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Abstract: Heart attacks affect more than seven million people worldwide each year. A heart attack,
or myocardial infarction, may result in the death of a billion cardiomyocytes within hours. The adult
mammalian heart does not have an effective mechanism to replace lost cardiomyocytes. Instead,
lost muscle is replaced with scar tissue, which decreases blood pumping ability and leads to heart
failure over time. Here, we report that the loss of the chromatin factor ASXL2 results in spontaneous
proliferation and cardiogenic differentiation of a subset of interstitial non-cardiomyocytes. The adult
Asxl2−/− heart displays spontaneous overgrowth without cardiomyocyte hypertrophy. Thymidine
analog labeling and Ki67 staining of 12-week-old hearts revealed 3- and 5-fold increases of
proliferation rate for vimentin+ non-cardiomyocytes in Asxl2−/− over age- and sex-matched wildtype
controls, respectively. Approximately 10% of proliferating non-cardiomyocytes in the Asxl2−/− heart
express the cardiogenic marker NKX2-5, a frequency that is ~7-fold higher than that observed in the
wildtype. EdU lineage tracing experiments showed that ~6% of pulsed-labeled non-cardiomyocytes
in Asxl2−/− hearts differentiate into mature cardiomyocytes after a four-week chase, a phenomenon
not observed for similarly pulse-chased wildtype controls. Taken together, these data indicate de novo
cardiomyocyte production in the Asxl2−/− heart due to activation of a population of proliferative
cardiogenic non-cardiomyocytes. Our study suggests the existence of an epigenetic barrier to
cardiogenicity in the adult heart and raises the intriguing possibility of unlocking regenerative
potential via transient modulation of epigenetic activity.
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1. Introduction

Heart disease is the leading cause of death in developed countries. Many forms of heart disease
result in a loss of functional muscle. Unfortunately, the heart’s natural ability to generate new muscle
is severely limited. The development of effective therapies for cardiac regeneration will benefit from
a thorough understanding of endogenous cardiogenic mechanisms and how they are regulated.

Very limited cardiomyocyte production occurs in the adult heart and past research has reported
two mechanisms by which this occurs. The most indisputable mechanism is renewal via cardiomyocyte
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proliferation [1–9]. Genetic fate-mapping studies suggest that this is the dominant mechanism for
cardiomyocyte production in the adult mammalian heart [5,7,8,10]. However, the majority of studies
estimate the rate of cardiomyocyte proliferation to be very low during adulthood, at or below ~1%
per year [1,2,4–9]. It is possible to stimulate proliferation by manipulating the activity of certain
genes [11–24].

The second mechanism of cardiomyocyte production in the adult heart involves the differentiation
of resident cardiac cells with progenitor activity [25]. For example, c-kit+ cardiac stem cells (CSCs) have
been reported to produce cardiomyocytes in the adult heart [26]. However, the estimated efficiency of
this process is drastically different between different studies [27–30]. The adult epicardial cells have
also been reported to produce cardiomyocytes after thymosin β4 treatment in the normal or infarcted
adult heart [31–33], though an effort to duplicate this result was unsuccessful [34]. Mechanisms for
cardiomyocyte production in the adult heart have been identified, however, a better understanding of
their regulation will help pave the way to develop therapies to replace lost muscle tissue.

Aside from cardiomyocyte proliferation and cardiogenic differentiation from CSCs, cardiomyocytes
can be derived from several populations of cells isolated from the adult heart, such as Sca1+ cells [35],
side population (SP) cells [36], Isl1+c-kit+ cells [37], and cardiac colony-forming units-fibroblast
(cCFU-Fs) [38]. It is unclear whether these cells are normally cardiogenic in vivo or if cardiogenicity
was induced by in vitro culturing.

Finally, cardiac fibroblasts (CFs) can be reprogrammed into cardiomyocytes both in vitro
and in vivo through the transduction of a cocktail of three transcription factors, GATA4, MEF2C,
and TBX5 [39–41]. This mechanism does not appear to be active in the normal adult heart, as genetic tracing
of the CF lineage using Periostin (Postn)-Cre did not find sign of spontaneous trans-differentiation of
CFs into cardiomyocytes [41,42].

Here we report de novo cardiomyocyte production at a significant rate in adult mice carrying
a mutation in Asxl2, a chromatin-associated factor. The hearts of Asxl2−/− mice exhibit significant
growth between two and four months after birth. This growth is not due to cardiomyocyte hypertrophy.
Rather, we present data that the adult Asxl2−/− heart harbors a population of proliferative interstitial
cells that undergo spontaneous cardiogenic differentiation.

We have previously shown that ASXL2 is an important regulator of histone H3 methylation and
H2A deubiquitination [43,44]. The implication of ASXL2 in the regulation of cardiomyocyte production
during adult life raises new therapeutic possibilities for cardiac repair and regeneration.

2. Materials and Methods

2.1. Animals

Asxl2 mutant mice were generated by utilizing a gene-trapped embryonic stem cell line from the
Gene-Trap Consortium (http://www.genetrap.org/) [43]. The Asxl2− allele yields an mRNA with the
first 19 amino acids of ASXL2 followed by the gene trap cassette. The resultant fusion protein contains
none of the conserved domains of ASXL2.

The Asxl2− allele is currently in two inbred genetic backgrounds, C57BL/6J and 129/Sv. Viable
homozygous mutants (Asxl2−/−) are not recovered in either inbred genetic background, but are
recovered when heterozygous C57BL/6J mice are mated to heterozygous 129/Sv mice. Experiments
presented here are from such F1 progeny.

All animal studies were performed in accordance with the University of Illinois at Chicago
Institutional Animal Care and Use Committee (IACUC) and Animal Care Committee policies
(ACC 13-117).

2.2. Assessment of Heart Growth

Transthoracic echocardiography and left ventricular (LV) mass calculation were performed as
previously described [45,46]. LVMI is LV mass (mg) expressed relative to body mass (g).

http://www.genetrap.org/


J. Dev. Biol. 2016, 4, 32 3 of 16

Direct measurement of heart weight was performed with freshly dissected hearts that had been
trimmed of excess large vessel tissue and gently blotted. Heart mass index is the heart mass (mg)
expressed relative to body mass (g).

Quantitative morphometric analysis of total ventricular muscle volume was performed using
a previously described method for calculating scar volume [5], with some modifications. Paraffin embedded
hearts from wildtype and Asxl2−/− animals at 8- and 16-week of age were cross-sectioned (5 µm).
Whole hematoxylin and eosin stained sections at 125 µm intervals were imaged at 10× on a Zeiss
Observer.Z1 with ZenPro software using the tiling feature. The area covered by the section was
calculated using ImageJ, then multiplied by the interval of 125 µm, and these volumes were totaled to
give the ventricle muscle volume per heart. To normalize for differences in body mass, ventricle muscle
volume (mm3) is expressed relative to body mass (g).

2.3. Morphometric Analysis of Isolated Cardiomyocytes

Adult cardiomyocytes were isolated as previously described [47]. Glutaraldehyde fixed
isolated cardiomyocytes from 8- and 16-week wildtype and Asxl2−/− hearts were analyzed by
Martin Gerdes’ Lab (New York Institute of Technology) to determine the following: cell volume
(Coulter Counter/Channelyzer), cell length and cell profile area (microscopically by image analysis),
cross-sectional area (calculated from cell volume/cell length), and nucleation status (Figure 2 and
Supplemental Figure S3).

Cardiomyocytes were also isolated from hearts of wildtype and Asxl2−/− that were pulse-labeled
with EdU at 12-weeks, and chased 4-weeks (Figure 6). Isolated cardiomyocytes were fixed in 4%
paraformaldehyde for 10 min on ice with frequent agitation to prevent aggregation of the cardiomyocytes,
permeabilized with 0.5% Tritonx-100 in PBS for 10 min, and then labeled for EdU incorporation
(Click-iT® EdU Imaging Kit, Invitrogen, Waltham, MA, USA, C10337), per the manufacturer’s
instructions. Cardiomyocytes were then co-labeled with mouse-α-cTnT (Thermo Scientific, Waltham,
MA, USA, MS-295), labeled with biotin-conjugated anti-mouse IgG (Vector, M.O.M Kit, BMK-2202),
and subsequently labeled with streptavidin conjugated to AlexaFluor 594 (Jackson ImmunoResearch,
016-580-084). The cardiomyocytes were re-suspended in mounting medium (Vectashield with DAPI
(4′,6-diamidino-2-phenylindole), Vector Laboratories, H-1200).

Imaging was performed at the Northwestern University Center for Advanced Microscopy
(generously supported by CCSG P30 CA060553 awarded to the Robert H Laurie Comprehensive
Cancer Center). Cardiomyocytes were visualized using a Zeiss upright AXIO microscope at 10×
magnification. The Tissue Gnostics system (Vienna, Austria) and Tissue FAXs software were utilized
to image entire slides, with the individual tiles (defined as one 10× image field) being exported for
analysis. Each tile was manually analyzed for cardiomyocytes with EdU+ nuclei. To estimate the total
number of cardiomyocytes, they were manually counted in every tenth tile. These numbers were
then averaged per slide, and subsequently multiplied by ten to give the estimated total number of
cardiomyocytes per slide. From these data, the percentage of EdU+ labeled cardiomyocytes among all
analyzed isolated cardiomyocytes from chased hearts was calculated.

To analyze the morphology and nucleation status of EdU+ cardiomyocytes, the 20× objective and
ZenPro software was used to acquire images of EdU+ cardiomyocytes. All imaged cardiomyocytes
were in a longitudinal orientation, had smooth membranes, and sarcomeres were clearly evident.
A total of 70 EdU+ cardiomyocytes (from two Asxl2−/− hearts) were analyzed. The nucleation status
(mono- or bi-nucleated; EdU+ cardiomyocytes with more than two nuclei were not observed) was
recorded for each EdU+ cardiomyocyte. Additionally, the length of each EdU+ cardiomyocyte was
measured using Pixel Stick (Plum Amazing). From this analysis, EdU+ cardiomyocytes were placed
into one of three categories: (1) mononuclear and shorter than the shortest cardiomyocytes observed
from four-month-old wildtype hearts; (2) mononuclear and within range of lengths of cardiomyocytes
from four-month-old wildtype hearts; or (3) binuclear and within range of lengths of cardiomyocytes
from four-month-old wildtype hearts.
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2.4. Thymidine Analog Pulse and Pulse-Chase Assays

Mice were assayed for proliferation at two time-points, week 8 and week 12. Mice were injected
with a thymidine analog, either 100 mg/kg 5-bromo-2-deoxyuridine (BrdU, Sigma, St. Louis, MO,
USA, B5002) or 50 mg/kg 5-Ethynyl-2′-deoxyuridine (EdU, Invitrogen, A10044), once daily for
three consecutive days. Hearts were harvested approximately 6 h post the final injection.

Paraffin sections were labeled for EdU or BrdU, imaged, and analyzed for proliferation (for details
see methods section on “Immunofluorescence” below). BrdU+ or EdU+ nuclei were counted manually
and total nuclei per image was found using Cell Profiler software [48]. The proliferation index is
expressed as the percentage of BrdU+ nuclei of total nuclei.

To determine the fate of cells that proliferated at 12-week, mice were injected with EdU at 12 weeks
of age (as above), and hearts were harvested 4 weeks after the final EdU injection, allowing time for
the newly proliferated to differentiate.

2.5. Preparation of Histological Sections

Prior to harvest, mice were injected with heparin, then euthanized with carbon dioxide, followed by
cervical dislocation. Hearts were extracted and submerged in 1 M potassium chloride (in phosphate
buffered saline). Hearts were then trimmed to remove lung and large vessel tissues, gently blotted dry,
and weighed.

Hearts to be paraffin-embedded were fixed in cold 4% paraformaldehyde overnight. Hearts were
then washed in PBS and a small amount of tissue was cut from the dorsal and ventral sides of the heart
to expose the left and right ventricles to facilitate infiltration (this step was omitted for hearts used
for quantitative morphometric ventricle volume analysis). Hearts were dehydrated through a graded
series of isopropanol (Sigma, St. Louis, MO, USA, 534021-4L) in 20 min/10 mL washes as follows: 50%,
75%, 95%, and 100% twice. Isopropanol was dissolved in dH2O and samples were shaken gently on
a horizontal rotator in six-well plates. Hearts were cleared with mineral oil (Sigma, M8410) as follows,
25%, 50%, 75% (mixed with isopropanol), and three changes of 100% mineral oil (using the same
conditions as dehydration steps). The hearts were then infiltrated with paraffin (McCormick Scientific,
St. Louis, MO, USA, 39502004) as follows: 25%, 50%, 75% (dissolved in mineral oil, 20 min, 59 ◦C),
and followed by two changes in 100% paraffin. Samples were then positioned in molds and allowed to
cool to room temperature. Five-micron sections were cut, dried vertically overnight, and heat-fixed to
the slides the following day for 2 h at 42 ◦C.

For frozen sections, freshly dissected, and trimmed hearts were placed in optimum cutting
temperature (O.C.T.) medium (TissueTek, 4583) and snap-frozen in a hexane/dry ice bath. Five-micron
sections were cut on a cryotome, mounted on charged slides, and stored at −20 ◦C until use.

2.6. Immunofluorescence

For immunofluorescent analysis of paraffin sections, slides were de-paraffinized in xylene and
rehydrated through a graded series of ethanol. Antigen unmasking was performed with 10 mM Tris,
1 mM EDTA, 0.05% Tween-20, pH 9.0 at 92 ◦C for 20 min. Sections were then permeabilized with 0.2%
TritonX-100 (in PBS) for 10 min. Blocking was done using 5% normal serum (in PBS) of the species the
secondary antibody was raised in. EdU incorporation was detected using a Click-iT® EdU Imaging
Kit (Invitrogen, C10337), per manufacturer’s instructions.

Sections were incubated in primary antibody overnight at 4 ◦C in a humidified chamber.
Primary antibodies used on paraffin sections include rat-α-BrdU (1:100, Abcam, Cambridge, MA,
USA, ab6326), mouse-α-cTnT (1:100, Thermo Scientific, MS-295), rabbit-α-Ki67 (1:400, Abcam,
ab15580), rabbit-α-vimentin (1:100, Abcam, ab92547), rabbit-α-CD31 (1:40, Lifespan BioSciences,
Seattle, WA, USA, LS-B1932), rabbit-α-α-smooth muscle actin (1:800, Sigma, A2547), rabbit-α-NKX2-5
(1:100, Abcam, ab22611), rabbit-α-MEF2C (1:100, Abcam, ab64644), rabbit-α-GATA4 (1:100, Santa Cruz,
Dallas, TX, USA, sc-9053), and rabbit-α-connexin43 (1:200, Santa Cruz, sc-6560). Cell membranes
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were labeled with wheat germ agglutinin (WGA) conjugates, either WGA conjugated to fluorescein
isothiocyanate (FITC) (20 µL/mL, Vector, FL-1021) or WGA-CF™ 594 conjugate (1:200, Biotium,
Fremont, CA, USA, 29023-1). All secondary antibodies were from Jackson ImmunoResearch and used
at a concentration of 1:200. All nuclei were labeled either with DAPI (Vectashield + DAPI mounting
media, Vector Laboratories, Burlingame, CA, USA, H-1200) or Hoechst (1:2000, Invitrogen). If Hoechst
was used, slides were mounted with Vectashield (Vector Laboratories, H-1000).

For immunofluorescence on frozen sections, sections were fixed with methanol. After fixation,
sections were incubated in primary antibody overnight at 4 ◦C in a humidified chamber. Primary
antibodies used on frozen sections include rabbit-α-C-Kit (Abcam, ab5506) and rat-α-PDGFRα
(BD Pharmingen, 558774).

Sections were imaged using a Zeiss Axiovert 200 M or a Zeiss Observer.Z1 microscope using
the 20× objective. Twenty-five images were taken per frontal section as follows: 10 images of the
left ventricular free wall (five images each of epicardial side and endocardial side), 10 images of the
septum (five images each of the left and right ventricular sides) and five images of the right ventricular
free wall.

3. Results

3.1. Overgrowth of the Adult Asxl2−/− Heart without Cardiomyocyte Hypertrophy

Our previously published results suggested that Asxl2−/− animals have enlarged hearts [43].
To further investigate this phenotype, we took three approaches to evaluate the growth of Asxl2−/−

and wildtype hearts: echocardiographic measurement of heart dimensions in live animals, weight
measurement of freshly dissected hearts, and quantitative morphometric analysis of paraffin embedded
hearts. All three approaches showed that from approximately eight weeks onwards, the rate of cardiac
growth in Asxl2−/− mice outpaced the rate of body weight growth (Figure 1, Supplemental Figures S1
and S2); in contrast, the rate of cardiac growth in wildtype mice either parallels or is slower than that of
body weight growth depending on the means of measurement (Supplemental Figure S1). By 12 weeks,
the hearts of Asxl2−/− animals are disproportionally larger than those of wildtype controls.
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(wildtype, n = 12; Asxl2−/−, n = 9) of age; (C) Quantitative morphometric analysis of ventricle muscle 
volume normalized to body mass at 8-week (wildtype, n = 3; Asxl2−/−, n = 3) and 16-week (wildtype, n = 
3; Asxl2−/−, n = 3) of age. Bars indicate standard deviation. p-Values (Student’s t-test): ** <0.01; *** 
<0.005. 

Growth of the normal adult heart is predominantly the result of growth in size of existing 
cardiomyocytes [49,50]. We isolated cardiomyocytes from Asxl2−/− and wildtype hearts and assessed 
nucleation, cell dimensions, and volume (using the high-throughput Coulter Counter/Channelyzer 
method [51]). Asxl2−/− cardiomyocytes are not larger than wildtype nor is there a higher percentage of 

Figure 1. Overgrowth of the adult Asxl2−/− heart. (A) Left ventricular mass index found by
echocardiography at 2-month (wildtype, n = 4; Asxl2−/−, n = 4) and 4-month (wildtype, n = 7; Asxl2−/−,
n = 7) of age, normalized to body mass; (B) Mass of freshly dissected hearts normalized to body
mass at 8-week (wildtype, n = 6; Asxl2−/−, n = 6), 12-week (wildtype, n = 16; Asxl2−/−, n = 11),
and 16-week (wildtype, n = 12; Asxl2−/−, n = 9) of age; (C) Quantitative morphometric analysis of ventricle
muscle volume normalized to body mass at 8-week (wildtype, n = 3; Asxl2−/−, n = 3) and 16-week
(wildtype, n = 3; Asxl2−/−, n = 3) of age. Bars indicate standard deviation. p-Values (Student’s t-test):
** <0.01; *** <0.005.

Growth of the normal adult heart is predominantly the result of growth in size of existing
cardiomyocytes [49,50]. We isolated cardiomyocytes from Asxl2−/− and wildtype hearts and assessed
nucleation, cell dimensions, and volume (using the high-throughput Coulter Counter/Channelyzer
method [51]). Asxl2−/− cardiomyocytes are not larger than wildtype nor is there a higher percentage
of binucleated cardiomyocytes at either 8- or 16-week of age (Figure 2 and Supplemental Figure S3).
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In fact, while not statistically significant, Asxl2−/− cardiomyocytes appear to be somewhat smaller than
wildtype (Figure 2). These observations are consistent with a previous imaging-based measurement
showing that Asxl2−/− cardiomyocytes are not hypertrophic at six months of age [45]. We conclude that
the overgrowth of the Asxl2−/− heart observed after approximately eight weeks cannot be accounted
for by cardiomyocyte hypertrophy.
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Figure 2. Lack of cardiomyocyte hypertrophy in Asxl2−/− heart. Isolated cardiomyocytes from
8- and 16-week old wildtype and Asxl2−/− hearts were assessed for: (A) volume; (B) profile area;
(C) cross-sectional area; and (D) length. Sample size: 8-week wildtype, n = 4; 8-week Asxl2−/−, n = 3;
16-week wildtype, n = 5; 16-week Asxl2−/−, n = 3. Bars indicate standard deviation. No significant
differences were observed (Student’s t-test).

3.2. Asxl2−/− Hearts Exhibit Elevated Proliferative Activity, but Not in Cardiomyocytes

The mutation or transgenic expression of certain genes can induce elevated proliferation of
cardiomyocytes in the adult heart, leading to heightened heart growth [11–13,15–19]. To determine
whether this is the case for Asxl2−/− hearts, we labeled proliferating cells using thymidine analogs
(BrdU or EdU) (Figure 3A–E) and Ki67 (Figure 3F–G). BrdU labeling revealed a ~3-fold higher
proliferation index in the Asxl2−/− left ventricle at 12-weeks (p-value = 0.042, Student’s t-test; Figure 3B).
EdU labeling gave comparable results (Figure 3C). A similar trend was observed by Ki67 staining;
~5-fold more Ki67+ nuclei were found in the Asxl2−/− left ventricle compared to the wildtype
(p-value = 0.028, Student’s t-test; Figure 3F). Thus, both methods showed an elevated proliferative
activity in the Asxl2−/− hearts during the time window of heart enlargement. However, very few of
the BrdU-, EdU-, or Ki67-labeled cells appeared to be cardiomyocytes. In both Asxl2−/− and wildtype
hearts, the vast majority of EdU+ cells were interstitial (98.6% ± 1.2% in Asxl2−/−, compared to
98.7% ± 0.4% in wildtype) and cTnT− (97.4% ± 2.4% in Asxl2−/−, compared to 98.1% ± 1.3% in
wildtype) (Figure 3A,E). Almost all EdU+ cells were vimentin+ (97.5% ± 3.2% in Asxl2−/−, compared to
98.3% ± 1.8% in wildtype) (Figure 3D, Supplemental Figure S4A,B), and ~25% were CD31+

(Supplemental Figure S4C,D). Similar observations were made on Ki67-stained hearts (Figure 3G).
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cells in 12-week-old Asxl2−/− hearts by EdU or BrdU and asked whether labeled cells express NKX2-5, 
MEF2C, or GATA4, three transcription factors associated with cardiogenicity. Among all EdU+cTnT− 
cells, the percentage of NKX2-5+ cells was ~7-fold higher in Asx2−/− hearts compared to wildtype 
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EdU+GATA4+ cells and no EdU+ISL1+ were observed in either genotype (Supplemental Figure S6C,D 
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Figure 3. The Asxl2−/− hearts exhibit elevated proliferative activity in non-cardiomyocytes.
(A) Representative image showing EdU, wheat germ agglutinin (WGA), and 4′,6-diamidino-2-
phenylindole (DAPI); (B) Quantification of BrdU+ nuclei in left ventricle (LV) at 8-weeks (wildtype: n = 3,
3 non-consecutive sections/heart, 116 BrdU+, 30,045 total nuclei; Asxl2−/−: n = 3, 3 non-consecutive
sections/heart, 170 BrdU+, 36,564 total nuclei) and 12-weeks (wildtype: n = 3, three non-consecutive
sections/heart, 35 BrdU+, 13,853 total nuclei; Asxl2−/−: n = 3, three non-consecutive sections/heart,
127 BrdU+, 15,250 total nuclei); (C) Quantification of average number of EdU+ per 20× image field
at 12-weeks (wildtype: n = 3, three non-consecutive sections/heart, 75 images; Asxl2−/−: n = 3,
three non-consecutive sections/heart, 75 images); (D) Representative image of EdU, vimentin and
DAPI labeling; (E,E′) Representative image of EdU, cTnT and DAPI labeling; (F) Quantification
of Ki67+ nuclei in LV at 12-weeks (wildtype: n = 3, three non-consecutive sections/heart, 51 Ki67+,
67,727 total nuclei; Asxl2−/−: n = 3, three non-consecutive sections/heart, 236 Ki67+, 62,124 total nuclei);
(G–G′′) Representative image of Ki67, WGA and cTnT labeling. Arrows indicate proliferative cell
nuclei. Bars indicate standard deviation. * p-Value (Student’s t-test) < 0.05.

3.3. Expression of Cardiogenic Markers by Proliferative Cells in Asxl2−/− Hearts

Cardiomyocytes are by far the largest cells in the heart. The bulk of the size and weight of the heart
comes from cardiomyocytes [52]. The moderate over-proliferation of non-cardiomyocytes in Asxl2−/−

hearts is unlikely sufficient to cause an apparent increase in heart size, unless some proliferating cells
are cardiogenic and give rise to cardiomyocytes. We pulse labeled proliferating cells in 12-week-old
Asxl2−/− hearts by EdU or BrdU and asked whether labeled cells express NKX2-5, MEF2C, or GATA4,
three transcription factors associated with cardiogenicity. Among all EdU+cTnT− cells, the percentage
of NKX2-5+ cells was ~7-fold higher in Asx2−/− hearts compared to wildtype (p-Value = 0.008, Student’s
t-test; Figure 4; distribution shown in Supplemental Figure S5). The percentage of MEF2C+ cells
was ~2.9-fold higher (p = 0.018; Supplemental Figure S6A,B). Very few EdU+GATA4+ cells and no
EdU+ISL1+ were observed in either genotype (Supplemental Figure S6C,D and data not shown).
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represent standard deviation. ** p-Value (Student’s t-test) < 0.01. 

3.4. EdU-Labeled Cells Give Rise to Cardiomyocytes in Asxl2−/− Hearts after 4-Week Chase 

To definitively test whether the proliferative cells in Asxl2−/− hearts produce de novo 
cardiomyocytes, we pulse labeled Asxl2−/− and control hearts with EdU at 12-weeks and examined the 
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expect that all cells that took up EdU did so during the pulse-labeling period and not during the 
chase. Cardiomyocytes were identified by markers (cTnT and Nkx2.5 staining) and by cell size 
(WGA staining). After the chase, there was a significant increase in the percentage of 
EdU+cTnT+NKX2-5+ cells (p-value = 0.018, Student’s t-test) in Asxl2−/− and a concomitant trend toward 
a decrease in the percentage of EdU+cTnT−NKX2-5+ cells, but not in wildtype hearts (Figures 4C and 
5B). EdU+ cardiomyocytes were observed readily in chased Asxl2−/− hearts (Figure 5C–E), but not in 
chased wildtype hearts. EdU+NKX2-5+cTnT+ cells represented 6.2% ± 1.6% of all EdU+ cells in the 
chased Asxl2−/− left ventricle (Figure 5B). The gap junction protein connexin 43 (Cx43) was detected 
on the membrane between EdU+ cardiomyocytes and neighboring EdU− cardiomyocytes (Figure 5E), 
suggesting electrical coupling between the two. Concomitant to the appearance of EdU+ 
cardiomyocytes in Asxl2−/− hearts after the chase, there was a significant decrease of EdU+vimentin+ 
cells (Supplemental Figure S4B). In contrast to EdU+cTnT+NKX2-5+ cells, the percentage of EdU+CD31+ 
or EdU+α-SMA+ cells did not increase after the chase period (Figure 5B and Supplemental Figure 
S4C–F), suggesting that there was no significant production of endothelial or smooth muscle cells. 
Finally, chased wildtype hearts showed neither appearance of EdU+ cardiomyocytes nor decrease of 
EdU+vimentin+ cells (Figure 5B, Supplemental Figure S4B). Taken together, these data suggest that a 
significant number of proliferating interstitial cells differentiate into cardiomyocytes in the Asxl2−/− 
heart, but not in the wildtype heart. 

Figure 4. EdU+ cells in 12-week Asxl2−/− hearts show signs of being cardiogenic. (A,B) Paraffin heart
sections from EdU-treated 12-week wildtype and Asxl2−/− animals were labeled for EdU, NKX2-5,
and cTnT; (C) Quantification of the percentage of EdU-labeled cells that were EdU+NKX2-5+cTnT− and
EdU+NKX2-5+cTnT+. Sample size: n = 3 animals per genotype; three non-consecutive sections/heart;
analyzed fifteen 20× left ventricle images/section; 177 wildtype EdU+ cells, 252 Asxl2−/− EdU+ cells.
Bars represent standard deviation. ** p-Value (Student’s t-test) < 0.01.

3.4. EdU-Labeled Cells Give Rise to Cardiomyocytes in Asxl2−/− Hearts after 4-Week Chase

To definitively test whether the proliferative cells in Asxl2−/− hearts produce de novo cardiomyocytes,
we pulse labeled Asxl2−/− and control hearts with EdU at 12-weeks and examined the fate of
EdU-labeled cells after a 4-week chase (Figure 5A). While there is limited knowledge on the elimination
half-life of EdU, for the closely related BrdU it is ~15–30 min [53,54]. Therefore, we expect that all cells
that took up EdU did so during the pulse-labeling period and not during the chase. Cardiomyocytes
were identified by markers (cTnT and Nkx2.5 staining) and by cell size (WGA staining). After the
chase, there was a significant increase in the percentage of EdU+cTnT+NKX2-5+ cells (p-value = 0.018,
Student’s t-test) in Asxl2−/− and a concomitant trend toward a decrease in the percentage of
EdU+cTnT−NKX2-5+ cells, but not in wildtype hearts (Figures 4C and 5B). EdU+ cardiomyocytes
were observed readily in chased Asxl2−/− hearts (Figure 5C–E), but not in chased wildtype hearts.
EdU+NKX2-5+cTnT+ cells represented 6.2% ± 1.6% of all EdU+ cells in the chased Asxl2−/− left ventricle
(Figure 5B). The gap junction protein connexin 43 (Cx43) was detected on the membrane between
EdU+ cardiomyocytes and neighboring EdU− cardiomyocytes (Figure 5E), suggesting electrical
coupling between the two. Concomitant to the appearance of EdU+ cardiomyocytes in Asxl2−/− hearts
after the chase, there was a significant decrease of EdU+vimentin+ cells (Supplemental Figure S4B).
In contrast to EdU+cTnT+NKX2-5+ cells, the percentage of EdU+CD31+ or EdU+α-SMA+ cells did
not increase after the chase period (Figure 5B and Supplemental Figure S4C–F), suggesting that there
was no significant production of endothelial or smooth muscle cells. Finally, chased wildtype hearts
showed neither appearance of EdU+ cardiomyocytes nor decrease of EdU+vimentin+ cells (Figure 5B,
Supplemental Figure S4B). Taken together, these data suggest that a significant number of proliferating
interstitial cells differentiate into cardiomyocytes in the Asxl2−/− heart, but not in the wildtype heart.
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c, shown in a z-stack image; (C’’) Cross-sections of the z-stack image in c’; (D–D”) Representative image 
of an EdU+cTnT+ cell, delineated with wheat germ agglutinin (WGA), in a transverse heart section; (E–E”) 
Representative image of EdU, WGA and labeling for the gap junction protein, connexin 43 (CX43). The 
arrow indicates the CX43+ membrane between two cardiomyocytes. Sample size: n = 3 animals per 
genotype; three non-consecutive sections/heart; analyzed LV from whole section-stitched images; 
617 and 755 EdU+ cells were examined on wildtype and Asxl2−/− heart sections, respectively. Bars 
represent standard deviation. * p-Value (Student’s t-test) < 0.05. 

Because immunofluorescent identification of cardiomyocytes on heart sections could be 
ambiguous [55], we isolated cardiomyocytes from EdU pulse-chased hearts and repeated the analysis. 
EdU+ cardiomyocytes were extremely rare among cardiomyocytes isolated from wildtype hearts, 
but were easily observed (at a frequency of 7.9–12.6 per 10,000 cardiomyocytes) in the Asxl2−/− 
isolates. Microscopic examination and measurement of 70 EdU+ cardiomyocytes revealed a 
distribution of size, morphology, and nucleation status: 38 (54%) of EdU+ cardiomyocytes were 
binuclear, rod-shaped, and with lengths comparable to EdU− cardiomyocytes (Figure 6A). In all the 
binuclear cells, both nuclei are labeled by EdU. Thirteen (19%) were mononuclear, rod-shaped with 
lengths comparable to EdU− cardiomyocytes (Figure 6B). The rest, 19 (27%), were mononuclear, 
spindle-shaped, and shorter than the shortest cardiomyocytes isolated from wildtype hearts (Figure 
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Figure 5. EdU-labeled cells give rise to cardiomyocytes in Asxl2−/− hearts after 4-week chase.
(A) Schematic of the lineage tracing assay used to assess the differentiation potential of the proliferating
non-cardiomyocytes observed at 12 weeks of age; (B) Quantification of the percentage of EdU+ cells
that are cTnT−NKX2-5+ and cTnT+NKX2-5+ in the left ventricle following the chase; (C) Representative
image of a mononuclear, EdU+cTnT+NKX2-5+ cell in a longitudinal orientation; (C′) The same cell in c,
shown in a z-stack image; (C′′) Cross-sections of the z-stack image in c′; (D–D′′) Representative image
of an EdU+cTnT+ cell, delineated with wheat germ agglutinin (WGA), in a transverse heart section;
(E–E′′) Representative image of EdU, WGA and labeling for the gap junction protein, connexin 43
(CX43). The arrow indicates the CX43+ membrane between two cardiomyocytes. Sample size: n = 3
animals per genotype; three non-consecutive sections/heart; analyzed LV from whole section-stitched
images; 617 and 755 EdU+ cells were examined on wildtype and Asxl2−/− heart sections, respectively.
Bars represent standard deviation. * p-Value (Student’s t-test) < 0.05.

Because immunofluorescent identification of cardiomyocytes on heart sections could be
ambiguous [55], we isolated cardiomyocytes from EdU pulse-chased hearts and repeated the analysis.
EdU+ cardiomyocytes were extremely rare among cardiomyocytes isolated from wildtype hearts,
but were easily observed (at a frequency of 7.9–12.6 per 10,000 cardiomyocytes) in the Asxl2−/− isolates.
Microscopic examination and measurement of 70 EdU+ cardiomyocytes revealed a distribution of size,
morphology, and nucleation status: 38 (54%) of EdU+ cardiomyocytes were binuclear, rod-shaped,
and with lengths comparable to EdU− cardiomyocytes (Figure 6A). In all the binuclear cells, both nuclei
are labeled by EdU. Thirteen (19%) were mononuclear, rod-shaped with lengths comparable to EdU−

cardiomyocytes (Figure 6B). The rest, 19 (27%), were mononuclear, spindle-shaped, and shorter than
the shortest cardiomyocytes isolated from wildtype hearts (Figure 6C).
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Figure 6. Asxl2−/− EdU+ cardiomyocytes display a range of size, morphology, and nucleation status. 
Cardiomyocytes were isolated and stained for EdU, cTnT, and DAPI. Representative images highlighting 
differences among Asxl2−/− EdU+ cardiomyocytes shown are (A) binuclear and rod-shaped with 
length comparable to EdU− cardiomyocytes; (B) mononuclear and rod-shaped with normal length; 
and (C) mononuclear, spindle-shaped, and short. 
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Figure 6. Asxl2−/− EdU+ cardiomyocytes display a range of size, morphology, and nucleation
status. Cardiomyocytes were isolated and stained for EdU, cTnT, and DAPI. Representative
images highlighting differences among Asxl2−/− EdU+ cardiomyocytes shown are (A) binuclear and
rod-shaped with length comparable to EdU− cardiomyocytes; (B) mononuclear and rod-shaped with
normal length; and (C) mononuclear, spindle-shaped, and short.

3.5. The Proliferative Cardiogenic Cells in Asxl2−/− Hearts are Distinct from c-kit+ Cardiac Stem Cells
and cCFU-Fs

The above data suggest that a fraction of the proliferating interstitial cells detected in 12-week-old
Asx2−/− hearts were cardiogenic, and that the abnormal growth of adult Asx2−/− hearts is due
to production of de novo cardiomyocytes by these cells. The adult heart is known to contain
resident cardiogenic cells, such as c-kit+ cardiac stem cells (CSCs) [26,29] and cardiac colony forming
unit-fibroblasts (cCFU-Fs) [38]. We asked whether the cardiogenic phenomenon in the adult Asxl2−/−

heart is due to activation of either of these cell types.
We pulse labeled proliferative cells in 12-week-old Asxl2−/− and control hearts with EdU,

and co-stained heart sections for EdU and c-kit (Figure 7A). c-kit+ cells were readily detected (Figure 7B).
However, we did not observe any EdU+c-kit+ cells, nor was there a higher frequency of c-kit+ cells in
the Asxl2−/− heart. Of 188 EdU+ cells identified on wildtype heart sections (n = 3, two sections/heart)
and 265 EdU+ cells from Asxl2−/− sections (n = 3, two sections/heart), none was c-kit+. cCFU-Fs are
marked by a high level of PDGFRα expression and proximity to blood vessels [38]. We examined EdU+

cells in pulse-labeled 12-week-old hearts for PDGFRα expression. While many of the EdU+ cells express
PDGFRα, EdU+PDGFRαhigh cells in Asxl2−/− hearts are neither more abundant nor more concentrated
near blood vessels than those in wildtype hearts (Supplemental Figure S7). These results suggest that
the proliferative cardiogenic cells in Asx2−/− hearts are distinct from c-kit+ CSCs and cCFU-Fs.
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Figure 7. EdU+ cells are not c-kit+ at 12-weeks of age. (A) Wildtype and Asxl2−/− animals were treated
with EdU at 12-weeks of age and frozen sections were assessed for EdU+c-kit+ cells; (B–B′′) Representative
image of co-labeling for EdU and c-kit. EdU+c-kit+ cells were not observed. Sample size: n = 3 animals
per genotype; two non-consecutive sections/heart; ten 20× images/section; 188 wildtype EdU+ cells,
265 Asxl2−/− EdU+ cells. Arrows indicate the EdU+ nuclei and the arrowheads indicate c-kit+ cells.
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4. Discussion

4.1. Adult Asxl2−/− Hearts Exhibit De Novo Cardiomyocyte Production

EdU+ cardiomyocytes are readily observed in Asxl2−/− hearts that are pulse-labeled with EdU at
12 weeks and chased for 4 weeks, but not in similarly pulse-chased wildtype hearts. How did these
EdU+ cardiomyocytes arise? Proliferation of existing cardiomyocyte is the dominant mechanism for
cardiomyocyte production in the adult mammalian heart [5,7]. The majority of studies estimated the
rate of cardiomyocyte proliferation to be very low during adulthood, at or below ~1% per year [1,2,4–9].
Higher rates of cardiomyocyte proliferation have been reported when the activities of certain genes are
manipulated [11–24]. However, this is not the case in Asxl2−/− mice. While the overall proliferation
index is higher in 12-week Asxl2−/− hearts than in wildtype hearts (Figure 3), the vast majority (~98%)
of EdU-labeled cells are non-cardiomyocytes: they are small, express vimentin, and do not express
cTnT. Hence, the significantly higher frequency of EdU+ cardiomyocytes in Asxl2−/− hearts after the
chase (Figure 5, Supplemental Figure S5) is not due to proliferation, binucleation/polynucleation,
or hypertrophic growth of existing cardiomyocytes. Neither did they arise via fusion between an EdU+

cell and a pre-existing EdU− cardiomyocytes: EdU+ cardiomyocytes isolated from chased Asxl2−/−

hearts are either mononuclear or binuclear with both nuclei labeled by EdU (Figure 6). We did not
observe any cardiomyocyte with one EdU+ and one EdU− nucleus.

Our evidence strongly suggests that the EdU+ cardiomyocytes in pulsed-chased Asxl2−/− hearts are
progenies of non-cardiomyocytes that took up EdU during the time of the pulse label. We hypothesize
that Asxl2−/− hearts harbor a population of proliferative and cardiogenic non-cardiomyocyte (PCN)
cells, which can differentiate and produce de novo cardiomyocytes. Consistent with this scenario,
EdU+ cardiomyocytes isolated from pulse-chased Asxl2−/− hearts display morphological variations
that may be correlated with which stage they are at during the differentiation process. While the largest
of them are indistinguishable from mature cardiomyocytes (Figure 6A), the size and morphology
of the smaller ones (Figure 6B,C) are suggestive of an intermediate or early stage of differentiation.
The definitive testing of our hypothesis awaits the determination of the lineage origin of PCN cells
and the genetic labeling and tracing of these cells.

4.2. What Are PCN Cells?

Many questions remain unanswered about PCN cells. First of all, the cellular identity of
PCN cells remains unclear. Our evidence suggests that the PCN cells are not c-kit+ CSCs, cCFU-Fs,
endothelial cells, or ISL1+ cardioblasts [26,38,56–58]. It has been shown that cardiac fibroblasts can
be directly reprogrammed into cardiomyocytes with a trio of transcription factors, GATA4, MEF2C,
and TBX5 [39,41]. More recently, increased reprogramming efficiency was reported by using relatively
higher levels of MEF2C and lower levels of GATA4 and TBX5 [59]. The majority of freshly labeled EdU+

cells are vimentin+ and PDGFRα+, which are known to be expressed by the fibroblast population.
Interestingly, we observed a ~3-fold increase in BrdU+MEF2C+ cells in un-chased Asxl2−/− heart.
These observations raise the possibility that PCN cells are spontaneously reprogramming fibroblasts.
However, we did not detect an increase in EdU+GATA4+ cells. Moreover, neither vimentin nor
PDGFRα exclusively mark fibroblasts [60,61]. Taken together, immunofluorescence-based marker
analyses eliminated several scenarios but were not sufficient to pinpoint the identity of PCN cells.
A more comprehensive approach is warranted to gain molecular insight into this highly intriguing
cell population. While beyond the scope of this paper, a potential starting point could be to determine
which transcripts are enriched in EdU+ cells isolated from Asxl2−/− hearts compared to those from
wildtype hearts. The correlation between select enriched transcripts and cardiogenic cells in Asxl2−/−

hearts would need to be further examined by genetic lineage tracing and/or by cell isolation followed
by in vitro differentiation assays.

Secondly, the exact time frame when PCN cells are active has not been determined. The heart
size of Asxl2−/− mice is proportionally comparable to wildtype up to eight weeks, suggesting that if
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PCN cells are active in young mice, the activity is too low to have a noticeable effect. Interestingly,
ASXL2 is a member of Polycomb Group (PcG) proteins, which are best known for their roles in the
longer-term epigenetic maintenance of lineage-specific expression pattern [62]. A number of studies
of PcG mutants have reported a deterioration of gene expression pattern over time, after the correct
pattern is established [63]. It is conceivable that the loss of ASXL2 resulted in a gradual disruption of
gene expression in PCN cells, eventually resulting in their activation.

Finally, the cardiogenicity of PCN cells remains to be elucidated. In our EdU pulse-chase lineage
tracing experiment, ~6% of EdU labeled cells in the Asxl2−/− left ventricle become cardiomyocytes after
a 4-week chase (Figure 5B). In cardiomyocyte isolates from two chased Asxl2−/− hearts, the frequencies
of EdU+ cardiomyocytes are 0.079% and 0.126%, respectively. These data, while preliminary,
suggest that the cardiogenicity of PCN cells is significantly higher than that reported for c-kit+ cells:
in a genetic lineage tracing experiment that continuously labels the c-kit lineage from embryonic
stage to four weeks after birth, only 0.0027% of cardiomyocytes arise from c-kit+ cells [29]. In the
future, it will be exciting to fully assess PCN cells’ cardiogenicity by genetic lineage tracing and to
determine how PCN cells affect the ability of Asxl2−/− hearts to regenerate lost muscles in response to
myocardial infarction.

4.3. Epigenetic Regulation of Cardiogenicity?

Epigenetic factors play crucial roles in the regulation of a cell’s molecular signature and hence its
cellular identity [64,65]. The three major epigenetic mechanisms—DNA methylation, histone modification,
and chromatin remodeling—center around enzymes that modify DNA, histones, or chromatin
organization, respectively. Several drugs that target epigenetic enzymes have been used in cancer
treatment with some success [66–68].

In the heart, multiple epigenetic factors have been shown to regulate transcriptional activities,
shape the process of cardiac morphogenesis, and modulate adult cardiac function [69–71]. ASXL2 is
an essential regulator of histone H2A ubiquitination and H3K27 trimethylation [43,44,72,73]. Our discovery
that the Asxl2−/− heart harbors a population of cardiogenic non-cardiomyocytes suggests that ASXL2
may be part of an epigenetic barrier that prevents a subset of non-cardiomyocytes from adopting
a cardiomyocyte fate. Indeed, several recent reports suggest that epigenetic mechanisms are involved
in regulating the adult heart’s ability to produce cardiomyocytes both via fibroblast reprogramming
and via progenitor differentiation [74–76]. These reports, along with our study, raise the exciting
possibility of unlocking cardiogenicity in the adult heart by transiently modulating the activities of
epigenetic enzymes. For example, if the wildtype heart harbors dormant PCN cells, modulating ASXL2
or its associated epigenetic activities may be an effective way to induce cardiogenic ability in situ,
providing an alternative or a complementing approach to existing strategies of heart regeneration.

Supplementary Materials: The following are available online at www.mdpi.com/2221-3759/4/4/32/s1.
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