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Abstract: Diagnostic methods currently used for bladder cancer are cystoscopy and urine cytology.
Cystoscopy is an invasive tool and has low sensitivity for carcinoma in situ. Urine cytology is
non-invasive, is a low-cost method, and has a high specificity but low sensitivity for low-grade
urothelial tumors. Despite the search for urinary biomarkers for the early and non-invasive detection
of bladder cancer, no biomarkers are used at the present in daily clinical practice. Extracellular
vesicles (EVs) have been recently studied as a promising source of biomarkers because of their role in
intercellular communication and tumor progression. In this review, we give an overview of Food
and Drug Administration (FDA)-approved urine tests to detect bladder cancer and why their use
is not widespread in clinical practice. We also include non-FDA approved urinary biomarkers in
this review. We describe the role of EVs in bladder cancer and their possible role as biomarkers for
the diagnosis and follow-up of bladder cancer patients. We review recently discovered EV-derived
biomarkers for the diagnosis of bladder cancer.
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1. Current Diagnostic Tools for Bladder Cancer

Bladder cancer is the fourth most common cancer in men and the eighth most common cancer
in women in the Western world [1]. Worldwide, it is the seventh most common cancer in men [2,3].
It occurs four times more in men than in women.

Current diagnostic tools to detect bladder cancer are cystoscopy and cytology. Cystoscopy is
an effective but invasive tool to detect bladder cancer tumors. Moreover, it has a low sensitivity for
carcinoma in situ (Tis) and tumors can still be missed because effectiveness is operator-dependent,
especially for the detection of recurrence [4]. Sensitivity and specificity range from 62 to 84% and 43 to
98%, respectively, depending on the type, stage, and grading of the tumor [5]. In addition, pain during
urination (50%), urinary frequency (37%), visible hematuria (19%), and infection (3%) are experienced
relatively frequently after flexible cystoscopy [6,7]. Urine cytology is a non-invasive diagnostic method
used in clinical practice where voided or instrumented urine is examined for exfoliated cancer cells.
The overall sensitivity ranges from 28 to 100%, with a median of 44%. It has a high sensitivity for
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high-grade tumors, but low sensitivity for low-grade tumors, ranging only from 4% to 31% [8–10].
Cytology is useful, particularly as an adjunct to cystoscopy, when a high-grade malignancy is present.
A positive cytology indicates a urothelial tumor anywhere in the urinary tract. However, negative
cytology does not exclude the presence of a tumor. Cytological interpretation is also user dependent
and can be hampered, for example, by low cellular yield, urinary tract infections, and stones [11].

2. Urine-Based Biomarkers for Bladder Cancer

The use of urine-based biomarkers to detect bladder cancer seems to be an attractive alternative.
Konety et al. (2006) defined the ideal bladder cancer biomarker as an objective, non-invasive, easily
interpreted marker, possessing high sensitivity and specificity [12]. Urinary biomarkers are in direct
contact with the bladder and can come in a variety of forms such as proteins, metabolites, DNA,
different types of RNA, and single nucleotide polymorphisms (SNPs). Presence or variations in
expression of those molecules could be linked to bladder cancer [13]. In the following section, Food
and Drug Administration (FDA)-approved urine tests for bladder cancer are described. Table 1 gives
an overview of these FDA-approved tests, the detected biomarkers and the assay type, as well as their
sensitivity and specificity.

2.1. FDA-Approved Urine Tests

Nuclear matrix protein 22 (NMP22) can be detected in urine as a biomarker of urothelial cell death.
This marker is frequently elevated in the urine of bladder cancer patients and can therefore be used
in the detection of this disease. The NMP22®BC test kit and NMP22®BladderChek®are quantitative
and qualitative enzyme immunoassay tests, respectively (originally Matritech Inc., Newton, MA,
USA). The quantitative NMP22 BC test kit has a sensitivity of 69% and its specificity is 77% compared
to a sensitivity of 58% and a specificity of 88% for the qualitative NMP22 test [14,15]. However,
false-positive results are common since NMP22 is released from apoptotic cells also occurring during
hematuria, inflammation, or infection [14,16–18].

The bladder tumor antigen (BTA) tests detect complement factor H-related protein, that is found
in bladder cancer cell lines, using an immunoassay. The quantitative BTA (BTA TRAK®) test is
performed in a specialized laboratory, whereas the qualitative BTA (BTA stat®) is a point-of-care test
with an immediate result (Polymedco Inc., Cortlandt Manor, New York, USA). They have a sensitivity
of 65% versus 64%, and a specificity of 74% versus 77%, respectively [12,14]. However, the specificity
of both of these tests is significantly decreased since false positives have been noted to occur due to the
presence of human complement factor H-related protein in blood. This is seen in various urological
malignancies presenting hematuria such as urolithiasis, inflammation, recent instrumentation, other
genitourinary malignancies, and intravesical Bacillus Calmette Guérin (BCG) therapy that causes local
inflammation [12,14,19,20].

ImmunoCyt™/uCyt+™ is an immunocytochemical test that uses fluorescently labelled antibodies
that are directed against three antigens: a glycosylated form of carcinoembryonic antigen
and two mucins, specifically found on malignant exfoliated urothelial cells [21]. Mucins are
high-molecular-weight glycoproteins, normally found on epithelial cell surfaces. In the case of bladder
cancer, these glycoproteins are less glycosylated, thereby exposing a portion of the protein backbone.
Sensitivity and specificity of this test are 78% and 78%, respectively [12,14,20]. The sensitivity of this
test is higher than cytology, but the specificity is lower [22]. False positives are seen during infection or
inflammation and there is a poor sensitivity in T2 bladder cancers. Moreover, interobserver variability
exists; trained cytopathologists are therefore necessary [23]. It is only approved for the surveillance of
bladder cancer patients [24].

UroVysion™ is a fluorescence in situ hybridization (FISH) probe set to detect bladder cancer
(Abbott Molecular Inc., Des Plaines, IL, USA). It makes use of genetic markers in contrast to the
previously mentioned tests, that were based on protein markers. It is FDA-approved for the diagnosis
and surveillance of bladder cancer [24]. FISH is a technique that uses fluorescently labelled DNA



Int. J. Mol. Sci. 2019, 20, 821 3 of 18

probes to assess cells for genetic alterations [25]. Voided urine is analyzed for exfoliated urothelial
cells that are hybridized on a slide. These are further examined for chromosomal aberrations observed
in bladder cancer: aneuploidy of chromosomes 3, 7, and 17, and a loss of locus 9p21 [24,26]. In a
meta-analysis, the sensitivity of the test was stated to be 72% and the specificity to be 83% in the
context of an equivocal cytology [27]. Another recent meta-analysis of studies of UroVysion™ has
calculated its sensitivity and specificity in detecting bladder cancer at 63% and 87%, respectively [14].
The lack of sensitivity for low-grade bladder cancers remains [28].

Table 1. Commercially available FDA-approved tests for bladder cancer. The biomarker and assay type
of the tests are included in the table. The mean and range (between brackets) of the overall sensitivity
and specificity are also shown. Adapted from [12,14,23,24,29].

Test Biomarker Assay Type Sensitivity (%) Specificity (%)

NMP22®BC test NMP-22 Sandwich
immunoassay 69 (26–100) 77 (41–92)

NMP22®BladderChek® NMP-22 Sandwich
immunoassay 58 (51–85) 88 (77–96)

BTA stat® Complement factor
H-related protein

Colorimetric
immunoassay 64 (29–83) 77 (56–86)

BTA TRAK® Complement factor
H-related protein

Sandwich
immunoassay 65 (53–91) 74 (28–83)

ImmunoCyt™ Carcinoembryonic
antigen and 2 mucins

Immunofluorescence
cytology 78 (52–100) 78 (63–79)

UroVysion™
Aneuploidy of

chromosomes 3, 7, 17
and loss of 9p21 locus

Multitarget FISH 63 (30–86) 87 (63–95)

As depicted above, the sensitivity of most of these tests increases with higher tumor stage or
grade [28]. In some tests, false positives are seen due to inflammation and hematuria, for example.
This hampers the diagnosis of recurrences [14,19,23]. The FDA-approved tests have not replaced the
current diagnostic standards of urine cytology and cystoscopy. In order to improve bladder cancer
diagnosis, extensive research is being carried out in the search for sensitive and specific biomarkers.
Different types of urine biomarkers can be used. In the following section, we give a non-exhaustive
overview of potential urine biomarkers for bladder cancer diagnosis (Table 2).

2.2. Non-FDA Approved Urine Biomarkers

2.2.1. Non-FDA Approved Urine Protein Biomarkers

Examples of possible urine protein biomarkers are two transcription factors: urothelial bladder
carcinoma 1 (BLCA-1) and urothelial bladder carcinoma 4 (BLCA-4). These are NMPs, isolated from
human bladder tumors. They show an elevated expression early in the development of bladder
cancer and can potentially be used as biomarkers at an early stage, even before the appearance of a
visible tumor [12]. BLCA-4 can be found in the early stage of bladder cancer, but is not expressed in
normal tissues [30,31]. The enzyme-linked immunosorbent assay (ELISA) detecting the presence
of BLCA-4 in urine has a sensitivity of 89 to 96% and a specificity of 90 to 100%, whereas the
assay for urinary BLCA-1 shows a sensitivity of 80% and a specificity of 87% [32]. BLCA-1 and
BLCA-4 are potential biomarkers for the diagnosis of bladder cancer in an early stage, but they still
need further validation [24]. Hyaluronidase degrades hyaluronic acid into small fragments that
promote angiogenesis. The expression of hyaluronidase correlates with invasive potential in bladder
cancer. However, detecting low-grade tumors using this biomarker is difficult [33,34]. Intracellular
proteins called cytokeratins are part of urothelial cells and are released in urine following cell death.
Overexpression of certain cytokeratins is associated with bladder cancer. Fragments of cytokeratin 8
and 18 are detected in the urinary bladder cancer antigen (UBC)-ELISA and UBC-rapid tests. The tests
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have a low sensitivity: 21 to 84 % [23,35]. For the UBC-rapid test, Ecke et al. (2017) reported a
sensitivity of 87% for detecting carcinoma in situ, 30% for low-grade non-muscle invasive bladder
cancer (NMIBC), 71% for high-grade NMIBC and 60% for high-grade muscle invasive bladder cancer
(MIBC) [36]. Another cytokeratin, cytokeratin 19 fragment called CYFRA 21-1, is detected with the
CYFRA 21-1 test. This test has a high rate of false positives [37–39]. Survivin, an anti-apoptotic protein,
is also elevated in bladder cancer [24,40–42]. It induces changes that are associated with tumor cell
invasiveness. Survivin levels are associated with bladder cancer presence and higher tumor grade.
However, further studies are necessary [43]. Chen et al. (2013) also found that epidermal growth factor
(ProEGF) was significantly decreased in bladder cancer patients, whereas serum amyloid A4 (SAA4)
was significantly increased, when comparing hernia and bladder cancer patients [44]. A combination
of these two showed a higher diagnostic value in differentiating bladder cancer patients from controls.
In addition, six apolipoproteins (APO), namely, APOA1, APOA2, APOB, APOC2, APOC3, and APOE,
were present at elevated levels in the patient population. It is questionable whether apolipoproteins
can be highly specific markers for bladder cancer, since these proteins can also be found in blood
and hematuria is a non-specific symptom for bladder cancer. However, most studies described
no effect of hematuria on these biomarker levels [45]. The upregulation of SAA4 was also seen in
kidney cancer [44]. Other examples of potential protein markers are C-C motif chemokine 18 (CCL18),
plasminogen activator inhibitor 1 (PAI-1), and cluster of differentiation molecule 44 (CD44) [46].

In addition to protein biomarkers, metabolites may also be of interest as urine cancer
biomarkers [47,48]. For example, increased levels of lipids may reflect a higher tumor cell proliferation
rate and increased lipid membrane remodeling. Wittmann et al. (2014) performed a metabolomic
profiling of urine for bladder cancer biomarker discovery and defined metabolite biomarkers as
palmitoyl sphingomyelin, lactate, phosphocholine, guanidinoacetate, branched chain amino acids
(BCAAs), (iso)leucine and valine, adenosine, and succinate for bladder cancer [49].

2.2.2. Non-FDA Approved Urine Genetic Biomarkers

In the search for genetic biomarkers to detect bladder cancer and monitor further treatment
results, multiple aspects can be assessed such as DNA, cell-free DNA (cfDNA), and circulating
RNAs: microRNA (miRNA), long non-coding RNA (lncRNA), messenger RNA (mRNA), and small
interfering RNA (siRNA). As examples of genetic biomarkers for bladder cancer, mutations in the
fibroblast growth factor receptor 3 (FGFR3) oncogene are frequent in low-grade non-muscle invasive
bladder cancer (NMIBC) tumors. Mutations in RAS (Rat sarcoma) oncogenes occur in 13% of all
bladder tumors [50–52]. The sensitivity for detecting bladder cancer by FGFR3 mutation analysis was
58% in a study undertaken by Zuiverloon et al. (2010) [52]. Mutations in p53 genes are seen more often
in high-grade NMIBC [53]. This results in dysregulation of the RAS-MAPK (mitogen-activated protein
kinase) pathway. Mutations in these genes are a strong indicator for bladder cancer. However, if no
tumor cells are present in a bladder cancer sample, this results in a false-negative result. Cxbladder®is
an example of a urine-based assay that is marketed but is non-FDA approved. It quantifies four mRNAs
which are overexpressed in bladder cancer: cycline-dependent kinase 1 (CDK1), homeobox A13
(HOXA13), midkine (MDK), and insulin-like growth factor-binding protein 5 (IGFBP5). Chemokine
receptor 2 (CXCR2) is used to reduce false-positive results due to inflammation [23]. It is reported
that Cxbladder®has a sensitivity of 74% and a specificity of 82% [53]. In addition to this marketed
test, other mRNAs are also described as potential urine biomarkers for bladder cancer. For example,
paraoxonase-2 (PON2) mRNA levels in urinary exfoliated cells from bladder cancer patients can be
used as a biomarker [54]. Moreover, microRNAs (miRNAs) have great potential as biomarkers [55–59].
De Long et al. (2015) concluded that increased numbers of miRNAs are detected in the urine of bladder
cancer patients, also depending on the stage and grade [59].

Epigenetic factors also play an important role in the development of bladder cancer and can be
also used as biomarkers. One of those factors are alterations in DNA methylation which may change
the gene expression and can ultimately lead to the development and progression of urinary bladder
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cancer. This can potentially be used to diagnose urinary bladder cancer [60]. Several studies have
revealed the role of methylated genes [60–64]. However, further validation of these markers is required
and is still hampered by the expensive, time-consuming and highly specialized molecular genetic
techniques needed to detect epigenetic alterations [13].

Table 2. Non-exhaustive overview of non-FDA approved urine biomarkers for bladder cancer.
Twist-related protein 1 (TWIST1), Protein odd-skipped-related 1 (OSR1), Single-minded homolog
2 (SIM2), Homeobox protein OTX1 (OTX1), Homeobox protein Meis1 (MEIS1), One cut domain family
member 2 (ONECUT2)

Biomarkers References

Urine protein biomarkers

BLCA-1 and BLCA-4 [30,31]
Hyaluronidase [33,34]

Cytokeratins 8, 18, 19 [35,37]
Survivin [40–42]

ProEGF, SAA4, APOA1, APOA2, APOB, APOC2, APOC3, APOE [44]
CCL18, PAI-1, CD44 [46]

Urine metabolite biomarkers

Lactate, β-hydroxypyruvate, palmitoyl sphingomyelin, phosphocholine,
arachidonate, BCAAs, adenosine, succinate [49]

Urine genetic biomarkers

FGFR3 [50–52,65]
p53 [65]

CDK1, HOXA13, MDK, IGFBP5 [53]
PON2 [54]

miR-26a, miR-93, miR-191, miR-940 [59]
Methylation of TWIST1, OSR1, SIM2, OTX1, MEIS1, ONECUT2 [63]

Here, we only give an overview of the different types of urine biomarkers that can be used for
bladder cancer diagnosis and some examples. Since many biomarker discovery studies are carried
out on bladder cancer diagnostics, many more potential biomarkers are described in the literature
and can be found in recent reviews such as [13,66,67]. Although some of these biomarkers are very
promising, they are currently not used in clinical practice for several reasons: no comparative research
with a sufficient sample size has been conducted to validate these biomarkers as an adjunct to or
a replacement of cystoscopy. They show overall a low sensitivity and therefore miss a significant
portion of bladder cancer patients and at the same time may result in false-positive outcomes [14].
Furthermore, the detection of low-grade tumors is still limited and the accuracy for initial diagnosis
is higher than in the case of a recurrence. Further research is needed to find better combinations
of biomarkers to develop more sensitive and specific tests, especially to diagnose early-stage and
low-grade tumors [14].

3. Extracellular Vesicles

3.1. Nomenclature

In recent years, there has been a growing interest in extracellular vesicles (EVs). EVs are membrane
vesicles that are released by most cells into the surrounding extracellular environment and can be
divided into different subgroups: apoptotic bodies, microvesicles, and exosomes. They all have
different size ranges and biogenesis. Apoptotic bodies (50–5000 nm) are released by cells undergoing
cell death by apoptosis. Microvesicles (50–1000 nm) are large membranous vesicles that are shed
directly from the plasma membrane. Exosomes (40–100 nm) are small nano-sized vesicles originating
in the late endosomal compartment by the inward budding of multivesicular bodies (MVBs). Exosomes
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are released from normal, diseased, and tumor cells into the extracellular environment by fusion of
intracellular MVBs with the plasma membrane [68–71]. They are present in all body fluids, such as
saliva [72], blood (plasma [73] and serum [74]), breast milk [75], and urine [76,77]. Their cargo consists
of nucleic acids (mRNA, miRNA, etc.), proteins, and lipids [78,79]. This is a molecular fingerprint
representing the cell of origin [80]. Previously, the terms exosome, microparticle, exosome particle,
etc., were used for the isolated vesicles. However, there is still a lack of widely accepted specific
markers to distinguish these populations. Moreover, there is a lack of standardization regarding
the isolation methods of EV subgroups and the procedures used typically purify mixtures of vesicle
types [81]. Therefore, the International Society of Extracellular Vesicles (ISEV) recently endorsed the
term “extracellular vesicle” as the generic term for the isolated and studied vesicles if authors cannot
establish specific markers [82]. We will use this term during the complete review, as well as in the
cases where authors claimed different terms.

3.2. Role of EVs

3.2.1. Physiological Role

EVs have a physiological role in intercellular communication, transferring proteins, lipids, and
nucleic acids and thereby influencing the function of the recipient cell. The packing of this information
in the vesicles provides protection of the molecules and simultaneous delivery of different messengers
to remote locations [81]. EVs also have a role in immune response regulation. They act on the
innate immune system as paracrine messengers and have been mainly described as pro-inflammatory
mediators [83–85]. The functional components associated with EVs include, for example, miRNAs,
fibronectin, and cytokines [86–88]. However, the role of EVs in innate immunity is complex [81].
EVs also play a role in the acquired immune response, in both the origin and progress, acting at
different levels and on different cells [81].

It was only in 2004 that EVs in urine were first depicted as such [76]. Analysis of the RNA content
from urinary EVs showed that the majority (87%) of RNA within EVs is ribosomal RNA (rRNA),
whereas only 5% of the total RNA aligned to protein coding genes and splice sites. Exploration of
these protein coding genes revealed that the entire genitourinary system might be mapped within
EVs. Miranda et al. (2014) concluded that the majority of the non-rRNA sequences contained in the
vesicles is potentially functional non-coding RNA, which play an emerging role in cell regulation [89].
Not only non-coding RNA, but also proteins affect the function of recipient cells. It has been
demonstrated that certain proteins which are excreted via urinary EVs (e.g., aquaporin-2 (AQP2) and
angiotensin-converting enzyme) play a role in the water balance [76,81,90]. It was also demonstrated by
Hiemstra et al. (2014) that urine EVs contain viral receptors and anti-microbial proteins and peptides
that could inhibit the growth of pathogenic and commensal Escherichia coli and induce bacterial
lysis. In this way, EVs are innate immune effectors that contribute to host defense within the urinary
tract [91].

3.2.2. Role of EVs in Tumor Progression

Recent studies have shown that the crosstalk between tumor cells and the surrounding tissue
plays a crucial role in cancer progression [92]. In addition to soluble molecules, EVs are involved in
this process by reprogramming the tumor microenvironment and generating an invasion-promoting
environment [68,69].

Tumor EVs contribute to cancer progression by influencing different immune cells. They can
have an effect on anti-tumor effector T cells and prevent T-cell activation. They can also modulate
other crucial components of the immune response such as myeloid and dendritic cells, impacting
on the functional properties of the innate immunity [93]. Szajnik et al. (2010) also demonstrated
that tumor-derived EVs induce regulatory T cells (Treg), promote Treg expansion, upregulate their
suppressor function, and enhance Treg resistance to apoptosis. This interaction between tumor EVs
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and Tregs induces peripheral tolerance by tumors and supports immune evasion of human cancers [94].
Tumor EVs also seem to suppress natural killer cells and induce EV-mediated immune evasion in
cancer and promote tumor growth [95,96].

Tumor EVs can also have a direct pro-tumor effect on the microenvironment. They contain
protein and genetic molecules that they can transfer to distant cells. Recent evidence has shown
that tetraspanins on tumor EVs are able to promote tumor growth by their capacity to induce
systemic angiogenesis in tumors and tumor-free tissue [93,97]. The composition of tumor EVs can
vary depending on the conditions of the secreting cells. For example, during hypoxia, tumor cells
contain an increased pro-angiogenic and metastatic potential; 50% of the secreted proteins involved
in this process were associated with tumor EVs [98]. Tumor EVs can also modulate stroma and the
extracellular matrix that supports tumor growth, vascularization, and metastasis [99].

3.3. EV Biomarkers for Bladder Cancer

Not only the role of EVs in tumor biology but also their origin and content and the fact that
they are easily accessible in body fluids render EVs a promising source of diagnostic biomarkers in
oncology as well as other diseases [100,101]. Urinary EVs provide a targeted view into the urogenital
tract to enhance the detection of urological diseases or tumors and their progression [101–103].
Researchers have also investigated the role of tumor-derived EVs in bladder cancer. Franzen et al.
(2015), for example, showed that urothelial cells undergo epithelial-to-mesenchymal transition after
exposure to EVs of MIBC. This process has been implicated in the initiation of metastasis for cancer
progression [104]. Liang et al. (2017) demonstrated that the concentration of CD63-positive EVs
in urine from patients with bladder cancer was significantly higher compared to that of healthy
individuals [105]. This is also seen in other types of cancer. In addition, these reports show that urinary
EVs can be a source of biomarkers for bladder cancer diagnostics. The search for EV biomarkers
for bladder cancer is extensive and many potential biomarkers are described in the literature. Here,
we discuss recently discovered potential urinary EV biomarkers for bladder cancer. Table 3 gives an
overview of the described urinary EV-related protein and genetic biomarkers.

3.3.1. Urinary EV-Related Protein Biomarkers

In addition to the detection of the concentration of EVs found in the urine, the cargo of
EVs originating from bladder cancer cells can contain a specific profile [13]. Some proteomic
analyses of urinary EVs from bladder cancer patients and healthy controls have already been
performed [106–112]. Smalley et al. (2008) found that eight proteins were elevated in their
isolated particles from bladder cancer patients [108]. They include five proteins associated with
the epidermal growth factor receptor (EGFR) pathway, known to be deregulated in bladder cancer:
Eps15 Homology (EH)-domain-containing protein 4, epidermal growth factor receptor kinase substrate
8-like protein 1 (EPS8L1), epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8L2),
Guanosine-5′-triphosphate hydrolyzing enzyme NRas (GTPase NRas), and mucin 4. The last two
are also seen as a biomarker for various other forms of cancer [113]. Moreover, retinoic acid-induced
protein 3, resistin, and alpha subunit of Gs (G protein alpha s) GTP binding protein were upregulated.
Galectin-3-binding protein was underexpressed, although normally elevated in the plasma of patients
with a variety of carcinomas [108]. It is noteworthy that this study was carried out using only five
healthy individuals and four bladder cancer patients, with no detectable hematuria. They used
differential ultracentrifugation (UC) to isolate the EVs using a centrifugation step at 200,000 × g [114].
Welton et al. (2010) examined EVs isolated from the HT1376 bladder cancer cell line. They used
a sucrose gradient for the isolation of the vesicles and identified 353 proteins using a liquid
chromatography (LC) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)
workflow, based on a minimum of two identified peptides. They also used EVs isolated from the urine
of three patients with transitional carcinoma of the bladder and four healthy controls. This resulted in
the identification of elevated levels of CD36, CD44, 5T4, basigin, and CD73 in bladder cancer [115].
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Beckham et al. (2014) found that EVs isolated from high-grade bladder cancer cell lines as well as the
urine of patients with high-grade bladder cancer promoted angiogenesis and migration of bladder
cancer cells and endothelial cells and thus tumor progression. This might be mediated through the
delivery of EGF-like repeat and discoindin I-like domain-containing protein 3 (EDIL3), an angiogenic
and cancer-associated integrin ligand that activates EGFR signaling. EVs purified from the urine of
patients with high-grade bladder cancer contained significantly higher EDIL3 levels than urinary EVs
from healthy individuals [109]. In addition, tumor-associated calcium-signal transducer 2 (TACSTD2)
was seen as a candidate biomarker for bladder cancer [110]. It is a cell-surface glycoprotein with
low to no expression in normal tissues and is overexpressed in a variety of carcinomas [116–123].
α-1-anti-trypsin and histone cluster 1 H2B family member K (H2B1K) were also identified as potential
diagnostic and prognostic markers for bladder cancer [107]. Patients with detectable H2B1K had
a higher risk of recurrence and progression. The expression of the markers also correlated with
grading. Furthermore, periostin might be a potential biomarker [112]. Higher levels of periostin
were found in urinary EVs from bladder cancer patients than those of controls. Periostin-rich EVs
increase aggressiveness and promote progression, so it is expected that they are associated with a poor
clinical outcome. The authors also found additional proteins, namely, Beta-hexosaminidase subunit
beta (HEXB), S100A4, Staphylococcal nuclease domain-containing protein 1 (SND1), Transaldolase 1
(TALDO1), and EH domain-containing protein 4 (EHD4), that might be interesting [111].

3.3.2. Urinary EV-Related Genetic Biomarkers

Another promising category of biomarkers are the different types of RNAs within EVs (e.g.,
lncRNAs, miRNAs, and mRNAs). A pilot study was carried out by Perez et al. (2014) and they
found that four genes were differentially expressed in urinary vesicles. LAG1 longevity assurance
homolog 2 (LASS2) and Polypeptide N-acetylgalactosaminyltransferase 1 (GALNT1) were present
in bladder cancer patients, whereas Rho guanine nucleotide exchange factor 39 (ARHGEF39) and
Forkhead box protein O3 (FOXO3) were only found in controls. However, the small number of
samples and the high variability in the detected transcripts for each sample reduce the impact of this
study [124]. Berrondo et al. (2016) showed that certain types of lncRNA are enriched in high-grade
MIBC compared to those in healthy controls [125]. One of them is HOX transcript antisense RNA
(HOTAIR), that facilitates tumor initiation and progression. Elevated levels of HOTAIR are also
correlated with recurrence and poor progression [126]. Other types of known tumor-associated
lncRNA that are elevated in urinary EVs include the HOXA cluster antisense RNA 2 (HOX-AS-2)
and the metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) [125]. Armstrong et al.
(2015) identified a number of miRNAs upregulated in urinary EVs from bladder cancer patients,
for example, miR-4454, miR-720, miR-21, miR-205-5p, and miR-200c-3p [127]. Some miRNAs were
upregulated in urinary EVs but not in blood plasma. Another recent study identified 26 miRNAs that
were significantly dysregulated in patients with high-grade disease compared to healthy controls [128].
Of the 26 miRNAs, 23 were downregulated and 3 were upregulated. miR-375 was identified as a
biomarker for high-grade bladder cancer, while miR-146a could identify low-grade disease. In the
study undertaken by Baumgart et al. (2017), 15 miRNAs were identified that were significantly altered
in EVs of MIBC compared to NMIBC [129]. Matsuzaki et al. (2017) also identified interesting miRNAs:
5 miRNAs were overexpressed in urinary EVs of urothelial carcinoma patients, but miR-21-5p was the
most potent biomarker [130]. It was also overexpressed in urinary EVs from bladder cancer patients
with negative urine cytology.
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Table 3. Non-exhaustive overview of urinary EV biomarkers for bladder cancer. The EV isolation
method used in the study is also shown.

Biomarkers EV Isolation Method References

Urine EV protein biomarkers

EH-domain-containing protein 4, EPS8L1, EPS8L2,
GTPase NRas, Mucin 4, retinoic acid-induced protein
3, resistin, alpha subunit of GsGTP binding protein

Differential UC [108]

CD36, CD44, 5T4, basigin, CD73 Differential UC + sucrose cushion [115]

EDIL3 Differential UC + filtration +
sucrose cushion [109]

TACSTD2 Differential UC [110]
α-1-anti-trypsin, H2B1K Differential UC [107]

Periostin Differential UC [112]
HEXB, S100A4, SND1, TALDO1, and EHD4 Differential UC [111]

Urine EV genetic biomarkers

LASS2, GALNT1, ARHGEF39, FOXO3 Filtration + Differential UC [124]
HOTAIR, HOX-AS-2, MALAT-1 Differential UC [125]

miR-4454, miR-720, miR-21, miR-205-5p,
miR-200c-3p

Differential UC + Urine Exosome
RNA Isolation Kit (Norgen) [127]

miR200c, miR93, miR940, miRlet7b, miR191, miR21,
miR15a Differential UC [60]

miR-375 (high-grade), miR-146a (low-grade) Filtration + Differential UC [128]

miR-200-3p
Differential centrifugation + Total

Exosome Isolation Kit (Life
Technologies)

[129]

miR-21-5p Differential UC [130]

4. Discussion and Conclusions

Early and recurrent bladder cancer detection must still be improved due to the limitations of the
current diagnostic methods of cystoscopy and cytology. Many different non-invasive urine tests are
being investigated to improve the diagnostic standards currently used. This review gives an overview
of the current FDA-approved tests: NMP-22 BC test, NMP-22 BladderChek®, BTA stat®, BTA TRAK®,
ImmunoCyt™/uCyt+™, and UroVysion®. However, they lack sensitivity or specificity, especially for
low-grade and early-stage bladder cancer tumors and recurrent diagnoses. Many false positives are
detected. A possible explanation is the low abundance of certain biomarkers in an early stage of the
disease and the influence of therapy on the detection of a recurrent diagnosis. This is why these tests
have not replaced the current diagnostic standards of cystoscopy and cytology.

In the literature, many more potential urinary biomarkers for bladder cancer diagnostics are
described that have not been implemented in an FDA-approved test. In this review, we give a
non-exhaustive overview of these urinary biomarkers (Table 2). More examples can be found in other
recent reviews [13,66,67]. However, some have the same limitations as the FDA-approved tests (i.e.,
lack sensitivity and specificity for low-grade and early-stage tumors) and further validation of these
potential biomarkers is still needed.

EVs are promising as a source of biomarkers for the diagnosis and follow-up of diseases including
cancer. They originate directly from tumor cells and contain an interesting cargo that is involved in
tumor development. Their potential as a source of biomarkers for bladder cancer have been recently
explored in several studies, which are described above. EV protein markers [44,106–112,115] as well as
EV genetic markers [60,124–130] could be of great interest.

Despite the discoveries of these potential EV biomarkers, more research is needed to prove their
clinical utility. There are some limitations concerning these studies. Small and heterogenic patient
populations are often used [108,128]. Variations in EV cargo exist; large samples sizes are therefore
needed. Furthermore, the isolation of EVs from liquid biopsies is still not optimal and standardized due
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to their small and heterogeneous size range, which complicates the comparison of the results because
diverse methods are used [68,131–133]. Some isolation methods used in these published studies result
in the isolation of non-pure EV fractions. For example, centrifugation steps at 100,000 to 200,000 × g
cause the disruption of EVs and contaminants like protein aggregates are co-pelleted [108,114,134].
This could lead to the false-positive identification of EV biomarkers. Some of the methods used have a
low EV-TRACK score (evtrack.org) [23,135], indicating that extra characterization steps are needed to
evaluate the quality of the EV samples.

The limitations of these studies show that there is a clear interest for easy, high-throughput,
reproducible, and automatable EV recovery and analysis methods. Microfluidic chip-based
technologies may revolutionize the field since lower sample volumes will be necessary and this
results in more high-throughput for a clinical setting. Efforts are already been made for different types
of body fluids [105,136–138]. Not only should EV isolation procedures be standardized, but standard
procedures concerning the handling of urine should also exist. Pre-analytical variables such as urine
collection, use of protease inhibitors, and storage and shipping conditions influence the composition
of urine. In this way, it influences the biomarker discovery. Although the potential impact of
these pre-analytical factors on EV studies is increasingly recognized, few efforts have been made
to investigate and set up standards for urine [100,139]. Furthermore, for the identification of potential
clinical valuable biomarkers, it is essential to use unbiased and unsupervised high-throughput
discovery omics-based approaches. For example, for protein biomarker discovery using mass
spectrometry approaches, it is crucial to have good quality tandem mass spectrometry data, good
search criteria, and bioinformatic analysis. This will influence the confidence of the potential biomarker
identification list. Biomarker panels should also be validated by negative controls, such as prostate
and kidney cancer and hematuria, to determine their specificity for bladder cancer. As is mentioned in
almost all published studies, all potential biomarkers still need further validation.

Studies carried out over the past years are encouraging for showing the value of EVs as a source of
biomarkers. Standardized isolation protocols for EVs, correct sample sizes in biomarker discovery and
validation studies, and state-of-the-art next-generation gene sequencing and mass spectrometry-based
techniques must be used to produce excellent EV biomarker studies. These optimizations will
eventually lead to the real potential uses of EVs in clinical settings. Characterizing the cargo of
EVs from patients and controls may not only lead to the development of potential biomarkers, but also
generate insights into tumor biology in general.
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Abbreviations

APO Apolipoprotein
AQP2 Aquaporin-2
BCAAs Branched chain amino acids
BCG Bacillus Calmette Guérin
BLCA Bladder carcinoma
BTA Bladder tumor antigen
CCL18 C-C motif chemokine 18
CDK1 Cycline-dependent kinase 1
CXCR2 Chemokine receptor 2
CYFRA Cytokeratin 19 fragment
DNA Deoxyribonucleic acid
EDIL3 EGF-like repeat and discoindin I-like domain-containing protein 3
EGFR Epidermal growth factor receptor
ELISA Enzyme-linked immunosorbent assay
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EPS8L Epidermal growth factor receptor kinase substrate 8-like protein
EVs Extracellular vesicles
FDA Food and Drug Administration
FGFR3 Fibroblast growth factor receptor
FISH Fluorescent in situ hybridization
H2B1K Histone cluster 1 H2B family member K
HOTAIR HOX transcript antisense RNA
HOXA13 Homeobox A13
HOX-AS-2 HOXA cluster antisense RNA 2
IGFBP5 Insulin-like growth factor-binding protein 5
ISEV International Society for Extracellular Vesicles
LC Liquid chromatography
MALAT-1 Metastasis-associated lung adenocarcinoma transcript 1
MALDI Matrix-assisted laser desorption/ionization
MDK Midkine
MS Mass spectrometry
MVBs Multivesicular bodies
(N)MIBC (Non-)muscle invasive bladder cancer
NMPs Nuclear matrix proteins
PAI-1 Plasminogen activator inhibitor 1
PON2 Paraoxonase-2
ProEGF Epidermal growth factor
RNA Ribonucleic acid
SAA4 Serum amyloid A4
SNPs Single nucleotide polymorphisms
TACSTD2 Tumor-associated calcium-signal transducer 2
Tregs Regulatory T cells
UBC Urinary bladder cancer antigen
UC Ultracentrifugation
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