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1  | INTRODUC TION

Mammalian oocytes undergo a protracted and discontinuous de‐
velopmental programme that begins during fetal life and is not 
completed until postnatal adulthood (Gosden & Lee, 2010). The 
majority of this time is spent in a prophase I‐arrested state with 
an intact nucleus, termed the germinal vesicle (GV) in oocytes 
(Adhikari & Liu, 2014; Solc, Schultz, & Motlik, 2010). Following an 

extended growth phase, GV oocytes acquire the competence to 
resume meiosis I marked by GV breakdown (GVBD). After chro‐
mosome separation, oocytes extrude first polar body (Pb1) and 
are arrested at metaphase II (MII) stage awaiting for fertilization 
(Moor, Dai, Lee, & Fulka, 1998). Oocyte maturation is affected by a 
vast number of intra‐ and extra‐ovarian factors. In most mammals, 
oocyte quality declines with increase in maternal age (Yamamoto 
et al., 2010). Despite various molecules have been suggested to 
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Abstract
Advanced maternal age has been reported to impair oocyte quality; however, the 
underlying mechanisms remain to be explored. In the present study, we identified the 
lowered NAD+ content and decreased expression of NMNAT2 protein in oocytes 
from old mice. Specific depletion of NMNAT2 in mouse oocytes disturbs the meiotic 
apparatus assembly and metabolic activity. Of note, nicotinic acid supplementation 
during in vitro culture or forced expression of NMNAT2 in aged oocytes was capable 
of reducing the reactive oxygen species (ROS) production and incidence of spindle/
chromosome defects. Moreover, we revealed that activation or overexpression of 
SIRT1 not only partly prevents the deficient phenotypes of aged oocytes but also 
ameliorates the meiotic anomalies and oxidative stress in NMNAT2‐depleted oo‐
cytes. To sum up, our data indicate a role for NMNAT2 in controlling redox homeo‐
stasis during oocyte maturation and uncover that NMNAT2‐ NAD+‐SIRT1 is an 
important pathway mediating the effects of maternal age on oocyte developmental 
competence.
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contribute to this process, the underlying mechanisms remain to 
be discovered.

Nicotinamide adenine dinucleotide (NAD+) is a cofactor of 
key enzymes in glycolysis, tricarboxylic acid cycle, and oxidative 
phosphorylation, participating in multiple redox reactions in cells 
(Camacho‐Pereira	et	 al.,	 2016).	Recently,	 the	 importance	of	NAD+ 
has expanded from a key element in intermediate metabolism to a 
critical regulator of multiple cell signaling pathways and now plays 
a major role in aging and age‐related diseases (Bonkowski & Sinclair, 
2016).	Sirtuins	(SIRT1–7)	are	a	family	of	NAD+‐dependent deacetyl‐
ases with remarkable abilities to prevent diseases and even reverse 
aspects	of	aging	(Bonkowski	&	Sinclair,	2016).	For	example,	Sirt1	de‐
ficient mice showed a reduced lifespan, small size, and an increased 
frequency of abnormal sperm (Coussens, Maresh, Yanagimachi, 
Maeda, & Allsopp, 2008). In addition, sirtuins have been shown 
to be able to impact oocyte quality by regulating the redox state 
(Di Emidio et al., 2014; Kawamura et al., 2010; Liu et al., 2012; Ma, 
Zhang, Zhang, Han, & Rui, 2015). Loss of NAD+ has direct and indi‐
rect consequences on multiple cellular endpoints. In particular, de‐
pletion of intracellular NAD+ alters the NAD+/SIRT1 axis and leads 

to defects in mitochondrial homeostasis, reactive oxygen species 
(ROS) production, DNA repair, as well as cell survival (Croteau, Fang, 
Nilsen, & Bohr, 2017). However, to date, it remains to be determined 
whether NAD+ generation involves in oocyte aging process. In the 
present study, we discovered that NAD+ insufficiency, due to the re‐
duced NMNAT2 expression, induces the metabolic dysfunction and 
meiotic defects in aged mouse oocytes.

2  | RESULTS

2.1 | Reduced NAD+ content and NMNAT2 
expression in oocytes from old mice

In mammals, depending on the bioavailability of the precur‐
sors, there are three pathways for the synthesis of NAD+ in cells 
(Figure 1a): (a) from tryptophan (Trp) by the de novo biosynthesis 
pathway;	(b)	from	nicotinic	acid	(NA)	in	the	Preiss–Handler	pathway;	
and (c) from nicotinamide riboside (NR), nicotinamide mononucleo‐
tide (NMN), and nicotinamide (NAM) in the salvage pathway (Fang 
et al., 2017). Mice display an age‐dependent decrease of NAD+ in 

F I G U R E  1   Reduced NAD+ content and NMNAT2 expression in oocytes from old mice. (a) NAD + is synthesized via three major pathways 
in	mammals:	(i)	the	de	novo	biosynthesis,	(ii)	the	Preiss–Handler	pathway,	and	(iii)	the	salvage	pathway.	(b)	NAD+ content of oocytes from 
young and old mice. (c) mRNA expression of the critical enzymes responsible for NAD+ generation in young and old oocytes (n = 50 for 
each group). (d) Immunoblotting analysis shows the reduced NMNAT2 expression in oocytes from aged females and young controls. 
Band	intensity	was	calculated	using	ImageJ	software,	the	ratio	of	NMNAT2/Tubulin	expression	was	normalized,	and	values	are	indicated.	
(e) Relative quantification of NMNAT mRNA levels in oocytes. GAPDH expression served as an internal control. Data are expressed as 
mean ± SD from three independent experiments. *p < 0.05 versus controls
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multiple organs, including brain, muscle, pancreas, adipose tissue, 
and	skin	(Mouchiroud	et	al.,	2013).

To determine whether the NAD+ production is involved in 
oocyte aging, we first evaluated the NAD+ content in oocytes 
isolated from young and old mice, respectively. For simplicity, 
herein these oocytes are termed “young oocytes” and “old oo‐
cytes,” respectively. As shown in Figure 1b, a significant decrease 
in the NAD+ level was detected in old oocytes relative to controls. 
Next, we checked the mRNA levels of those enzymes responsible 
for NAD+ generation by performing quantitative real‐time PCR 
(Figure 1c). There was no significant difference in the expression 
of	Nampt,	Naprt,	Nrk1/2,	and	Nmnat1/3	between	young	and	old	
oocytes. By contrast, the mRNA levels of Nmnat2 were dramati‐
cally decreased in old oocytes compared to controls. In line with 
this, we observed the lowered expression of NMNAT2 protein in 
oocytes from old mice (Figure 1d). It is worth noting that expres‐
sion of three NMNAT members was detected (Figure 1e), with 
NMNAT2 mRNA being most abundant and NMNAT1 mRNA being 
least	abundant,	whereas	NMNAT3	was	almost	undetectable,	 in‐
dicating that they may play differential and specific roles in oo‐
cytes. These findings suggest that the reduced NAD+ content and 
NMNAT2 expression may be associated with the impaired quality 
of aged oocytes.

2.2 | Loss of NMNAT2 disturbs maturational 
progression and metabolic function in mouse oocytes

To dissect the relationship between NAD+/NMNAT2 depletion and 
oocyte phenotypes, we investigate the roles of NMNAT2 during 
oocyte maturation via the microinjection of siRNAs specifically tar‐
geted NMNAT2. As shown in Figure 2a, an efficient knockdown of 
NMNAT2 protein (NMNAT2‐KD) in oocytes was confirmed by im‐
munoblotting. Our data showed that NMNAT2‐KD did not affect 
meiotic resumption, evidenced by the similar rates of GVBD after 
three hours in vitro culture (Figure 2b). Nonetheless, the rate of first 
polar body (Pb1) emission was significantly decreased in NMNAT2‐
KD oocytes compared to controls (Figure 2c,d, arrow). In particular, 
the oocytes with symmetrical division were frequently observed 
when NMNAT2 was knocked down (Figure 2d, arrowhead). The re‐
sults indicate that oocytes loss of NMNAT2 failed to complete matu‐
rational progression.

NMNAT family members can catalyze the synthesis of NAD+ 
both in the de novo pathway and recycling pathway. Therefore, 
we decided to assess whether NMNAT2 depletion also affects 
NAD+ generation in oocytes. As expected, NAD+ content was re‐
duced	by	60%	in	NMNAT2‐KD	oocytes	compared	to	their	controls	
(Figure 2e). NAD+ is an essential pyridine nucleotide that serves 

F I G U R E  2  Effects	of	NMNAT2	knockdown	on	oocyte	maturation.	(a)	The	efficiency	of	NMNAT2	knockdown	was	verified	by	Western	
blot. (b,c) Quantitative analysis of GVBD and Pb1 extrusion in control (n = 114) and NMNAT2‐KD (n = 120) oocytes. (d) Phase‐contrast 
images of NMNAT2‐KD and control oocytes. Arrow points to oocytes that fail to extrude a polar body and arrowhead denotes the 
oocytes with symmetrical division. (e) Quantitative analysis of NAD+ content in control (n = 150) and NMNAT2‐KD (n = 150) oocytes. (f) 
Representative images of CM‐H2DCFDA fluorescence (green) in control and NMNAT2‐KD oocytes. (g) Quantification of ROS signals in 
oocytes. Values are presented as individual dot plot, n = 15 for each group, biologically independent oocytes from at least two different 
cultures. (h) Histogram showing the ATP levels in control, NMNAT2‐KD oocytes (n	=	60	for	each	group).	Data	are	expressed	as	mean	±	SD 
from three independent experiments. *p < 0.05 versus controls. Scale bars: 50 µm
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as a cofactor and substrate for a number of critical cellular pro‐
cesses involved in oxidative phosphorylation and ATP production 
(Braidy et al., 2018). In line with this notion, we found that the 
reactive oxygen species (ROS) signals were markedly elevated in 
NMNAT2‐KD oocytes (Figure 2f,g). Accordingly, NMNAT2 deple‐
tion	resulted	in	a	~20%	reduction	in	bulk	ATP	levels	compared	to	
control oocytes (Figure 2h), indicating the impairment of meta‐
bolic function.

2.3 | NMNAT2 knockdown induces meiotic defects 
during oocyte meiosis

Having shown that NMNAT2 depletion disturbs meiotic progress in 
mouse oocytes, we asked whether NMNAT2 is required for the as‐
sembly of meiotic apparatus. To address this question, mouse oo‐
cytes from control and NMNAT2‐KD groups were stained for spindle 
and	chromosomes	organization.	As	shown	in	Figure	3a,b,	we	found	
a high frequency of spindle/chromosome defects in NMNAT2‐KD 
oocytes, showing the malformed spindles (arrows) with misaligned 
chromosomes (arrowheads). In contrast, most control metaphase 
oocytes displayed a typical barrel‐shape spindle and well‐aligned 
chromosomes on the equatorial plate.

Furthermore, to check whether these meiotic defects in NMNAT2‐
KD oocytes would act to generate aneuploid eggs, we analyzed the 
karyotype of MII oocytes by chromosome spreading combined with 

kinetochore	labeling.	As	shown	in	Figure	3c,d,	NMNAT2	knockdown	
led	to	about	3‐fold	increase	in	incidence	of	aneuploid	eggs	compared	
to control cells. In addition, the premature separation of sister chro‐
matids	in	NMNAT2‐KD	oocytes	was	also	readily	detected	(Figure	3c,	
arrowheads). These results indicate that NMNAT2 knockdown in‐
duces meiotic defects in oocytes, consequently causing the genera‐
tion of aneuploid eggs.

2.4 | Nicotinic acid administration improves the 
oocyte quality of old mice

Enhancing NAD+ biosynthesis with nicotinic acid (NA) was shown 
to provide significant preventive effects on various pathophysiologi‐
cal changes in the natural process of aging (Imai & Guarente, 2014). 
Hence, we investigated whether NA administration during in vitro 
culture could prevent the oxidative stress and meiotic defects in old 
oocytes. To do this, fully grown immature oocytes were retrieved 
from old mice and then cultured in maturation medium supple‐
mented with or without NA. NA treatment has little effect on nor‐
mal oocyte maturation (data not shown). Of note, NA supplement 
significantly elevated the NAD+ content in old oocytes, as shown in 
Figure 4a. Moreover, both the ROS levels and the frequency of spin‐
dle/chromosome defects were diminished in NA‐treated old oocytes 
(Figure	 4b–e),	 indicating	 that	NA	 administration	 in	 vitro	 is	 able	 to	
improve the quality of aged oocytes.

F I G U R E  3   Effects of NMNAT2 
knockdown on spindle assembly and 
chromosome alignment in oocyte 
meiosis. (a) Control and NMNAT2‐KD 
oocytes were stained with α‐tubulin 
antibody to visualize spindle (green) 
and counterstained with PI to visualize 
chromosomes (red). Representative 
confocal sections are shown. Spindle 
defects (arrows) and chromosomes 
misalignment (arrowheads) were 
frequently observed in NMNAT2‐KD 
oocytes. (b) Quantification of control and 
NMNAT2‐KD oocytes with abnormal 
spindle/chromosomes (n = 120 for 
each group). (c) Chromosome spread of 
control and NMNAT2‐KD MII oocytes. 
Chromosomes were stained with 
Hoechst	33342	(blue),	and	kinetochores	
were labeled with CREST (purple). 
Representative confocal images are 
shown. Arrowheads indicate the 
premature separation of sister chromatids. 
(d) Histogram showing the incidence of 
aneuploidy in control and NMNAT2‐KD 
oocytes (n = 20 for each group). Error bars 
indicate ± SD. *p < 0.05 versus controls. 
Scale bar, 25 µm
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2.5 | NMNAT2 overexpression ameliorates maternal 
age‐associated meiotic defects and oxidative stress 
in oocytes

Given the loss of NMNAT2 in old oocytes, we checked whether 
elevating NMNAT2 expression in old oocytes could rescue their 
phenotypes. Toward this goal, exogenous Nmnat2 mRNA was in‐
jected into old GV oocytes, and then the phenotypes were assessed. 
Immunoblotting verified that NMNAT2 protein was efficiently over‐
expressed in mouse oocytes (Figure 5a). NAD+ levels in aged oocytes 
were almost restored back to normal when NMNAT was overex‐
pressed (Figure 5b). Similarly, the phenotypic defects of old oocytes, 
specifically the ROS overproduction and meiotic abnormalities, 

were partially suppressed by the ectopic expression of NMNAT2 
(Figure	 5c–f).	 Together,	 these	 data	 suggest	 that	NMNAT2	overex‐
pression ameliorates maternal age‐associated meiotic defects and 
oxidative stress in oocytes.

2.6 | SIRT1 mediates the effects of NMNAT2 on 
quality control of aged oocytes

Since change in NAD+/NADH ratio controls the activity of sirtuins, 
all members of this family have a crucial role in sensing the ener‐
getic status of the cell (Canto & Auwerx, 2012; Houtkooper, Canto, 
Wanders,	&	Auwerx,	2010;	Yang	et	al.,	2007).	Recently,	Di	Emidio	et	
al. (2014) found that SIRT1 might be involved in oocyte maturation 

F I G U R E  4   Nicotinic acid administration improves the oocyte quality of old mice. (a) Quantitative analysis of NAD+ content in young, old, 
and old + NA oocytes (n = 150 for each group). (b) Representative images of CM‐H2DCFDA fluorescence (green) in young, old, and old + NA 
oocytes. Scale bars: 50 µm. (c) Quantification of the ROS signal in oocytes. Values are presented as individual dot plot, n = 15 for each 
group, biologically independent oocytes from at least two different mice. (d) Representative images of spindle/chromosome organization in 
young oocytes, old oocytes, and old + NA oocytes (n = 120 for each group), Scale bars: 25 µm. (e) Quantification of young, old, and old + NA 
oocytes with abnormal spindle/chromosomes (n = 120 for each group). Error bars indicate ± SD. *p < 0.05 versus controls
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by regulating the redox state and ensuring normal spindle assembly. 
It has been reported that SIRT1 activation by resveratrol enhances 
the biosynthesis of mitochondria in oocytes, thereby improving the 
developmental ability of oocytes (Sato et al., 2014). These find‐
ings prompted us to hypothesize that SIRT1 might be an important 
downstream mediator of NMNAT2 in controlling oocyte quality of 
old oocytes. To test this possibility, we first confirmed that SIRT1 
protein	levels	were	decreased	by	~70%	in	old	oocytes	compared	to	
their	young	controls	(Figure	6a),	consistent	with	the	previous	report	
(Di Emidio et al., 2014). Furthermore, both SIRT1 overexpression and 
resveratrol (a potential activator of SIRT1) treatment could alleviate 
the	oxidative	stress	and	meiotic	defects	in	old	oocytes	(Figure	6b–g).	
Notably, we found that the phenotypes of NMNAT2‐KD oocytes 
could	be	partly	rescued	by	overexpression	of	SIRT1	(Figure	6h,i).	In	
addition, we also evaluated the activity of SIRT1 in oocytes by ex‐
amining	the	acetylation	status	of	 its	known	target,	histone	H4K16	
(Hajji et al., 2010; Ryall et al., 2015; Vaquero, Sternglanz, & Reinberg, 
2007).	 As	 shown	 in	 Figure	 6j–m,	 the	 acetylation	 levels	 of	H4K16	
were dramatically increased in NMNAT2‐KD oocytes compared to 

controls; while NA supplementation significantly reduced the acet‐
ylated	H4K16	 in	 oocytes	 from	 old	mice.	 Altogether,	 these	 results	
indicate that NMNAT2 controls the quality of aged oocytes likely 
through modulating SIRT1 expression and/or activity.

3  | DISCUSSION

NAD+ is one of the most widespread and biologically important acti‐
vators within the plant and animal world. The reduced form of NAD+ 
(NADH) is a primary hydride donor in the production of ATP via 
anaerobic glycolysis and mitochondrial oxidative phosphorylation. 
NAD+ also serves as a co‐substrate for enzymes that create sign‐
aling metabolites or post‐translationally modify protein substrates 
(Frederick	et	al.,	2016).	The	de	novo	pathway	from	tryptophan	and	
the NAD+ biosynthetic pathway from nicotinic acid are evolutionar‐
ily conserved, while the NAD+ biosynthetic pathway from nicotina‐
mide is vertebrate‐specific and mediated by NAMPT and NMNAT 
(Imai, 2009a) (Figure 1). In addition, NMNATs are necessary for both 

F I G U R E  5  NMNAT2	overexpression	ameliorates	maternal	age‐associated	meiotic	defects	and	oxidative	stress	in	oocytes.	(a)	Western	
blotting analysis showing that exogenous Myc‐NMNAT2 protein was efficiently overexpressed, probing with anti‐Myc and anti‐NMNAT2 
antibody. (b) Quantitative analysis of NAD+ levels in young, old, old + PBS, and old + NMNAT2 oocytes (n = 150 for each group). (c) Young, 
old, old + PBS, and old + NMNAT2 oocytes were stained with α‐tubulin antibody to visualize spindle (green) and counterstained with PI 
to visualize chromosomes (red). Representative confocal sections are shown. Spindle/chromosome abnormalities are indicated by arrows. 
(d) Quantification of Young, old, old + PBS, and old + NMNAT2 oocytes with spindle/chromosome defects (n = 120 for each group). (e) 
Representative images of CM‐H2DCFDA fluorescence (green) in young, old, old + PBS, and old + NMNAT2 oocytes. (f) Quantification of the 
ROS signals in oocytes. Values are presented as individual dot plot, n = 15 for each group, biologically independent oocytes from at least two 
different mice. Error bars indicate ± SD. *p < 0.05 versus controls. Scale bars: 25 µm



     |  7 of 11WU et al.

the	Preiss–Handler	pathway	and	the	salvage	pathway,	playing	piv‐
otal roles in embryonic development in mice and in neuroprotec‐
tion across species (Gilley & Coleman, 2010). NMNATs were initially 
characterized as enzymes catalyzing the reversible condensation of 
ATP with nicotinic acid mononucleotide (NAMN) or nicotinamide 
mononucleotide (NMN) to produce nicotinic acid adenine dinucleo‐
tide (NAAD) or NAD+	(Ali,	Li‐Kroeger,	Bellen,	Zhai,	&	Lu,	2013).	It	has	
been shown that NMNAT‐2 knockdown significantly reduces cellular 
NAD+	levels	and	protects	cells	from	p53‐dependent	cell	death	upon	
DNA damage (Pan et al., 2014).

In the present study, we found that NAD+ content was de‐
creased in oocytes from aged mice. Interestingly, we further no‐
ticed that NMNAT2 is the only NAD+ biosynthase enzyme showing 
the reduced expression in old oocytes (Figure 1). These findings 

indicate that NMNAT2 might be the critical enzyme responsible 
for NAD+ generation during mouse oocyte maturation. In sup‐
port of this, NAD+ level in NMNAT‐KD oocytes was dramatically 
decreased as compared to control cells (Figure 2). Furthermore, 
NMNAT2 depletion in oocyte resulted in spindle defects and chro‐
mosome misalignment, consequently inducing the high frequency 
of	aneuploidy	(Figures	2	and	3).	Any	error	in	spindle/chromosome	
organization can lead to the failure of meiosis so that the oocyte 
cannot mature, which in humans is a major cause of pregnancy loss 
and developmental disabilities (Hassold & Hunt, 2001). NMNAT2‐
KD oocytes showed the very similar phenotypes as aged oocytes. 
Female fertility decreases with advanced maternal age largely due 
to the meiotic abnormality in oocyte. The NAD+ biosynthetic path‐
way from NA is evolutionarily conserved. It has been shown that 

F I G U R E  6   SIRT1 mediates the effects of NMNAT2 on quality control of aged oocytes. (a) Immunoblotting analysis shows the decrease 
SIRT1 expression in oocytes from old females compared to young controls. (b) Young, old, old + PBS, and old + SIRT1 oocytes were stained 
with α‐tubulin antibody to visualize spindle (green) and counterstained with PI to visualize chromosomes (red). Representative confocal 
sections are shown. Spindle/chromosome defects are indicated by arrows. (c) Quantification of young, old, old + PBS, and old + SIRT1 
oocytes with spindle/chromosome defects (n = 120 for each group). (d) Representative images of CM‐H2DCFDA fluorescence (green) 
in young, old, old + PBS, and old + SIRT1 oocytes. (e) Quantification of the ROS signals in oocytes. Values are presented as individual 
dot plot, n = 15 for each group, biologically independent oocytes from at least two different mice. (f) Quantification of young, old, and 
old + resveratrol oocytes with spindle/chromosome defects (n = 120 for each group). (g) Quantification of the ROS signals in oocytes. Each 
data point represents an oocyte (n = 15 for each group). (h) Quantification of control, NMNAT2‐KD and NMNAT2‐KD + SIRT1 oocytes with 
spindle/chromosome defects (n = 120 for each group). (i) Quantification of the ROS signals in oocytes. Values are presented as individual 
dot plot, n = 15 for each group, biologically independent oocytes from at least two different mice. (j) Representative confocal images of 
acetylated‐H4K16	in	control	and	NMNAT2‐KD	oocytes.	(k)	Quantification	of	fluorescence	intensity	of	acetylated	H4K16	in	control	(n = 20) 
and NMNAT2‐KD (n	=	18)	oocytes.	(l)	Representative	confocal	images	of	acetylated‐H4K16	in	old	and	old	+	NA	oocytes.	(m)	Quantification	
of	fluorescence	intensity	of	acetylated	H4K16	in	old	(n = 18) and old + NA (n = 22) oocytes. Error bars indicate ± SD. *p < 0.05 versus 
controls. Scale bars: 25 µm



8 of 11  |     WU et al.

small amounts of NA can be converted to NAD+ in the intestine 
and liver (Fang et al., 2017). Here, we found that NA administra‐
tion in vitro not only elevated the NAD+ content but also partly 
rescued the pathological phenotype of aging oocytes (Figure 4). 
Interestingly, it appears that NR/NMN administration has no dra‐
matic effects on NAD level in oocytes from aged mice (data not 
shown). This observation indicates that old oocytes may have the 
compromised ability to utilize the precursors other than NA. The 
underlying mechanism remains to be determined. Of note, over‐
expression of NMNAT2 was able to alleviate the meiotic defects 
and oxidative stress in old oocytes (Figure 5). Altogether, based on 
these findings, we conclude that NMNAT2‐mediated NAD+ gener‐
ation is essential for quality control of aged oocytes. In addition, 
due to the scarce amount of material and technical reason, NAD+ 
content was evaluated based on a colorimetric assay in the pres‐
ent study. Using a more sensitive analytical method (e.g., LC‐MS) 
would be helpful for the accurate quantification of oocyte NAD+ 
in the future.

The functional connection between NAD+ and sirtuins is regu‐
lated at three levels: (a) regulation of NAD+ biosynthesis, (b) mod‐
ulation of sirtuin activity/expression by NAD+ substrates and 
derivatives, and (c) competitive utilization of NAD+ between sirtuins 
and other NAD+	consumers	(Imai	&	Guarente,	2016).	Of	them,	SIRT1	
serves as a universal mediator that executes metabolic effects in a 
tissue‐dependent manner in response to changes in systemic NAD+ 
pool (Imai, 2009b). In the present study, we showed that both ele‐
vating SIRT1 expression and SIRT1 activator could reduce the pen‐
etrance of maternal age‐associated defects in oocytes. Moreover, 
overexpression of SIRT1 is also capable of partially preventing those 
phenotypes of NMNAT‐KD oocytes. In particularly, NMNAT2 de‐
pletion and NA supplementation significantly alter the activity of 
SIRT1	 in	oocytes	 (Figure	6).	Collectively,	 it	 is	 tempting	 to	propose	
that NAD+/SIRT1 axis is an important pathway mediating the effects 
of NMNAT2 on oocyte quality control (Figure 7).

A hallmark of animal development is an age‐related decrease in 
fertility. This is largely attributed to females producing eggs of com‐
promised developmental competence. Our study indicates a novel 
mechanism controlling oocyte development of aged mice, which 
opens a new area for assessing oocyte quality as well as clinical man‐
agement of fertility issue.

4  | MATERIAL S AND METHODS

All chemicals and culture media were purchased from Sigma (St. 
Louis, MO, USA) unless stated otherwise.

4.1 | Mice

ICR	female	mice	(3–4	weeks	old)	were	used	in	our	experiments.	To	
generate a natural aging model, 42‐ to 45‐week‐old female mice 
(near the end of their reproductive lifespan) were selected. Mice 
were maintained in alternating 12‐hr light/dark cycles. All animal ex‐
perimental protocols were performed in accordance with relevant 
ethical guidelines and regulations, and approved by the Animal Care 
and Use Committee of Nanjing Medical University.

4.2 | Antibodies

Mouse	 polyclonal	 anti‐SIRT1	 antibodies	 (Cat#:	 S5196),	 anti‐
H4K16ac	antibodies	(Cat#:	ab109463),	and	mouse	monoclonal	anti‐
NMNAT2	antibodies	(Cat#:	ab56980)	were	purchased	from	Abcam	
(Cambridge, MA, UK); Myc antibodies were purchased from Cell 
signaling Technology (Cat#: 2278); mouse monoclonal FITC‐con‐
jugated anti‐α‐tubulin	 antibodies	 (Cat#:	 F2168)	 and	mouse	mono‐
clonal anti‐β‐actin antibodies (Cat#: A5441) were purchased from 
Sigma; Cy5‐conjugated goat anti‐human IgG was purchased from 
Jackson	Immuno	Research	Laboratory	(West	Grove,	PA,	USA).

F I G U R E  7   Diagram illustrating 
the proposed pathway mediating the 
effects of NAD+ generation on the 
quality control of aged oocytes. Loss 
of NAD+ content and NMNAT2 protein 
results in the meiotic abnormalities and 
metabolic dysfunction in oocytes from 
old mouse. NA supplement and SIRT1 
overexpression/activation could partly 
rescue the defective phenotype of these 
aged oocytes
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4.3 | Oocyte collection and culture

Oocytes	were	 isolated	 from	 female	mice	 at	 the	 age	of	3–4	weeks	
(young	 mice)	 and	 42–45	weeks	 (reproductively	 old	 mice).	 To	 col‐
lect fully grown GV oocytes, mice were superovulated with 5 IU 
Pregnant Mares Serum Gonadotropin (PMSG). After 48 hr, cumu‐
lus–oocyte	complexes	were	obtained	by	manually	rupturing	of	antral	
ovarian follicles. Cumulus cells were removed by repeatedly mouth‐
pipetting.	For	in	vitro	maturation,	GV	oocytes	were	cultured	in	M16	
medium	at	37°C	in	an	atmosphere	of	5%	CO2. For in vitro supple‐
ment, fully grown oocytes from old mice were cultured in maturation 
medium containing 50 μM of nicotinic acid (Sigma, St. Louis, MO) 
(Huang et al., 2014; Stach et al., 2012) or 2 μM of resveratrol (Ma et 
al., 2015).

4.4 | Plasmid construction and mRNA synthesis

Total RNA was extracted from 100 mouse oocytes using Arcturus 
PicoPure RNA Isolation Kit (Applied Biosystems, CA, USA), and the 
cDNA was generated with QIAquick PCR Purification Kit (Qiagen, 
Germany). PCR products were purified, digested with FseI and AscI 
(NEB Inc, MA, USA), and then cloned into the pCS2+ vector. For the 
synthesis of cRNA, plasmids were linearized by NotI. pAd‐Track 
Flag‐SIRT1 was purchased from addgene. Capped cRNAs were 
made	using	in	vitro	transcription	with	SP6	mMESSAGE	mMACHINE	
(Ambion, CA, USA) according to the manufacturer's instruction. 
Synthesized	RNA	was	 aliquoted	 and	 stored	 at	 −80°C.	The	 related	
primer sequences can be found in Supporting Information Table S1.

4.5 | NMNAT2 knockdown and 
overexpression analysis

Microinjections of siRNA or mRNA were used to knockdown or over‐
express proteins in mouse oocytes, respectively. Nmnat2‐targeting 
siRNA was diluted with RNase‐free water to give a stock concentra‐
tion of 1 mM, and 2.5 pl solution was injected. 10 pl cRNA solution 
(10 ng/µl) was injected into oocytes in overexpression experiments. 
Following injections, oocytes were arrested at GV stage in medium 
containing 2.5 μM milrinone for 20 hr to promote mRNA degrada‐
tion or translation. The related primer sequences can be found in 
Supporting Information Table S1.

4.6 | Immunoblotting

A total of 200 oocytes were lysed in Laemmli buffer containing 
protease inhibitor. Proteins were separated by SDS‐PAGE and then 
transferred to PVDF membranes. Membranes were blocked in TBS 
containing	 0.1%	 Tween	 20	 and	 5%	 low	 fat	 dry	 milk	 for	 1	hr	 and	
then	 incubated	 overnight	 at	 4°C	 with	 primary	 antibodies:	 mouse	
anti‐SIRT1 antibody (1:1,000) or mouse anti‐NMNAT2 antibody 
(1:1,500).	After	multiple	washes	 in	TBS	containing	0.1%	Tween	20	
and incubation with HRP‐conjugated secondary antibodies, the 
protein	bands	were	visualized	using	an	ECL	Plus	Western	Blotting	

Detection System. The membrane was then washed and reblotted 
with anti‐β‐actin antibody (1:10,000) for loading control.

4.7 | Immunofluorescence

Oocytes	were	fixed	with	4%	paraformaldehyde	for	30	min	and	then	
permeabilized	with	0.5%	Triton	X‐100	 for	20	min.	Following	 treat‐
ment	with	blocking	 solution	 (1%	BSA‐supplemented	PBS)	 for	1	hr,	
samples	were	 incubated	overnight	at	4°C	with	primary	antibodies.	
To visualize spindle, oocytes were probed with FITC‐conjugated 
tubulin antibody. Chromosomes were evaluated by staining with 
propidium	 iodide	 (PI)	 or	Hoechst	 33342	 for	 10	min.	After	washed	
in PBS, oocyte were mounted on anti‐fade medium (Vectashield, 
Burlingame, CA, USA) and examined under a laser scanning confocal 
microscope (LSM 710, Zeiss, Germany).

Fluorescence intensity was assessed as we described previously 
(Han	et	al.,	2018).	When	quantifying	ROS	signal,	a	Z‐stack	of	oocyte	
was taken, and images were used to generate a projection contain‐
ing all ROS signals. Acquisition settings were not altered throughout 
the experiment. ROS signal was finally calculated as the mean fluo‐
rescence intensity (measured from total cytoplasmic intensity and 
normalized	to	cell	area	using	ImageJ),	following	background	subtrac‐
tion from an equal region in the negative control oocyte. To quantify 
H4K16ac	staining	in	oocytes,	fluorescence	was	measured	and	nor‐
malized to DNA intensity.

4.8 | Measurement of NAD+ levels

Measurement of NAD+ levels is conducted using a commercially 
available	 kit	 (Sigma,	 St.	 Louis,	 MO;	 MAK037)	 according	 to	 the	
manufacturer protocol. In brief, 150 oocytes were harvested for 
total NAD+ extraction and quantification based on the procedure 
described by Pantazi et al. (2015). The NAD+ concentration is cal‐
culated by subtracting the NADH values from NADtotal (NAD+ and 
NADH). NADtotal and NADH levels are quantified in a colorimet‐
ric assay at 450 nm using iMark™ Microplate Absorbance Reader 
(BIO‐RAD).

4.9 | ROS evaluation

To detect intercellular ROS in living oocytes, CM‐H2DCFDA from 
Invitrogen was used. CM‐H2DCFDA was prepared in DMSO prior 
to loading. Oocytes were incubated with 5 μM CM‐H2DCFDA for 
30	min	at	37°C,	and	 then	 immediately	observed	under	 laser	 scan‐
ning confocal microscope (LSM 710, Zeiss, Germany).

4.10 | Determination of ATP levels

Total ATP content was determined using the bioluminescent somatic 
cell assay kit (Sigma, MO, USA). Briefly, 20 oocytes were pooled 
together and processed according to the procedure we previously 
published	(Hou	et	al.,	2015).	A	6‐point	standard	curve	(0,	0.	1,	0.5,	
1.0, 10, and 50 pmol of ATP) was generated in each assay, and the 
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ATP content was calculated by using the formula derived from the 
linear regression of the standard curve.

4.11 | Chromosome spread

Chromosome preparations for MII oocytes were performed as 
described previously (Li et al., 2017). MII oocytes were exposed 
to	Tyrode's	buffer	 (pH	2.5)	 for	30	s	at	37°C	to	remove	zona	pel‐
lucida.	 Oocytes	 were	 fixed	 in	 a	 drop	 of	 1%	 paraformaldehyde	
with	0.15%	Triton	X‐100	on	a	glass	slide.	After	air	drying,	oocytes	
were	 incubated	 with	 CREST	 (1:500)	 overnight	 at	 4°C	 and	 then	
Cy5‐conjugated secondary antibody for 1 hr for kinetochore la‐
beling. Samples were examined under a laser scanning confocal 
microscope.

4.12 | Statistical analysis

Data are presented as mean ± SD, unless otherwise indicated. 
Differences between two groups were analyzed by Student's t test. 
Multiple comparisons between more than two groups were analyzed 
by one‐way ANOVA test using Prism 5.0. p < 0.05 was considered to 
be significant.
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