mo-
lecular characterization of these genetic diseases on Bioko Island. It is a prerequisite for defin-
ing a specific policy for these genetic diseases screening, genetic counseling, prenatal diagnosis
and implementation of PQ for malaria on the island.

Materials and Methods

Study Area
Bioko Island belongs to EQG and is located in the Gulf of Guinea, about 100 km off the coast
of southern Nigeria and 160 km northwest of continental EQG (Fig 1). The island has a pop-
ulation of 266,000 inhabitants (2001 census), including 58% Bubi nationality, 16% Fang na-
tionality, 12% Fernandino nationality and 7% Igbo nationality, they live in the north part of
the island. The island has a humid tropical environment. The mean annual rainfall is ~2,000

Fig 1. Geographic location of the Bioko Island, Equatorial Guinea.

doi:10.1371/journal.pone.0123991.g001
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mm/year. The rainy season starts in May and ends in October with peaks in August and
September of ~300 mm/month. Mean daily maximum and minimum temperatures range
between 29–32°C and 19–22°C, respectively [16]. The launch of the Bioko Island Malaria
Control Project (BIMCP) have had a marked impact on malaria transmission, malaria due
to Plasmodium falciparum is still the major public health problem on the island. The ento-
mological inoculation rates (EIR) on Bioko Island ranged from 163 to 840, with the outdoor
EIRs reaching> 900 infective mosquito bites per year [16], and a malaria prevalence of 52%
in 1–4 year old children (2011) [17].

Population samples
The study population included 4,144 unrelated subjects living on Bioko Island These subjects
aged from 1 to 75 years and received the screening for G6PD deficiency and hemoglobinopa-
thies in Malabo Regional Hospital during April 2012 and May 2014. Questionnaires about na-
tionality, gender, age, native status or not and written consent forms were available in Spanish
(the most-common language) to ensure comprehensive understanding of the study objectives.
This study was approved by the ethics committees of Malabo Regional Hospital and the First
Affiliated Hospital of Shantou University Medical College. All subjects or their parents gave
their informed consent by signature or thumbprint.

Blood samples were collected with EDTA-K2 anti-coagulated tubes from each subject accord-
ing to the standard procedures described previously [18], and 200uL of blood was adsorbed on
Whatman 903 filter paper. These filter papers were air dried and stored individually in Ziplock
bags containing silica desiccant beads and refrigerated (-20°C). Parasite detection was screened
by ICTmalaria Plasmodium falciparum cassette test (ICT Diagnostics, South Africa) and posi-
tive samples were treated with artesunate-amodiaquine (Camoquin plus).

G6PD enzyme measurement
All dried blood spots (n = 4,144) were detcted for G6PD deficiency by a commercial fluores-
cence spot test (FST) kit (Guangzhou Micky Medical Instrument Co., China) as previous re-
port [18,19], which was approved by the Chinese Food and Drug Administration (CFDA) (reg.
no. CFDA (P) 20112400503). The kits utilized a modification of the classic semi-quantitative
Beutler method [20], which test the rate of NADPH generation in mol per min per gm Hb
from the chemical reaction catalyzed by G6PD. The cut-off value for this study was set at 2.7U/
gHb [19]. The assay was performed according to the manufacturer’s protocol. Then, an aliquot
of the lysate of these suspected deficient samples (G6PD value<2.7 U/gHb) was spotted on a
Whatman fillter paper, air dried and examined under UV light. Samples from G6PD-defcient
subjects showed no or diminished fluorescence as compared with non-deficient samples.
G6PDMicky controls (normal and deficient only), provided by Guangzhou Micky Medical In-
strument Co., China), were assessed periodically to ensure quality performance of the FST.

G6PD genotyping
Genomic DNA was extracted from the G6PD-deficient samples by a DNA blood mini kit
(QIAGEN, China). The DNA concentration was measured by UV-2000 spectrophotometry
(UNICO, Shanghai), then adjusted to 40 ng/μL for PCR. The molecular analysis strategies for
screening G6PD mutations were shown in Fig 2.

All G6PD-deficient samples were analyzed for G202A (c.202 G>A) and A376G (c.376 A>G)
mutations by high-resolution melting (HRM) assay as described previously [21]. Primer se-
quences for HRM genotyping were shown in Table 1. PCR amplification was performed with
LightCycle@480 II (Roche Diagnostics) in a total volume of 20 μL, containing 2 μL DNA, 4 μL
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of 5×PCR buffer, 0.2 μL HotStar Taq, (Takara Biotechnology Dalian Co., China), 1 μL each
primer (10 μmol/L), 1.6 μL dNTP (2.5 mM) and 1 μL LC Green plus (Idaho Technology). The
cycling conditions for all amplicons were 95°C for 3 min, followed by 35 cycles of 98°C for 10 s,
63°C for 5 s and 72°C for 15 s. Then for melting, fragments underwent denaturalization at
95°C for 1 min, renaturation at 40°C for 1 min, and melting with a continuous fluorescent
reading from 60 to 90°C at 25 acquisitions per °C.

Melting curve profiles were generated by increasing the temperature from 65°C to 95°C at
0.05°C/s, and fluorescence was continuously acquired. HRM analysis involved use of Light-
Cycler 480 SW 1.5 (Roche Diagnostics). Normalized melting curves showed the fluorescence
signal against temperature, and derivative plots showed melting temperature peaks. The pre-
identified DNA including G202A, A376G and wild-type DNA, were used as standard refer-
ences. When the plots of samples were classified by the standard reference, they were identified

Fig 2. Molecular analysis strategies for screening G6PDmutations.

doi:10.1371/journal.pone.0123991.g002

Table 1. The primers for HRM screening for G6PD A- variant.

Mutations Exons Name Sequence (5’-3’) Product

G202A 4 P1 TGCCCTCAGGTGGCTGTT 108 bp

P2 GCTCACTCTGTTTGCGGATGT

A376G 5 P3 TACCAGCGCCTCAACAGC 99 bp

P4 GGCAAGGCCAGGTAGAAGA

doi:10.1371/journal.pone.0123991.t001
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as the same genotype of the standard. 12 exons of G6PD gene were amplified and sequenced in
G6PD-deficient samples without these two mutations, the primers and conditions were de-
scribed previously [21].

Hematological analysis
A total of 1,186 adults were randomly selected from the 4,144 subjects for hematological anal-
ysis with the conditions as follows: (1) individuals>16 years old; (2) not pregnant women.
Hematological data were collected by an automated blood counter (Systemx F-820; Systemx
Corp., Japan). Anemia was defined as hemoglobin level<13.0 g/dL for males and<12.0 g/dL
for females. The cut-off values for anemia were >6.0 g/dL, severe; 5.9–9.0 g/dL, moderate;
and<9.0 g/dL, mild.

Molecular diagnosis of hemoglobinopathies
Genomic DNA was extracted by a DNA blood mini kit (QIAGEN, China). DNA concentration
was mesured by UV-2000 spectrophotometry (UNICO, Shanghai, China). Then DNA sample
concentration was adjusted to 40 ng/μL for PCR.

HbS (c.20 A>T) and HbC (c.19 G>A) were analyzed in the 1,186 subjects by PCR-DNA
sequencing. PCR was amplified with Taq polymerase (TaKaRa, Dalian, China) in a MJ
Mini Personal Thermal Cycler (Bio-RAD) as described previously [22], with the primers:
P1, 5’-AAGGCTGGATTATTCTGAGTC-3’, and P2, 5’-CACTTGCCCGAGTCTGTTT-3’.
Reactions involved initial denaturation at 95°C for 3 min, 35 cycles of PCR (95°C for 30 s,
57°C for 30 s and 72°C for 1 min). DNA sequencing was performed by the ABI 3730xL
DNA Sequencer (PE Biosystems, CT, USA).

Because most cases of -α3.7 thalassemia heterozygotes could not be screened out by the
hematological indices (mean corpuscular volume), the 1,186 samples were analyzed for 3
known α-thalassemia deletions (—SEA, -α3.7, -α4.2) by a commercial thalassemia reverse dot
blot (RDB) gene chip (Chaozhou Hybribio Ltd., China) [22,23]. The kit for the gene chip was
approved by the CFDA (reg. no. CFDA (P) 20123400399). The assay was performed according
to the manufacturer’s protocol.

Statistical Analysis
Statistical analysis involved use of SPSS 16.0 (SPSS, Chicago, IL). The prevalence of α-thalasse-
mia alleles was calculated from the Hardy-Weinberg formula. Data for the 3 regions on Bioko
Island and previous studies were analyzed by chi-square test. P<0.05 was considered
statistically significant.

Results

G6PD deficiency
4,144 subjects, including 2,758 males (66.6%) and 1,386 females (33.4%), received screening
for G6PD deficiency. The mean age was 30 year (SD 28.3). Plasmodium falciparummalarial
parasite was present in 12.6% cases (522/4,144). Amongst these samples, 8.7% (359/4,144)
participants were G6PD deficient. The prevalence of males and females were analyzed sepa-
rately. G6PD deficiency was found in 9.0% (249/2,758) of males and 7.9% (110/1,386) of fe-
males (p = 0.238). Because of the randomly inactivation of X-chromosome in female, many
heterozygous females were expected to have a normal phenotype. These heterozygous females
with a normal phenotype could not be detected by FST. Therefore, the detection rate of G6PD
deficiency in males was little higher than in females.
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Of the 359 G6PD-deficient samples, 356 (99.2%, 356/359) were detected with G6PD A– var-
iant (G202A/A376G) by HRM assay. Melting curves for G202A and A376G mutations were
shown in Fig 3. PCR-DNA sequencing revealed that the other 3 G6PD-deficient samples were
G6PD Betica (T968C/A376G). No any other mutation was found. The number and percentage
of different genotypes observed from our samples in both males and females were listed in
Table 2.

Hemotological data and hemoglobinopathies
Among the 1,186 adults that underwent detection of hemoglobinopathies, the prevalence of
anemia was 32.8% (389/1,186): 1.5% severe (n = 18), 5.7% moderate (n = 67) and 25.6% mild
(n = 304). The burden of anemia was higher for females than males (37.0%, 183/495 vs 29.8%,
206/691) (p = 0.010).

201 HbS heterozygotes, 36 HbC heterozygotes and 2 HbCS double heterozygote were de-
tected from the 1,186 adults. The overall allele frequencies of HbS and HbC were 17.1% (203/
1,186) and 3.1% (37/1,186), respectively. Similar to other sub-Saharan African regions, Bioko
Island showed a high prevalence of α+-thalassemia. The only α-thalassemia mutation observed
was α-thalassemia 3.7 kb deletion (-α3.7 kb deletion), which accounted for 52.4% (622/1,186)
of allele frequencies and was present in a heterozygous state, −α3.7/αα (38.1%, 452/1,186) and
in a homozygous state, -α3.7/-α3.7 (7.2%, 85/1,186).

Discussion
To propose effective public health strategies, reliable epidemiological information for the local
population must be obtained. The recent medical communication between Equatorial Guinea
and China resulted in an opportunity to address important public health problems, including
malaria control and erythrocyte genetic disorders on Bioko Island. This report represented the

Fig 3. Genotyping of G6PDmutations (G202A and A376G) by high resolution melting (HRM) assay.
The arrowhead indicates different genotypes.A andC are temp-shift melting cures; B andD are temp-shift
difference melting plots. A andB: G202A mutation; C andD: A376Gmutation.

doi:10.1371/journal.pone.0123991.g003

Table 2. The number and percentage of different deficient genotypes from our samples in both males and females.

Genotype Hemizygote (male) Heterozygote (female) Homozygote (female) Total Frequency (%)

G6PD A- 158 134 64 356 99.2

G6PD Betica 2 1 3 0.8

Total 160 135 64 359 100

doi:10.1371/journal.pone.0123991.t002
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first detailed population survey assessing the frequencies of classical erythrocyte genetic disor-
ders in this region.

Our survey revealed a high prevalence (8.64%, 359/4,144) of G6PD deficiency on Bioko Is-
land. As compared with other African regions, the prevalence of G6PD deficiency was lower
than that of Burkina Faso (31.0%) [24], Congo (22.5%) [25], Mali (15.7%) [26] and Nigeria
(21.6%, 23.9% and 24.2%) [27–29] but similar to that report for Ghana (8.5%) [30]. Because
G6PD deficiency is notoriously common in malaria endemic areas [1], WHO recommended
G6PD testing before giving PQ [31]. However, G6PD testing was rarely done in most regions
of Africa including Bioko Island [31]. Similar to many regions of sub-Saharan Africa, G6PD
genotype analysis confirmed that almost all deficiency in Bioko Island was caused by G6PD
A- variant [6]. The result was similar to those obtained in six African countries [32], and con-
firms the results shown by previous studies that the G6PD A- was the most common deficient
variant in sub-Saharan Africa [33]. This mutation also could be found in the region out of
Africa, such as Iraq and Latin America [34, 35], but the prevalence was very lower than in
sub-Saharan Africa. The WHO groups the G6PD A- variant into a kind of “mild deficiency”
(Class III). Previous studies reported that low dose of PQ (0.25mg/kg) is associated with a red
cell survival in the G6PD A- variant five times longer than with the previously recommended
0.75 mg/kg dose [8,36]. Therefore, before the G6PD test was broadly available on Bioko Is-
land, a single dose of 0.25 mg base/kg PQ was recommended to treatment regimens for P. fal-
ciparummalaria in the region.

Sickle cell disorders were frequent on the island, which was consistent with other findings
[13, 37]. Modica et al. reported a prevalance of sickle cell disorders on Bioko Island at 20%
in 1970 [37]. The crude birth rate was 35.819 (per 1,000 people) on Bioko Island (Data from
the Webpage of World Health Organization: Equatorial Guinea Factsheets of Health Statis-
tics 2010) (http://www.afro.who.int/index). The estimated number of pregnancies each year
in which the fetus would be at risk for HbS homozygote (HbSS) was 69 (95% confidence
interval 52–86). Alpha-talassemia 3.7-kb delection (hetero- and homozygote) was highly
prevalent among these participants (52.4%). Indeed, because the Bioko Island Malaria Con-
trol Project, started in 2004, had a marked impact on malaria infection and mortality, and
malaria was slowly decreasing on the island [38,39], the high prevalence of inherited hemo-
globinopathies on the island could become an important disease burden and cause of ane-
mia. However, adequate diagnostic tools in medical services were lacking on Bioko Island.
Therefore, the health-system diagnostic capacities needs to be strengthened in African set-
tings to optimize the investigation of genetic hemoglobin disorders and their consequences
such as anemia.

In a conclusion, a high frequency of alleles such as G6PD deficiency, HbS, HbC and α-
thalassemia associated with malaria resistance were present on Bioko Island. High frequen-
cy of G6PD deficiency indicated that the diagnosis and management of G6PD deficiency
was necessary on Bioko Island. Before G6PD test was available, a 0.25 mg base/kg PQ
single dose was recommended instead of 0.75 mg base/kg PQ dose to treatment regimens
for P. falciparummalaria in this region. An obligatory newborn screening program, prena-
tal screening and counseling for these genetic disorders, especially HbS, are needed on
Bioko Island.
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