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Abstract

The SARS-CoV-2 pandemic is a major global threat that sparked global research efforts.

Pre-clinical and biochemical SARS-CoV-2 studies firstly rely on cell culture experiments

where the importance of choosing an appropriate cell culture model is often underestimated.

We here present a bottom-up approach to identify suitable permissive cancer cell lines for

drug screening and virus research. Human cancer cell lines were screened for the SARS-

CoV-2 cellular entry factors ACE2 and TMPRSS2 based on RNA-seq data of the Cancer

Cell Line Encyclopedia (CCLE). However, experimentally testing permissiveness towards

SARS-CoV-2 infection, we found limited correlation between receptor expression and per-

missiveness. This underlines that permissiveness of cells towards viral infection is deter-

mined not only by the presence of entry receptors but is defined by the availability of cellular

resources, intrinsic immunity, and apoptosis. Aside from established cell culture infection

models CACO-2 and CALU-3, three highly permissive human cell lines, colon cancer cell

lines CL-14 and CL-40 and the breast cancer cell line CAL-51 and several low permissive

cell lines were identified. Cell lines were characterised in more detail offering a broader

choice of non-overexpression in vitro infection models to the scientific community. For some

cell lines a truncated ACE2 mRNA and missense variants in TMPRSS2 might hint at dis-

turbed host susceptibility towards viral entry.
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Introduction

It is of no debate that the overcoming of the pandemic SARS-CoV-2 pathogen spreading

across the continents urgently needs joint efforts in the scientific community. Within a few

months in the midst of spring 2020 the pandemic was accompanied with a high case fatality

rate of up to 20% for vulnerable risk groups [1] and high excess mortality in Europe monitored

by EuroMOMO (https://www.euromomo.eu/graphs-and-maps) [2]. High transmissibility of

SARS-CoV-2 with R0 of *2.5 exceeds that of SARS-CoV, the 2009 influenza A H1N1 virus

and even the 1918 influenza pandemic [3], probably due to its airborne transmission via drop-

lets and aerosol [4–6]. During summer time, the portion of asymptomatic cases in a small Ital-

ian village were quantified to 43% [7] and since pre-/asymptomatic virus carriers were

observed to be contagious, these are thought to drive the pandemic [8]. Re-infection also has

been reported to complicate the pandemic course [9].

While various vaccines are rolled out [10–12], options for antiviral treatment for severely

diseased patients are still sparse. Neutralising antibodies are promising drugs [13], while small

molecules like remdesivir [14] have not yet proven great benefits [15, 16]. Importantly, all

future antivirals, when becoming available and broadly used, face the challenge of SARS-CoV-

2 escape mutations [17, 18]. Thus, it is clear that drug screening and basic research in SARS-

CoV-2 is and will be of continuous importance.

Current investigations are mainly limited to the VERO-E6 African green monkey cell line,

human lung cancer-derived CALU-3 and human colon carcinoma cell line CACO-2. Using

non-human cells to study SARS-CoV-2 bears the inherent risk to draw conclusions from find-

ings that result from species-specific cell properties. The anti-SARS-CoV-2 properties of

hydroxychloroquine were found using VERO-E6, while later studies detected no effect in

human cells and patients [19, 20]. In addition, the virus mutates rapidly when replicating in

VERO-E6 [21–23]. Overexpression of host factors, such as TMPRSS2, can overcome individ-

ual species-specific artefacts but comes with commonly observed difficulties of stable trans-

gene expression, such as antibiotic selection, non-physiological protein level, or transgene

silencing during passaging.

Human cancer cell lines are easily available from public collections, characterised in great

detail, and offer a great range of tissue origins, expression patterns, growth rates, and func-

tional properties to choose from. They serve as valuable and valid model systems to study

different diseases [24, 25] and have been used specifically for SARS-CoV-2 viral entry [26,

27] or for antiviral studies against this virus [28]. Particularly the two surface proteins ACE2

and TMPRSS2 have been shown to contribute to viral binding and processing [26, 27] and

are mainly expressed in bronchial transient secretory cells [29]. Interestingly, high gene

expression of ACE2 is shown for other tissues such as myocardial cells, esophagus epithelial

cells, and enterocytes, which might be related to non-respiratory symptoms observed in

COVID-19 patients [30–33]. Many virus-host-interaction studies rely on ACE2/TMPRSS2-

transfected cell lines such as 293T and HELA cells or non-human material such as African

green monkey cells VERO-E6 [26, 34, 35]. A recent study validated HPAEpiC as a human

AT2 cell-derived pulmonary alveolar epithelial cell line to be susceptible to SARS-CoV-2

[36].

In this study, we have pre-screened and ranked human cancer cell lines of the Leibniz Insti-

tute German Collection of Microorganisms and Cell Cultures (DSMZ) for ACE2 and

TMPRSS2 expression within the rich resource Cancer Cell Line Encyclopedia (CCLE) publicly

available RNA-seq data [37]. Selected cell lines were then validated for mRNA and protein lev-

els of ACE2 and TMPRSS2 and tested in SARS-CoV-2 infection experiments, revealing a set of

cell lines displaying high and low permissiveness. With these cell lines we devise appropriate,
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non-overexpressing cell model systems to facilitate experimental SARS-CoV-2 work for the

understanding of viral entry, viral replication and to support drug development.

Results

Selection of cell model systems

Inspired by the publication of Hoffmann et al. pinpointing the host factors ACE2 as SARS-

CoV-2 receptor and TMPRSS2 as viral S protein priming serine protease [26], we defined

expression of these two factors as pre-selection criteria in our study. Since the Cancer Cell Line

Encyclopedia (CCLE) as a comprehensive database provides large-scale sequencing data

including mRNA-seq expression data for over 900 cell lines [37], we screened for gene expres-

sion of ACE2 and TMPRSS2 in this data set, which enabled us to identify potential susceptible

cell lines prone to SARS-CoV-2 virus entry. At first, we selected for 301 human cell lines read-

ily in stock at the DSMZ cell lines repository within this data set and visualised gene expression

of ACE2, which was shown to be the cellular receptor for the viral S protein [38], and

TMPRSS2 known to cleave SARS-CoV S protein [39] (Fig 1A). Gene expression for these two

genes differed between and within the various tumour entities. In order to pre-select cell lines

to be tested for SARS-CoV-2 permissiveness, the top 25 highest ACE2 gene expressing cell

lines were selected, originating from diverse tumour origins (Fig 1B). Importantly, our short-

list included cancer cell lines originating from tissues that are known for SARS-CoV-2 replica-

tion in vivo [40], e.g. the tongue squamous cell carcinoma cell lines CAL-27, CAL-33, and the

esophageal squamous cell carcinoma cell line KYSE-510. Based on this evidence, we addition-

ally selected the newly established oral squamous cell carcinoma cell lines UPCI-SCC-074 and

UPCI-SCC-131, which are not contained in the CCLE dataset. Futhermore, we included the

neuronal cells DBTRG-05MG and KELLY with high levels of neuropilin 1 (NRP1) mRNA

expression (Fig 1B), which has been discussed as receptor for the viral spike protein [41, 42].

NRP1 expression was most prominent in DBTRG-06MG, CAL-51, CAL-85–1, CALU-3, SCC-

25, CL-40, and KELLY (Fig 1B). Since the lung carcinoma cell line CALU-3, the colorectal ade-

nocarcinoma CACO-2, and the green monkey kidney cell line subclones VERO-E6 and

Fig 1. ACE2 and TMPRSS2 gene expression data for 301 DSMZ human cell lines in the CCLE RNA-seq data set. A:

Expression of ACE2 and TMPRSS2 for selected disease entities. RNA-seq data were normalised and calculated to

FPKM values. Gene expression for ACE2 and TMPRSS2 varies between and within the different tumour species. B:

Expression of ACE2, TMPRSS2 and NRP1, cell lines sorted to ACE2 expression levels. Top 25 ACE2 expressing cell

lines were selected for further studies, plus CALU-3 and two further neuronal cell lines with high NRP1 levels.

FPKM—fragments per kilobase million: normalised gene expression data.

https://doi.org/10.1371/journal.pone.0255622.g001
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VERO-B4 are shown to be permissive for SARS-CoV-2 [26, 27], these were used as positive

control cell lines. Altogether we selected 29 human cancer cell lines and four control cell lines.

In order to validate ACE2 and TMPRSS2 expression levels, we performed qRT-PCR on the

short-listed cell lines. All selected cell lines exhibited considerable ACE2 mRNA expression

according to the RNA-seq data and/or qRT-PCR except for DBTRG-05MG and KELLY,

whereas TMPRSS2 mRNA levels were particularly higher in CL-40, CL-34, CL-14, and SW-

948 (Figs 1B and 2A). Apart from qualitative verification for mRNA expression via RNA-seq

data and qRT-PCR (Fig 2A), protein expression of ACE2 and TMPRSS2 was confirmed via

western blot for specific cell lines (Fig 2B, S1 Fig).

For expanding our cell line search spectrum, we interrogated the LL-100 cell line data set,

comprising RNA-seq and whole-exome sequencing (WES) data of 100 human leukemia and

lymphoma cell lines [24]. However, none of these cell lines showed considerable expression of

ACE2 and TMPRSS2. This is reflected in the CCLE results, in which cell lines of the hemato-

poetic lineages exhibited lower gene expression of both genes compared to other cell lines of

different origin (see Fig 1A DLBC, LCLL and MM tumour entities).

The presence of the entry factors ACE2 and TMPRSS2 in cancer cell lines of various origins

is in accordance with their expression in corresponding primary tissue, where ACE2 and

TMPRSS2 were detected in cells from multiple tissues including respiratory tract, esophagus

and colon [31, 33, 43–45] and virus entry was evidenced in gastro-intestinal tissues [46],

organs of the respiratory tract and various other tissues [40].

Testing for SARS-CoV-2 infectivity and permissiveness

Receptor ACE2 and surface proteinase TMPRSS2 have been shown to play a key role for

SARS-CoV-2 cellular entry, however, whether their co-expression is sufficient to allow entry

and whether alternative receptors may exist, is still under debate [45]. In order to shed light on

infectivity and permissiveness of the appointed cell lines in context of their ACE2/TMPRSS2

expression, we subjected cells to experimental infection with wildtype SARS-CoV-2. Permis-

siveness to viral infection is defined as the ability of a given host cell to permit the entire viral

replication cycle and to eventually release mature virions. Thus, we sampled the supernatant of

the short-listed cell lines at four consecutive days following infection with a low amount of

inoculum to sensitively detect viral replication.

Within our short-listed panel, we identified large variation in the degree of permissiveness

and virus replication kinetics. Surprisingly, the majority of tested cell lines (15 of 29) showed

no detectable virus replication despite the presence of ACE2 and TMPRSS2 (Fig 3A, S2 Fig).

Fig 2. Verified presence of ACE2 and TMPRSS2 in carcinoma cell lines determined by qRT-PCR and western

blots. A: Quantification of ACE2 and TMPRSS2 transcripts in the selected candidate cell lines by qRT-PCR

(normalised to CAL-27 and CL-40). B: Western blot analysis was performed to assess the expression of proteins

associated with SARS-CoV-2 cell entry.

https://doi.org/10.1371/journal.pone.0255622.g002
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Fig 3. Susceptibility of tumour cell lines toward SARS-CoV-2 infection. Virus titers in the supernatant of infected cell lines at 1–4 days

postinfection (dpi) determined by plaque assay for the top 10 ACE2 expressing cell lines (A) and controls (B). The red dotted line indicates

the initial inoculum (2000 pfu/ml); the blue dashed line specifies the minimal limit of detection LOD 33.3 pfu/ml. Number of replicates

varied between 3–8. pfu: plaque-forming units; mean values with SEM. (C) Predominant productive virus production in highly permissive

cell lines seen in the correlation between qRT-PCR measured viral nucleoprotein N mRNA and releasing virions tested by viral plaques.

Eight replicates served for the means of the viral titers and one representative expression fold change of two biological replicates qRT-PCR

with three technical replicates. Note the logarithmic scaling for both x and y-axis.

https://doi.org/10.1371/journal.pone.0255622.g003
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Further 11 cell lines showed detectable SARS-CoV-2 infectious titres that did not exceed the

amount of the inoculum. Only three cell lines were categorized highly permissive, amplifying

the initial virus inoculum by factors of *2 to *500 between 1 and 4 dpi. These were the colon

carcinoma cell lines CL-14 and CL-40, as well as breast carcinoma cell line CAL-51. Infectious

titres of SARS-CoV-2 grown on CL-14 and on CAL-51 were concurrent with the widely used

CALU-3 (lung carcinoma), CACO-2 (colon carcinoma), VERO-E6 and VERO-B4 (normal

African green monkey kidney cells) (Fig 3B). Whereas CL-14 already has been described to be

permissive in a preprint [47], the breast carcinoma cell line CAL-51 with high levels of NRP1
beside ACE2 and TMPRSS2 expression and the colon carcinoma cell line CL-40 have not been

identified before. Despite comparable peak titres, virus replication kinetics differed largely

between cell lines, where CAL-51 and CACO-2 showed increase in titres throughout day three

postinfection while VERO-E6, VERO-B4, and CL-14 produced highest levels within 24h,

while the viral titer for CL-40 remained close to the level of the initial inoculum of SARS-CoV-

2 (Fig 3, Table 1).

Therapeutic neutralising antibodies bind to the viral Spike protein and prevent the interac-

tion with ACE2 [13]. However, it is unclear whether different levels of ACE2 expression on the

surface of cells would interfere with the ability to block virus entry. Thus, we used three differ-

ent permissive cell lines of our panel (CL-14, CAL-51, and VERO-E6) with varying ACE2 lev-

els and performed in vitro neutralisation assays using the therapeutic anti-Spike antibody

COR-101 currently used in clinical trials (see S3 Fig) [48]. While the comparability among

these cell lines is limited due to several variables (cell density, virus growth kinetic, cell

medium, etc.), we observed�93% inhibition of virus entry at 100 ng/ml in all three cell lines,

compared to the lowest nAb concentration. The inhibition curves suggest a reduced neutrali-

sation efficiency in the CAL-51 breast cancer cell line, which might be attributed to NRP-

1-mediated or NRP-1-assisted virus entry [41, 42]. NRP-1 is an alternative or assisting SARS-

CoV-2 entry factor that shows elevated levels in CAL-51 cells (see Fig 1A). However, the com-

plete virus neutralisation at sufficient antibody levels suggests either the absence of ACE2-in-

dependent entry or the additional inhibition of a Spike/NRP-1 interaction.

In contrast, low-permissive cell lines, such as the breast cancer HCC-1937, the colon adeno-

carcinoma CL-34, and esophageal squamous cell carcinoma KYSE-30 cell lines showed slow

replication kinetics, which was also true for the oral squamous cell carcinoma cell lines

UPCI-SCC-074 and UPCI-SCC-131 but not for the neuronal cells DBTRG-05MG and KELLY

Table 1. Permissive cell line characteristics.

cell line Species Sex Tissue Peak viral load, dpi Maximal peak, pfu/ml Doubling time

CL-14 human male colon 1 1.1 x 105 *1w

CL-40 human female colon 2 5.8 x 103 *3–4d

CAL-51 human female breast 3 1.6 x 106 *30h�

CALU-3 human male lung 3 1.6 x 106 *84h�

CACO-2 human male colon 4 3.0 x 105 80h

VERO-B4 monkey female kidney 2 1.4 x 105 *25h

VERO-E6 monkey female kidney 4 1.1 x 106 22h+

Peak viral load and maximal peak were determined during this study.

Species, sex, tissue and doubling time were taken from https://www.dsmz.de/collection/catalogue/human-and-animal-cell-lines/catalogue.

�own observation;
+ATCC.

https://doi.org/10.1371/journal.pone.0255622.t001
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despite high levels of NRP1 (Fig 3A, S2 Fig). Non-permissive cell lines showed no detectable

SARS-CoV-2 titres at any time after infection.

In order to test for abortive viral cycles particularly in the non-productive virus releasing

cell lines, we compared mRNA levels of the nucleoprotein in each three control, high-permis-

sive, low-permissive, and non-permissive cell lines to viral plaques after 24 hpi (Fig 3C). We

found a high correlation (R2 = 0.7) between viral expression and infective virus titers in the

tested cell lines, probably reduced by high variation in viral infection of the cell lines at detec-

tion limit. Hence, these data argue for the absence of abortive virus replication or defects in

releasing mature virions in the low-permissive cell lines.

Genomic analyses of ACE2 and TMPRSS2
Since we found limited concordance between ACE2/TMPRSS2 expression and virus permis-

siveness of the cell lines, we seeked for genomic differences in the receptors. Of note, gene

expression of different splice variants of the ACE2 mRNA became evident comparing the read

numbers of the exons as seen in the CCLE RNA-seq data for MOLM-16, CAL-33, BFTC-905,

and CAL-27 (Fig 4A, S4 Fig, S1 Table). The truncated ACE2 lacking exon 1–9 has been

reported recently [49, 50].

Furthermore, missense variants were detected in TMPRSS2 for HCC-1937 (homozygous),

CL-40 (heterozygous), CAL-33 (homozygous), and HDQ-P1 (heterozygous) (Fig 4B), namely

V197M (V160M) in exon 6 (rs12329760) and/or G8V in exon 1 (rs75603675). We assume that

these variations may have a considerable effect on the virus-host interaction.

Fig 4. ACE2 and TMPRSS2 transcript variants for the cell lines. A: Different exon usage of ACE2 for the top 10

ACE2 expressing cell lines plus CALU-3 (see S2 Fig for the top 25 cells). BFTC-905, CAL-33, CAL-27, M-07e, and

MOLM-16 show reduced exon expression from exon 1–9 (blue rectangles). Cell lines are ordered alphabetically. ACE2
is reversely oriented. B: Missense variants in the coding regions of TMPRSS2 (V197M = rs12329760, G6V =

rs75603675) for the selected cell lines. No mutations were found in the coding regions of ACE2. 0/1 denotes

heterozygous and 1/1 homozygous mutations.

https://doi.org/10.1371/journal.pone.0255622.g004
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Discussion

In this study, we have systematically identified and characterised SARS-CoV-2 permissive can-

cer cell lines that (except one) have not been published as such before. Of 29 selected human

cell lines three tested high-level positive permissive for SARS-CoV-2. These selected cell lines

are available from the German repository DSMZ. Cancer cell lines have been an integral tool

for basic research and drug screening for decades and still are the preferred choice for the vast

majority of virus research labs. For SARS-CoV-2 infection experiments, different replication

kinetics as well as different degrees of permissiveness can aid answering specific questions and

allow different experimental setups, e.g. in compound screening assays. We found permissive-

ness to SARS-CoV-2 in only 14 out of 29 cell lines pre-selected for the expression of the

known entry factor ACE2 (Figs 1B and 2). Three of them replicated the virus to high titres

(CL-14, CL-40, and CAL-51) and further 11 showed low levels with mainly slow virus kinetics

compared to commonly used VERO-E6, CALU-3, and CACO-2 cells (Fig 3, S2 Fig, Table 1).

In order to understand the non-permissiveness of the majority of top 25 ACE2 expressing

cell lines, we closely examined splice and single nucleotide variants. ACE2 splice variants at the

N-terminus, containing eight amino acids critical for binding to the receptor binding domain

(RBD) of the spike protein of SARS-CoV-2, are predicted to disturb SARS-CoV-2 attachment

[51]. One splice variant lacking exon1-exon9 was observed in e.g. MOLM-16, CAL-33, and

CAL-27 (Fig 4A, S4 Fig, S1 Table), cell lines that indeed were not shown to be non-permissive

despite their pronounced ACE2 gene expression (Fig 1B). This truncated ACE2 isoform has

been reported to be interferon inducible [49] and fails to bind to SARS-CoV-2 [50].

Whereas the lacking permissiveness for SARS-CoV-2 of the above mentioned cell lines is

likely to be explained by a truncated ACE2 transcript (Fig 4A), it is more challenging to eluci-

date, why the candidate cell line CL-40 tested less permissive than CL-14 and CAL-51 despite

high TMPRSS2 transcript levels. CL-40 as well as HCC-1937 hold a missense variation in exon

6 of TMRPSS2 (Fig 4B) causing an amino acid exchange at position 197 (V197M/V160M)

within the Scavenger receptor cysteine-rich (SRCR) domain responsible for protein-protein

interaction and ligand binding (ExPASy) and is described for various cancer types as well as

cell lines (COSMIC). Hence, we speculate that interaction with SARS-CoV-2 might be dis-

turbed by this variant at V197M, which is known for differential allelic frequencies in popula-

tions [52].

Importantly, the expression levels of ACE2, TMPRSS2 and NRP1 are not predictive of

SARS-CoV-2 permissiveness per se. While ACE2 seems to be an essential component, how-

ever, it is not sufficient on its own. Permissiveness includes the ability of the virus to enter the

cell, replicate, and release infectious progeny. A number of cellular processes can effectively

interfere with this replication cycle, including intrinsic immune response, type-I and type-III

interferon responses and apoptosis induction [53] and thus determine permissiveness. For

SARS-CoV-2, several essential host factors apart from surface receptors were recently discov-

ered [54].

Meanwhile, several organs and cell types have been reported to be infected by SARS-CoV-

2, even for those with no or low basal ACE2 expression [30, 45]. Hence, alternate receptors,

proteases and antagonists for SARS-CoV-2 infection could widen the options for viral entry

[45] as shown for cathepsin L [55] and CD147 [56]. Besides genetic and epigenetic variations,

variable activation of ACE2 could also be triggered by interferon pathways [57, 58].

Seeking for SARS-CoV-2 permissive cell lines by screening ACE2 RNA-seq-derived expres-

sion levels, the human native breast carcinoma cell line CAL-51 and the colon adenocarci-

noma cell lines CL-40 and CL-14 have been identified to produce high levels of infectious

SARS-CoV-2 virus particles. CAL-51 in particular could enrich SARS-CoV-2 studies trifold:
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low doubling time of this cell line, viral stock production comparable to commonly used

VERO-E6, and a further organ tissue as infection model. Its doubling time is lower than that

of the colon carcinoma cell lines CACO-2/CL-14 and the lung carcinoma cell line CALU-3

(Table 1), avoiding the mutation selection pressure to adapt to another species host as seen for

the African green monkey cell line VERO-E6 [21–23]. Different replication kinetics as well as

different degrees of permissiveness can aid answering specific scientific questions and allow

different experimental setups, e.g. in compound screening assays.

In summary, we find that the expression of ACE2 and TMPRSS2 are indicative but not suffi-

cient for SARS-CoV-2 productive infection in human cell lines, probably partly due to a trun-

cated ACE2 splice variant and TMPRSS2 variants. Out of 29 tested cancer cell lines, we have

identified three highly and 11 lowly permissive cell lines that vastly broaden the choice for

SARS-CoV-2 cell culture models. The breast carcinoma cell line CAL-51 in particular may

serve as a suitable cell line for SARS-CoV-2 studies for viral propagation because of its easy

management.

Methods

CCLE RNA-seq data set analysis

RNA-seq data were retrieved and pre-processed as described [59]. Briefly, alignment files were

downloaded from CGHub via genetorrent, sorted (samtools 0.1.19) and converted to fastq

files (bedtools v2.21.0). Reads were trimmed via fastq-mcf (ea-utils 1.1.2–686). STAR (2.5.3a)

served as read mapper to the human genome Gencode 26, HTSeq (0.11.3) was used as count

tool. Raw counts were normalised and transformed to FPKM (fragments per kilobase million)

via R/Bioconductor (3.6.9) loading DESeq2 (1.26.0) and visualised via ggplot2 (3.1.1). Differ-

ent exon usage was discovered by visualising the alignment files via IGV (2.8.0) [60]. For

detecting mutations, mapped reads were assigned to read groups (picard, 2.9.2 [www.

broadinstitute.github.io/picard]); reads were split, trimmed and reassigned (GenomeAnaly-

sisTK, 3.7–0, SplitNCigarReads [61]); mutations were called by the HaplotypeCaller (Geno-

meAnalysisTK, 3.7–0,) [61]; and mutation effects were predicted via the Ensembl VEP

(GRCh38, v90) [62]. Mutations were filtered to�10 depth.

Cultivation of human cell lines

The continuous cell lines are part of the cell culture collection at DSMZ (https://www.dsmz.

de/collection/catalogue/human-and-animal-cell-lines). Tissue origin, doubling-time, growth

properties, cytogenetics and more information on these cell lines can be retrieved from the

DSMZ website. Cell lines were grown at 37˚C in a humidified atmosphere of air containing

5% CO2. The basic growth media (Life Technologies, Darmstadt, Germany) were supple-

mented with 10–20% fetal bovine serum (Sigma Aldrich, Taufkirchen, Germany). No antibiot-

ics were added to the cultures. All cell lines were free of mycoplasma and other bacterial, yeast

and fungi contaminations as tested by PCR and microbiological growth assays [63]. The

authenticity of the cell lines was determined by DNA typing [64]. The cells were first cultured

in cell culture flasks to confluence, detached with trypsin/EDTA, washed with PBS and pelleted

for RNA and protein preparation. For virus infection experiments the cells were seeded in

96-well plates at different densities starting with 0.25—1.5 x 105 cells per well as highest cell

number depending on the cell line. Optimal cell densities were determined by observing the

growth progression with an IncuCyte instrument (Essen Bioscience, Hertfordshire, UK). Cells

were then seeded at semi-confluence or complete confluence and three further dilutions each

with half of the previous cell densities. The cells were grown for one day before the virus infec-

tion experiments were started.
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qRT-PCR analysis

Quantitative Real-time polymerase chain reaction (qRT-PCR) analysis for human mRNA

was performed to quantify specific transcripts in the cells. Total RNA was extracted from

cell line samples using TRIzol reagent (Fisher Scientific, Schwerte, Germany). cDNA was

generated from 1 μg RNA by random priming using the Biozym cDNA Synthesis Kit (Bio-

zym, Hessisch Oldendorf, Germany). qRT-PCR analysis was performed with the 7500 Real-

time System, using commercial buffer and primer sets for the amplification of ACE2
(Hs01085333_m1) and TMPRSS2 (Hs01122322_m1) transcripts (Thermo Fisher Scientific,

Darmstadt, Germany).

Viral RNA of infected cell cultures was extracted using spin filter membranes (innuPREP

Virus TS RNA Kit from Analytik Jena) according to the manufacturer’s recommendations.

Briefly, cells were lysed in the presence of carrier RNA and Proteinase K at 70˚C for 10 min.

Nucleic acids were then bound to the surface of the spin filter membranes, washed and subse-

quently eluted with RNase-free water. One to five μg RNA were then reverse transcribed to

cDNA applying random hexamers. The primers for the qRT-PCR for the amplification of the

SARS-CoV-2 N gene were N_Sarbeco_F (5´-CACATTGGCACCCGCAATC-3’) and N_Sar-

beco_R (5’-GAGGAACGAGAAGAGGCTTG-3’) [65].

We analysed the transcript of TATA box binding protein (TBP) for normalisation of

expression levels using SYBR Green for quantification. Quantitative analyses were performed

in triplicate, if not indicated differently, analysed and visualised with R/Bioconductor packages

ddCt and ggplot2.

Western blots

Antibodies against ACE2 (ab15348), TMPRSS2 (ab109131), and GAPDH (ab8245) were

obtained from Abcam (Cambridge, UK). Western blot samples were prepared as described

previously [66]. Proteins on nitrocellulose membranes were visualized with the biotin/strepta-

vidin-horseradish peroxidase system (GE Healthcare; Little Chalfont, UK) in combination

with the “Renaissance Western Blot Chemoluminescence Reagent” (Perkin Elmer; Waltham,

MA, USA). Documentation was performed using the digital system ChemoStar Imager

(INTAS, Göttingen, Germany).

Viral infection of cell lines

Infection with SARS-CoV-2 was performed with virus strain Zagreb (SARS-CoV2/ZG/297–

20, University Hospital for Infectious Diseases, Zagreb, Croatia). If not indicated otherwise,

cells were seeded onto 96-well cell culture plates and infected 24–48 hours later with 250 pfu/

well using a 10 μl inoculum and 100 μl total well volume.

Virus plaque and neutralisation assays

Quantification of SARS-CoV-2 infectious units was done via a virus plaque assay. Superna-

tants of infected cells were taken 1–4 dpi, serially diluted, and used to infect confluent

VERO-E6 cells on 96-well cell culture plates for one hour. Then, the inoculum was removed

and cells were overlaid with cell culture medium (MEM, 10% FCS, 2 mM glutamine) contain-

ing 1.5% methyl-cellulose. After 3 days, virus plaques were counted from phase contrast

microscopic images taken with a Sartorius IncuCyte S3 at 4x magnification.

For neutralisation assays antibody COR-101 and virus were mixed and incubated for 1h at

37˚C and applied to cells for 24 hpi. COR-101 for was a kind gift of Corat Therapeutics GmbH

(Braunschweig, Germany).
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Supporting information

S1 Fig. Original western blots. Original western blots to cropped western blot images in

Fig 2B.

(PDF)

S2 Fig. Virus titers. Virus titers in the supernatant of infected cell lines at 1-4 dpi determined

by plaque assay for the top 11-25 ACE2 expressing, two neuronal (DBTRG-05MG, KELLY),

and two oral squamous cell carcinoma (UPCI-SCC-074, UPCI-SCC-131) cell lines. The red

dotted line indicates the initial inoculum (2000 pfu/ml); the blue dashed line specifies the min-

imal limit of detection LOD 33.3 pfu/ml. Number of replicates varied between 3-8. pfu: pla-

que-forming units; mean values with SEM.

(TIFF)

S3 Fig. Neutralisation assays. Neutralising SARS-CoV-2 antibody was applied to the high

permissive cell lines CAL-51 and CL-14 and the control cell line VERO-E6. With increasing

antibody concentration viral production is decreasing in all three cell lines. The red dotted line

indicates the initial inoculum (2000 pfu/ml); the blue dashed line specifies the minimal limit of

detection LOD 33.3 pfu/ml. Note the logarithmic scaling for the x-axis.

(TIF)

S4 Fig. ACE2 splicing variant. Different exon usage of ACE2 for the top 25 ACE2 expressing

cell lines plus CALU-3. RNA-seq data were visualised via IGV and cell lines ordered alphabeti-

cally.

(TIFF)

S1 Table. Summary cell lines. Gene expression, splice and single nucleotide variants of ACE2
and TMPRSS2 in the cell lines used in this study. These were identified on the basis of CCLE

RNA-seq data (FPKM, see Material and methods). +truncated splice variant observed; 0/1 het-

erozygous, 1/1 homozygous mutation.

(ODS)
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does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020; 585(7826):588–590.

https://doi.org/10.1038/s41586-020-2575-3 PMID: 32698190

20. Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A Randomized

Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med. 2020;

383(6):517–525. https://doi.org/10.1056/NEJMoa2016638 PMID: 32492293

21. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL, van der Meer Y, Caly L, et al.

SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathol-

ogy. J Gen Virol. 2020; 101:925–940. https://doi.org/10.1099/jgv.0.001453 PMID: 32568027

22. Sasaki M, Uemura K, Sato A, Toba S, Sanaki T, Maenaka K, et al. SARS-CoV-2 variants with muta-

tions at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient

cells. PLoS Pathog. 2021; 17(1):e1009233. https://doi.org/10.1371/journal.ppat.1009233 PMID:

33476327

23. Chaudhry MZ, Eschke K, Grashoff M, Abassi L, Kim Y, Brunotte L, et al. SARS-CoV-2 Quasispecies

Mediate Rapid Virus Evolution and Adaptation. bioRxiv 2020.08.10.241414. Available from: https://

www.biorxiv.org/content/10.1101/2020.08.10.241414v1

24. Quentmeier H, Pommerenke C, Dirks WG, Eberth S, Koeppel M, MacLeod RAF, et al. The LL-100

panel: 100 cell lines for blood cancer studies. Sci Rep. 2019; 9(1):8218. https://doi.org/10.1038/s41598-

019-44491-x PMID: 31160637

25. MacLeod RA, Nagel S, Scherr M, Pommerenke C, Koeppel M, Meyer C, et al. Human leukemia and

lymphoma cell lines as models and resources. Curr Med Chem. 2008; 15(4):339–359. https://doi.org/

10.2174/092986708783497319 PMID: 18288989
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