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Abstract

Obesity is a complex disease with multiple contributing factors. One of the most intensely studied factors during the past decade has been the

gut microbiota, which is the community of all microbes in the intestinal tract. The gut microbiota, via energy extraction, inflammation, and other

actions, is now recognized as an important player in the pathogenesis of obesity. Dysbiosis, or an imbalance in the microbial community, can ini-

tiate a cascade of metabolic disturbances in the host. Early life is a particularly important period for the development of the gut microbiota, and

perturbations such as with antibiotic exposure can have long-lasting consequences for host health. In early life and throughout the life span, diet

is one of the most important factors that shape the gut microbiota. Although diets high in fat and sugar have been shown to contribute to dysbiosis

and disease, dietary fiber is recognized as an important fermentative fuel for the gut microbiota and results in the production of short-chain fatty

acids that can act as signaling molecules in the host. One particular type of fiber, prebiotic fiber, contributes to changes in the gut microbiota, the

most notable of which is an increase in the abundance of Bifidobacterium. This review highlights our current understanding of the role of gut

microbiota in obesity development and the ways in which manipulating the microbiota through dietary means, specifically prebiotics, could con-

tribute to improved health in the host, including musculoskeletal health.

2095-2546/� 2020 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to the World Health Organization, worldwide

obesity has more than tripled since 1975, with more than

650 million adults living with obesity and more than 41 million

children under the age of 5 considered to be overweight or

obese.1 Obesity is associated with metabolic disorders affect-

ing multiple organs and systems2 and is recognized as a major

risk factor for the development of type 2 diabetes (T2D), car-

diovascular diseases (heart disease and stroke), musculoskele-

tal disorders (osteoarthritis (OA)), and certain forms of cancer

(endometrial, breast, ovarian, prostate, liver, gallbladder, kid-

ney, and colon).1,3

Reduced to its most simplistic nature, obesity is the conse-

quence of greater energy intake than expenditure; however,

intensive research over the past decades has uncovered obesity’s
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extremely complex etiology, which encompasses a dynamic

interplay between host genetic and environmental factors.3 One

of the most recent factors to be identified as playing a critical

role in obesity development is the gut microbiota. Through its

role in energy harvest, metabolic signaling, and inflammation,

the gut microbiota is now recognized as an important player in

body weight regulation.4,5 Strategies aimed at shifting the gut

microbiota back to a “healthy state” are providing new thera-

peutic targets for interventions that might help to reduce the

burden of obesity and its comorbidities.
2. Gut microbiota

The intestinal tract contains the human body’s most densely

colonized ecosystem, consisting of bacteria, archaea, viruses,

and unicellular eukaryotes—the so-called gut microbiota.6

The number of microbes in the intestinal tract is approximately

100 trillion cells,7 which is estimated to be in the same order of

magnitude as human cells.8 The number of bacteria increases
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along the length of the gut to approximately 108 bacteria per

gram of content in the distal ileum and 1011 bacteria per gram

in the colon.9 Bacteria are classified according to their taxo-

nomical rank (Fig. 1). At the division level (phylum), Firmi-

cutes (gram-positive, anaerobic, spore-forming bacteria,

mainly represented by the genera Clostridium, Faecalibacte-

rium, Blautia, Ruminococcus, and Lactobacillus10) and Bac-

teroidetes (gram-negative, anaerobic, non-spore-forming

bacteria, mainly represented by Bacteroides and Prevotella10)

are dominant and can constitute over 90% of the bacteria pres-

ent in the large and small intestine.11 Even though other phyla

such as Actinobacteria (Bifidobacterium), Proteobacteria

(Gammaproteobacteria with Enterobacteriaceae), or Verruco-

microbia (Akkermansia) are low in numbers, they have a major

impact on health.12,13 It is clear that individuals share similar

core microbiota; nevertheless, all individuals have numerous

differences in their microbiota, including proportions, diver-

sity, species, and gene functions.14 Turnbaugh et al.11 sug-

gested that instead of sharing a core human microbiome

definable by a set of abundant microbial lineages, we might

share a core gut microbiome at the level of metabolic func-

tions. The gene pool of our gut microbiota (gut microbiome) is

at least 150 times larger than our own, providing us with a

range of otherwise inaccessible metabolic capabilities.15

Despite the fact that a definition of a healthy microbiota

remains elusive,16 it has been established that the microbiota

develops and matures over the course of infancy and childhood

and reaches its adult form at 3 years of life.8

Several factors influence the microbial colonization of the

infant gut, such as gestational age (term vs. preterm), mode of
Fig. 1. Bacterial taxonomy. Scientific classification of bacteria by rank or

level.
delivery (vaginal delivery vs. caesarean section), infant diet

(breast milk vs. formula), breast-feeding patterns,17 maternal

diet, genetics, sanitation, smoking during pregnancy, familial

environment (rural vs. urban), home structure (large vs. small

families), geography, and antibiotic treatment.18 Given the

breadth of factors that influence the development of the

infant’s gut microbiota in the first year of life, interindividual

differences in gut microbiota are significantly greater among

children than among adults, even though the infant’s gut

microbiota is dominated by fewer bacterial genera.14 The

sequence of bacterial species appearing in the first months of

life is complex, and many transient species emerge owing to

changes in the gut environment.11 This normal maturation can

be disrupted, leading to an imbalance in the microbial commu-

nity or “dysbiosis”, which can ultimately affect obesity risk5

and several other diseases (Fig. 2).19

2.1. Gut microbiota disruption and obesity risk

The gut microbiota of an individual with obesity may pro-

mote more efficient extraction and/or storage of energy from a

certain diet, compared with gut microbiota of a lean individ-

ual. The earliest evidence supporting this hypothesis was the

observation that germ-free (GF) mice are leaner when com-

pared with conventionally raised animals and that the trans-

plantation of gut microbiota into adult GF mice substantially

increased their body fat mass despite reduced food intake.20 In

addition to more efficient energy extraction from the diet,
Fig. 2. Dysbiosis of the gut microbiota in disease. Dysbiosis of the gut micro-

biota impairs the intestinal barrier, immune system, metabolic functions, and

bacterial metabolite production (i.e., short-chain fatty acids), as well as func-

tion/development of the central nervous system. Dysbiosis has been linked to

several intestinal disorders such as inflammatory bowel disease (i.e., Crohn’s

disease, ulcerative colitis), irritable bowel syndrome and colorectal cancer, as

well as extraintestinal disorders (i.e., obesity, type 2 diabetes, arthritis, and

depression).19
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obesogenic gut microbiota also leads to intestinal inflamma-

tion contributing to the obese phenotype.21�24 Specifically,

proinflammatory tumor necrosis factor-a (TNF-a) messenger

RNA levels in the ileum show strong correlation with the

degree of weight gain, increased fat mass, and plasma glucose

and insulin upon exposure to an high-fat diet (HFD).21 Fur-

thermore, studies showed that only conventionally raised ani-

mals developed inflammation, whereas GF animals had no

upregulation of TNF-a messenger RNA levels, suggesting that

an HFD requires enteric bacteria to trigger intestinal inflam-

mation. Interestingly, only obesity-prone Sprague Dawley rats

and not obesity-resistant rats had increased ileal inflammation,

neutrophil infiltration and innate immune Toll-like receptor 4

(TLR-4) activation once challenged with an HFD.23 In addi-

tion, obesity-prone Sprague Dawley rats displayed increased

intestinal permeability, favoring increased leakage of gut-

derived bacterial lipopolysaccharides (LPS) into the systemic

circulation, which contributes to the chronic, low-grade

inflammation associated with obesity.23,24 It is well-estab-

lished that LPS (component of the outer membrane of Gram-

negative bacteria)25 and saturated fatty acids (Western diet)26

are ligands for TLR4 and can, therefore, activate the innate

immune system. Upon activation of TLR4 in several tissues

(intestinal epithelial cells, adipose tissue, muscle, and liver),

immune cells such as proinflammatory M1 macrophages are

activated and secrete proinflammatory cytokines (i.e., TNF-a

and Interleukin-6).27 Proinflammatory cytokines further

recruit/attract additional proinflammatory immune cells while

inhibiting anti-inflammatory cells such as M2 macrophages

and/or regulatory T cells.27 Chronic immune system activation

and excessive production of proinflammatory cytokines in the

tissues interfere with insulin signaling as demonstrated by the

inhibition of insulin-stimulated glucose uptake when insulin

and TNF-a were coinjected into humans.28 When mice were

fed a normal diet and infused subcutaneously with LPS for 4

weeks, increased weight (whole body, liver, and adipose

tissue) and inflammation (i.e., TNF-a, Interleukin-1, Interleu-

kin-6) were seen, and the phenotype was similar in many

respects to 4 weeks of high-fat feeding.29 While acute inflam-

mation is necessary to start the healing process, there is now

compelling evidence that chronic bacteria/diet-induced inflam-

mation can contribute to obesity and the metabolic syndrome.

Although many of the initial studies linking the gut micro-

biota to obesity centered around adulthood, it is now recog-

nized that long-term metabolic perturbations could already be

initiated in early life if an obesogenic gut microbiota from

mothers is transferred to the infant and/or is altered in the first

years of life when microbial colonization is still in progress

(e.g., from antibiotic exposure or formula feeding).5 When

mothers were given antibiotics during pregnancy, newborns

had higher birth weights30 and children were 84% more likely

to be obese at 7 years of age.31 Similarly, several other studies,

including 3 large cohorts involving 28,000 mother�child

pairs,32 10,000 children,33 and 6114 boys and 5948 girls,34 all

reported an increased risk of being overweight when children

were exposed to antibiotics in the first 12 months of life.

Mechanistically, treating mice with low doses of penicillin
(LDP) increased adiposity through altered gut microbiota,

increased short-chain fatty acid (SCFA) levels, and altered

hepatic metabolism of lipids and cholesterol.35 Cox et al.36

demonstrated that LDP enhanced the effect of HFD-induced

obesity and, even though the microbial communities recovered

after termination of LDP, the metabolic phenotype persisted.

Microarray gene expression analysis revealed that early life

exposure to broad-spectrum amoxicillin-based antibiotic

delayed the maturation process of the intestine in

10%�30% of genes, downregulated the genes involved in

the immune system (antimicrobial products and antigen

presentation), and consequently interfered with gut barrier

function.37 The weight gain observed in this study and

others after early life antibiotic treatment was more pro-

nounced in males/boys34�36 and was a consequence of

reduced abundance of metabolically protective bacteria,

increased availability of microbiota-derived energy, and

altered hepatic metabolic signaling and/or intestinal

defenses.38

In addition to antibiotics, caesarean-section (C-section) also

alters early microbiota development as it bypasses exposure to

vaginal microbiota during labor and exposes the child to skin

and environmental microbes instead. For example, 72% of

newborns’ microbiota (vaginal delivery) matched species

found in the stool of their mother, whereas only 41% of these

species were detected in C-section newborns, as shown by

B€ackhed et al.17 To assess the associations of a C-section with

body mass from birth to adolescence, 10,219 children (of

which 9.06% were delivered by a C-section) were investi-

gated.39 By 6 weeks of age, children born by C-section had a

greater weight-for-length z-score, a phenotype that persisted

until 15 years of age.39 Similarly, in 7-year-old children, a

46% higher obesity risk was observed in children born by C-

section when compared with children delivered vaginally.31

Unlike in human C-section studies where perinatal antibiotics

are used during a C-section and confound the independent

effects of birth mode, Martinez et al.40 performed a study in

mice to investigate the impact of antibiotic-free C-section on

early life microbiota and obesity risk. Mice born via C-section

gained 33% more weight at 15 weeks of age and female mice

showed an even stronger phenotype (70% higher weight gain),

a finding also reported in 1 birth cohort in humans.41 In addi-

tion to increased fat and body mass, microbiota development

was altered in C-section mice.40 Under-represented taxa in C-

section animals included Bacteroides, Ruminococcaceae,

Lachnospiraceae, and Clostridiales (associated with lean phe-

notypes in mice36), and overrepresented taxa included S24-7,

Lactobacillus, and Erysipelotrichaceae.40
2.2. Gut microbiota composition in obesity

After more than a decade of research describing the link

between gut microbiota and obesity, many important questions

about the host�microbiota relationship remain.42 Initially, ani-

mal studies demonstrated that obesity is associated with a

change in the relative abundance of the 2 dominant bacterial

phyla with a reduction in the abundance of Bacteroidetes and a
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proportional increase in Firmicutes.43,44 Similar gut micro-

biota changes have been seen in adults45 and children with

obesity,46 but some studies did not support these findings,11,47

including 2 meta-analyses.48,49 Accordingly, phylum-level

changes in individuals with obesity are less clear, mostly

because of large interpersonal variation, insufficient sample

sizes, and the different methods used for the sequencing and

quantifying of the taxa.49

The most consistent finding in humans appears to be a

higher abundance of Escherichia coli (E. coli) and Lactobacil-

lus in individuals with obesity.50,51 Interestingly, there are

many pathogenic strains of E. coli (in addition to the majority

of harmless E. coli), whereas certain strains of Lactobacillus

are commonly used as probiotics owing to their health bene-

fits.3 This seeming discrepancy was clarified in part by Drissi

et al.,52 who review evidence that the effects of Lactobacillus

are age dependent and strain specific. With more than 150 Lac-

tobacillus species identified to date, this represents a diverse

group of bacteria.52 Similarly, bifidobacteria are also well-

known probiotics, and lower abundance has been shown in

people with a higher body mass index (BMI)53,54 and a nega-

tive correlation was observed between Bifidobacterium and

visceral adiposity.53 Likewise, lower levels of Akkermansia

have been observed in individuals with a high body mass

index;55,56 however, individuals with T2D from Asia showed

an increased Akkermansia muciniphila abundance.57 The

authors concluded that Akkermansia could have a beneficial

role in metabolic profiles depending on the environment in the

gut. Since Akkermansia is a mucin-degrading bacteria, it could

make the intestinal barrier thinner, thereby allowing bacterial

translocation and pathogenesis of T2D.57 In line with this find-

ing, a study in rodents showed that dietary fiber deficiency

allows the mucin-degrading bacteria such as Akkermansia

muciniphila to grow, express mucin-degrading enzymes, and

enhance disease susceptibility.58

Regardless of inconsistencies in the precise obesogenic

microbiota composition, it is clear that obesity is associated

with a lower diversity and richness of the gut microbiota,

which might compromise microbial function and lead to dis-

ease.3 It has been suggested that obese microbiomes can utilize

a more diverse set of energy sources, resulting in greater

energy harvest.59 To better understand changes in metabolism

in obesity, analysis of microbial metabolites such as SCFA

and bile acids can provide further insight given their role in

activating signals that control appetite.60

2.2.1. Bile acids

Primary bile acids are synthesized from cholesterol by the

liver and secreted into the small intestine, where Gram-posi-

tive bacteria (mostly lactobacilli and Clostridium species) con-

vert them into secondary bile acids that can act as signaling

molecules.3,61 Insulin sensitivity, energy expenditure, lipid

accumulation, and glucose homeostasis have all been shown

to be modified by secondary bile acids, which act in large part

via binding to receptors such as farnesoid X receptor and the

G protein-coupled bile acid receptor.62 For example, second-

ary bile acids can bind to ileal farnesoid X receptor receptors,
which in turn stimulate production of fibroblast growth factor

19 that can cross the blood�brain barrier63 and suppress activ-

ity of hypothalamic agouti-related peptide/neuropeptide Y

neurons to improve energy homeostasis and glucose

metabolism.60

2.2.2. SCFAs

SCFAs are the end products of bacterial polysaccharide

fermentation that can be used as an energy source by the host and

can, therefore, influence body weight.3 The most prominent

SCFAs are butyrate, propionate, and acetate; butyrate serves as

the energy substrate for the colonocytes, and propionate and ace-

tate act as substrates for gluconeogenesis and lipogenesis in the

gut and liver.64 Higher levels of SCFAs are found in the feces of

obese children and adults when compared to normal weight indi-

viduals.47,65 These higher levels likely result from increased

colonic energy harvest66 rather than from reduced intestinal

absorption.66,67 The higher fecal SCFA seen in obesity appear to

be at odds with the known beneficial effects of SCFA acting as

signaling molecules that improve insulin sensitivity, increase sati-

ety, and reduce inflammation in the pancreas, muscle, and adipose

tissue.3,64 Many of these benefits occur via the G protein-coupled

receptors, free fatty acid receptor 2 (FFAR 2) and FFAR 3.64 For

example, SCFA stimulation of FFAR 2 receptors in the gut stimu-

lates the release of the satiety hormone glucagon-like peptide-1,

while in neutrophils it suppresses inflammation.64 Given the limi-

tations of interpreting higher concentrations of SCFA in feces in

isolation from overall turnover and metabolism,64 the balance of

evidence to date favors a beneficial metabolic effect for SCFA,

particularly when produced from the fermentation of dietary fiber.
3. Modulation of gut microbiota in obesity with diet

(specifically prebiotics) and exercise

While our individual host genome does not change over

time, many environmental and lifestyle factors can profoundly

change our gut microbiome throughout our lives.68 One of the

characteristics of the gut microbiota that make it an opportune

target for new obesity treatments is the relative ease by which

it can be manipulated with dietary agents. Interestingly, some

gut microbes can remember past diets and exhibit a so-called

hysteresis that reflects those prior diets.69 For example, when

mice were put on a chow diet between 2 bouts of a high-fat

lard-based diet, accelerated weight regain was seen after the

second exposure to the Western diet.70 The authors were able

to identify a gut microbiome signature that persisted after suc-

cessful dieting in the obese mice and contributed to faster

weight regain upon re-exposure to the HFD.70 Experiments in

so-called “humanized mice” (GF mice colonized with human

fecal samples) also provide similar evidence in that the dietary

history of the human donor determines the response to the diet

intervention in mice.71 This effect is transmittable across gen-

erations. When “humanized mice” were exposed to a low-fiber

diet, reduced microbial diversity/function was seen

and the effects were transmitted to future generations.72

Microbiota diversity loss was greater with each subsequent

generation (4 in total) with an additional loss of microbial
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fiber-degrading capacity.72 Exposing the 4th generation of

mice to a high-fiber diet could not correct the loss of diversity

and function. Recapturing this function could only be achieved

through the reintroduction of lost bacteria with a fecal micro-

biota transplant from control mice.72 After the fecal transplant

and a switch to a high-fiber diet, 110 taxa were restored and

the differences between the low-fiber and high-fiber diet

groups were no longer detectable.72 These studies demonstrate

the importance of a high-fiber diet to prevent the loss of micro-

bial taxa and function seen with consumption of a low-fiber

Western diet.73
3.1. Prebiotics

When Gibson and Roberfroid74 first defined prebiotics in

1995, only a few compounds fit the definition, including short-

and long-chain b-fructans (fructo-oligosaccharides and inulin),

galacto-oligosaccharides, and lactulose. The most recent defi-

nition of prebiotics is that they are a substrate that is selec-

tively utilized by host microorganisms conferring a health

benefit.75 Changes in the definition from its inception have

enabled more compounds, such as resistant starches, pectin,

arabinoxylan, whole grains, and noncarbohydrate compounds

(polyphenols), to be considered as candidate or confirmed pre-

biotics.75,76 Interestingly, not all dietary fibers can be classified

as prebiotics since consumption of prebiotics must result in a

health benefit for the host.76 For example, soluble dextrin

fibers from corn failed to be classified as prebiotics even

though microbial changes in the gut were detected along with

a lower secretion of proinflammatory and immunoregulatory

cytokines.77 Nevertheless, no improvement in histological

colonic inflammation was seen.77 It might be that the dose

administered was too low to improve health, since a dose-

dependent effect of prebiotics on disease risk has been

described, with higher doses displaying more health benefits.78

Intake of prebiotics has been associated with improvements

in metabolic health that have included lower body weight and

fat mass, improved glucose control, a reduction in inflamma-

tion, and an increase in health-promoting bacteria.75,79 For

example, in infants, breast milk is a rich source of human milk

oligosaccharides (candidate prebiotics), which stimulate the

growth of commensal bacteria (Bifidobacterium and Bacter-

oides spp.) and restrict the adhesion of pathogens such as E.

coli, Campylobacter jejuni, and Helicobacter pylori.80 As

early as 1935, a report from Massachusetts General Hospital

convincingly showed benefits of breast-feeding.81 In an analy-

sis of 20,000 patients, breast-fed infants had a lower incidence

of mortality and morbidity, especially of enteric disease, otitis

media, and respiratory infection, when compared to exclu-

sively formula-fed infants.81 It is plausible that the microbiota,

at least in part, is involved in these improved infant outcomes.

Several studies have reported a correlation between a low

abundance of Bifidobacterium spp. and obesity,82,83 along

with an increased capacity of obesogenic gut microbiota to

produce SCFAs47,67,84; however, both studies were modified

with a prebiotic approach. One study showed that a 3-month

supplementation with oligofructose-enriched inulin (16 g/day)
increased the abundance of health-promoting Bifidobacterium

spp. and decreased total fecal SCFA concentration in 44

women with obesity; however, no significant reduction in

BMI was observed.85 Oligofructose-enriched inulin provides a

blend of long-chain (inulin) and short-chain (oligofructose)

fructans that ferment at different rates in the colon; oligofruc-

tose ferments more rapidly. Intervention studies that exposed

normal-weight, healthy adolescents to oligofructose-enriched

inulin (8 g/day) for 1 year86 and adults with overweight or obe-

sity to oligofructose (21 g/day) for 3 months87 reported

decreased body weight gain and fat mass. The study in adults

also reported a decrease in energy intake and an increase in

satiety hormones, thus showing additional positive effects of

prebiotics relevant to obesity management. Similarly, a sample

of children (7�12 years of age) who were administered

8 g/day of oligofructose-enriched inulin for 16 weeks had

reduced body fat88 and improved appetite control89 compared

to children given a placebo. Prebiotic consumption normalized

childhood weight gain, reduced total and trunk body fat,

altered primary fecal bile acids, and changed microbiota com-

position by increasing Bifidobacterium species.88 Mechanisti-

cally, several animal studies have provided insight into

prebiotic-mediated outcomes noted in human studies. In

rodents, prebiotic intake led to the following positive out-

comes: increased number/activity of enteroendocrine L-cells

responsible for the production of satiety hormones and

improved glucose homeostasis,90,91 recovery of gut barrier

function through increased Bifidobacterium spp.,91,92 and

expression/activity of tight junction proteins with a subsequent

decrease in circulatory LPS levels,92,93 reduced hepatic accu-

mulation of triglycerides and cholesterol,94,95 and improved

weight maintenance and weight loss.90,91 Thus, the positive

effects of prebiotic use likely go beyond weight loss, since all

of the benefits described also contribute to the improvement of

overall host health.
3.2. Exercise

Diet and exercise are often prescribed together, and in com-

bination form the cornerstone for lifestyle modifications aimed

at maintaining health and managing chronic diseases. Given

the profound role that diet plays in shaping the gut micro-

biota,96 the question soon emerged whether or not exercise

also influenced gut microbiota composition. One of the first

indications that exercise might influence gut microbiota com-

position came from Clarke et al.97 in 2014, when they showed

that, compared to more sedentary control subjects, profes-

sional rugby athletes had a higher diversity of gut microorgan-

isms, a characteristic often associated with a “healthy” gut

microbiota. More recently, this same group has shown that the

differences observed between the elite athletes and more sed-

entary controls at the microbial composition level are even

greater when considered at the functional and metabolic levels

(using metagenomics to examine the microbial genes and

metabolomics to examine metabolites).98 Importantly, the elite

athletes had higher levels of SCFAs than the controls, which

can influence such important actions as intestinal barrier
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integrity, brain function, and immunity.98 This finding is con-

sistent the findings of Estaki et al.,99 who also observed

increased butyrate-producing bacteria and higher microbiota

diversity in healthy participants with higher cardiorespiratory

fitness (measured with peak oxygen uptake) compared with

those who were less fit. Although our understanding of the

mechanisms by which exercise and the gut microbiota interact

to provide health benefits is still in its infancy, the mechanisms

may include the aforementioned SCFAs production, micro-

biota-mediated changes in immune function, and enhanced gut

barrier function.100

Some of the first animal work to examine the effect of exercise

on gut microbiota used a 6-week, low-intensity treadmill running

protocol in normal and diabetic (db/db) mice, with running occur-

ring 5 days/week.101 After adjusting for the mice’s body weight

and blood glucose, the exercise protocol reduced Bacteroides/Pre-

votella spp. and Methanobrevibacter spp. and increased Clostrid-

ium cluster I in all animals; however, the abundance of the health-

promoting Bifidobacterium increased only in nondiabetic mice,

suggesting that exercise may not exert the same effects on gut

microbiota in a healthy host versus a host with diabetes.101 In

another study, nondiabetic rats also showed an increase in the

health-promoting Bifidobacterium following exercise.102 In con-

trast to these studies, Evans et al.103 saw a reduction in Bifidobac-

teriaceae in mice that were fed a low-fat diet and used a non

load-bearing hamster wheel for 12 weeks. The discrepancy

between the study by Evans et al.103 and other work requires fur-

ther investigation, but it is possible that in metabolically

challenged states (diabetes/HFD), a typical increase in Bifidobac-

terium with exercise is overridden by the disease or precipitating

diet, given that an HFD is known to have a suppressive effect on

Bifidobacterium.92 Interestingly, exercise was able to alter the gut

microbial composition and lean mass to a greater extent in juve-

nile versus adult rats, highlighting the importance of also consider-

ing the developmental stage and vulnerability/instability of early-

life microbiota in future investigations.104
4. Potential for gut microbiota in musculoskeletal

disorders

OA is a highly prevalent, debilitating joint disorder com-

monly associated with obesity.105 The risk imposed by obesity

is not just due to the mechanical burden on joints, but also due

to the metabolic and inflammatory derangements associated

with obesity.106 Given that microbial dysbiosis is associated

with obesity, there is growing interest in determining if modi-

fying the gut microbiota signature could in turn improve pain

and physical function in patients with OA and obesity. Indica-

tions that this might be possible come from 2 large-cohort

studies investigating knee OA in the United States.107,108

Using data from the Osteoarthritis Initiative and the Framing-

ham Offspring Osteoarthritis Study, Dai et al.107 found that

total dietary fiber was inversely associated with the risk of

symptomatic knee OA. Using data from only the Osteoarthritis

Initiative, Dai et al.108 also showed that a higher intake of total

dietary fiber or cereal grain fiber (e.g., whole-grain wheat and
bran cereals) was inversely associated with the likelihood of

developing moderate to severe knee pain over an 8-year time

course. Dietary fiber is one of the most important fuels for the

gut microbiota.109 Therefore, although no randomized clinical

trials examining the effect of microbiota-altering diets (e.g.,

high fiber or high prebiotic) on knee OA have been published

to date, there is good reason to initiate these trials in the near

future. Additional support for such trials also comes from very

promising studies in rodents.

In mice, the prebiotic oligofructose was protective against

the detrimental effect of obesity induced by an HFD on

trauma-induced OA.110 Importantly, obesity markedly reduced

beneficial Bifidobacterium microbes that coincided with

increased macrophage presence in the knee capsule and accel-

erated joint degeneration, including cartilage loss.110 Improv-

ing the composition of gut microbiota with dietary

oligofructose was, in fact, able to completely rescue these obe-

sity-associated detriments. The joint damage seen in mice is

consistent with the effects of a high-fat or high-sucrose diet on

knee and shoulder joints in rats.111 Somewhat surprisingly, the

derangements associated with a high-fat or high-sucrose diet

appear to very rapidly (in as few as 3 days) alter muscle integ-

rity, inflammation, and the gut microbiota in rats.112 Early

changes in muscle integrity due to obesity or poor diet, includ-

ing muscle loss, intramuscular lipid accumulation, or deposi-

tion of connective tissue, may precipitate further downstream

damage to tendons, bone, cartilage, and joints.113 For a full

review of the role of inflammation and muscle integrity on

musculoskeletal-related conditions (e.g., osteoporosis, OA,

tendinopathy), see Collins et al.113 Important for designing

future translational studies in humans is our recent demonstra-

tion that prebiotic oligofructose supplementation, aerobic

exercise, and the combination of the 2 completely prevent

knee damages associated with obesity induced through high-

fat or high-sucrose diets in rats.114 Normalization of insulin

resistance, dyslipidemia and endotoxemia (LPS) accompanied

the protection of the knee joint.114
5. Conclusion

The environment determines bacterial growth; therefore, it

is not surprising that external factors such as diet and physical

activity drive our gut microbial composition and function.

Diet has the potential to outweigh the effect of host genetics,

immunity, and early-life disruptors (antibiotics and C-section).

Unfortunately, a Western diet, with an abundance of highly

processed foods that are low in fiber and rich in fat and sugar,

is a major threat to our gut microbial community. This threat

may not be strictly confined to the generation that consumes it,

but could perpetuate dysbiosis across multiple generations.

The hope of researchers in the field is that we will be able to

identify personalized effective dietary strategies, such as pre-

biotics and other targeted interventions, that will positively

modify the gut microbiota from early life onwards and ulti-

mately reduce the burden of obesity worldwide.
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