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Abstract: In this study, spatial and temporal changes of eight water quality indicators and 30 types
of hazardous substances including volatile organic compounds (VOCs), semi-volatile organic com-
pounds (SVOCs), pesticides, and inorganic matters for the small coastal streams along the West Coast
of South Korea were investigated. In coastal streams with clear seasonal changes in water quality,
larger watershed areas led to greater contamination by particulate matter (i.e., suspended solids,
r = 0.89), and smaller watershed areas led to greater contamination by organic matter (i.e., BOD,
r = −0.78). The concentration of VOCs and pesticides was higher in agricultural areas, and those of
SVOCs and metals were often higher in urban areas. According to the principal component analysis
(PCA), during the wet season, the fluctuation in the water quality of coastal streams was higher in
urban areas than in agricultural areas. Furthermore, coastal streams in residential areas exhibited
higher levels of SVOCs, and those in industrial areas exhibited higher levels of metallic substances.
Based on these results, the spatial and temporal trends of water quality and hazardous substances
were obtained according to watershed characteristics, thereby clarifying the pollution characteristics
of small-scale coastal streams and the major influencing factors.

Keywords: land use; season; pollutant sources; water basin; hazardous material

1. Introduction

Water is the most important resource. It is an essential element not only for humans
but for all living things [1,2]. Water is essential to ensure global food security, and safe water
availability and supply has become the basis for most social functioning [1–3]. Humans use
various types of water, such as surface water, groundwater, and lake water, as resources,
and appropriately manage these resources to secure safe water [3–6]. Meanwhile, coastal
streams usually take the form of small narrow rivers that flow directly into the ocean [7–9].
The west coastal stream of South Korea possesses a relatively compact watershed size
compared to rivers with multi-level tributaries flowing from deep inland [7]. This small-
scale coastal stream has low utility as a drinking water source because of its low flux.
However, it has been used as a drainage channel for intensive runoff in densely populated
urban areas [8–10] or as a water source in agricultural areas [11]. Similar to river tributaries,
small coastal streams are at risk of pollution because of their geographical proximity
to pollutant sources [9,10]. In addition, they are often neglected by authorities because
they drain into the sea within a short period, unlike inland streams that directly impact
drinking water sources [12–14]. The water quality of small coastal streams has important
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implications for the management of coastal ecosystems and can be used to clarify small-
scale water systems. In this regard, Destouni et al. [5] inferred that even small hydrologically
unmonitored near-coastal catchment areas can carry large nutrient and pollutant loads into
the sea at a magnitude similar to or greater than that of monitored river loads.

The water quality of small coastal streams is affected by various factors, such as climate,
topography, land use, and distribution of pollutants [4,10,15–17]. In addition, the diversity
of pollutant sources in stream watersheds can be attributed to land-use change, which
has a considerable impact on the water quality of coastal streams [7,18]. Discharge from
sewage treatment facilities, road runoff, and combined sewer overflows are major pollutant
sources of coastal streams in urban areas [7]. In contrast, untreated sewage (caused by the
lack of appropriate disposal systems), livestock manure, fertilizers, and pesticides are the
major sources of coastal stream pollution in agricultural areas [10,16]. The water quality
of small coastal streams is significantly affected by the inflow of pollutants. Accordingly,
the water quality and watershed scale of streams can easily change depending on rainfall
intensity [19]. Therefore, for improved management of the water quality of small coastal
streams, it is necessary to obtain basic information on the spatiotemporal variations in
water quality according to pollutant sources.

Hazardous substances are released into water systems by various industrial, residen-
tial, and agricultural activities [20–22]. These hazardous substances include industrial
chemicals, antibiotics, pesticides, domestic sewage, pharmaceuticals, persistent organic
pollutants (POPs), and heavy metals. In the past decade, more hazardous substances have
been detected in water systems [21,22]. Therefore, it has become problematic to secure
the safety of water resources [20,23]. In addition to quantitatively analyze water quality
indicators, such as biological oxygen demand (BOD) and chemical oxygen demand (COD),
the inflow of specific hazardous substances, such as phenol and phthalates, should be
qualitatively analyzed for improved management of small coastal streams. Furthermore,
the changes in the inflow of hazardous substances in small coastal streams according to
land use and seasons should be further investigated to clarify the types of hazardous
substances discharged, according to the pollutant source.

In the present study, the spatial and temporal changes in basic water quality indicators
and 30 types of specific hazardous substances were investigated in 16 small coastal streams
in the West Sea of South Korea. The major objectives of this study were to (1) determine the
spatial and temporal characteristics of water quality in small coastal streams, (2) identify the
changes in type and distributions of hazardous substances according to land use and season,
and (3) investigate the differences in spatiotemporal trends according to the characteristics
of small coastal streams. The results are expected to provide basic information to efficiently
manage small coastal streams and ensure water safety.

2. Materials and Methods
2.1. Sampling Sites and Collection

A total of 16 sampling sites (W1–W16) were selected in the West Sea coast of Gyeonggi-
do (N 37◦04′–71′ E 126◦34′–88′), South Korea (Figure 1), where urban and agricultural lands
are widely distributed. The selected coastal streams in this watershed have a maximum of
two stages, and the watershed area of the stream ranges from 3.30 to 82.54 km2 (Table S1).
The selected small coastal streams contain similar stream shapes, riverside vegetation, and
soil, in addition to the presence of levee constructions along the riverside. In addition,
the slopes of the coastal streams are low, so that pollutants flowing into the streams are
discharged relatively slowly into the sea [24]. This coastal watershed is contaminated by
a wide variety of pollutants, including household wastewater, treated wastewater from a
sewage treatment plant, industrial wastewater, and unidentified non-point sources, such as
roads, livestock, and agricultural runoff, which had remarkably compromised the water
quality [24]. The water quality of the selected coastal streams was measured monthly
from August 2019 to July 2020. All surface water samples were obtained during the mid-
day time period of the day (i.e., 12:00–17:00) from the midstream unaffected by seawater
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and collected on a clear day in pre-washed translucent polyethylene terephthalate and
1 L amber brown glass bottles. The collected samples were immediately transferred to
the laboratory and stored at 4 ◦C. The collection and preservation of samples followed
the national method ES 04130.1c [25]. In addition, the analysis indicators were entirely
measured within the preservation period (i.e., <1–7 days).
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2.2. Water Quality and Hazardous Substances

Eight indicators were analyzed to evaluate the water quality of the coastal streams,
namely pH, dissolved oxygen (DO), BOD, COD, total organic carbon (TOC), suspended
solids (SS), total nitrogen (TN), and total phosphorus (TP). Each water quality indicator was
measured in accordance with the South Korean guidelines for water pollution tests [25].
Detailed methods pertaining to analysis can be observed on the webpage of the Ministry
of Environment [25]. The water quality grade of each indicator was based on the criteria
of the Basic Law of Environmental Policy of South Korea [26], along with the SS and TN,
which are not specified in the river criteria, but were based on lake criteria (Table S2). In
addition, flow rates were also measured to evaluate seasonal differences.

A hazardous substance survey was conducted for four small coastal streams (W1, W4,
W5, and W6) with high pollution levels and where the effects of pollutants could be easily
distinguished through the field survey [24]. W4 and W6 are located in the urban area and
presented the high-water pollution among the coastal streams studied. In addition, W1
and W5, are located in agricultural areas with an inflow of non-point sources. The investi-
gated hazardous substances comprised the top 30 substances with the highest detection
rate among 107 substances monitored in the Han River basin between 2007 and 2017 to
determine the distribution of potentially toxic substances in the water system [27,28]. The
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selected hazardous substances were classified into four volatile organic compounds (VOCs:
o-xylene, bromodichloromethane, bromoform, and toluene), seven semi-volatile organic
compounds (SVOCs: phenol, fluorene, fluoranthene, dicamba, diethyl phthalate, dibutyl
phthalate, and dinoseb), nine inorganic matters (perchlorate, Ba, Be, B, Mn, Mo, Se, Zn, and
Ag), 10 pesticides (hexachlorobenzene, carbofuran, heptachlor epoxide A, heptachlor epox-
ide B, heptachlor, diuron, dieldrin, bisphenol-A, metolachlor, and quinoline). As displayed
in Table 1, 16 organic hazardous substances were analyzed by gas chromatography–tandem
mass spectrometry (GC-MS/MS, CP-3800/320-MS TQ, Varian, Agilent, Santa Clara, CA
95051, USA) based on the EPA 8270 method [29]. Perchlorates were analyzed using liq-
uid chromatography–tandem mass spectrometry (LC-MS/MS, 6460 Triple Quad, Agilent,
Santa Clara, CA 95051, USA) according to the standards for water pollution tests of South
Korea [24]. The other organic hazardous substances were analyzed using LC-MS/MS
(6460 Triple Quad, Agilent, USA) according to the EPA 549.2 method [30]. The metals were
analyzed by inductively coupled plasma mass spectrometry (ICP-MS, CAP Q, Thermo,
Waltham, MA 02451, USA) using the EPA 200.8 method [31]. The detailed operating
conditions of the instrument are listed in Tables S3 and S4, and all analysis data used
verified results according to standardized QA/QC test procedures related to the analysis of
hazardous substances [29–31].

Table 1. Hazardous substance analysis indicators and analysis methods.

No. Group Compound Analyzer Pretreatment
Method

Analysis
Method

Analysis
Group

V1 VOCs o-xylene GC/MS/MS - EPA 8270 A
V2 VOCs bromodichloromethane GC/MS/MS - EPA 8270 A
V3 VOCs bromoform GC/MS/MS - EPA 8270 A
V4 VOCs toluene GC/MS/MS - EPA 8270 A
S5 SVOCs phenol GC/MS/MS EPA 5030C EPA 8270 A
S6 SVOCs fluorene GC/MS/MS EPA 5030C EPA 8270 A
S7 SVOCs fluoranthene GC/MS/MS EPA 5030C EPA 8270 A
S8 SVOCs dicamba LC/MS/MS - EPA 549.2 C
S9 SVOCs diethylphthalate GC/MS/MS - EPA 8270 A

S10 SVOCs di-n-butyl phthalate GC/MS/MS - EPA 8270 A
S11 SVOCs dinoseb GC/MS/MS - EPA 8270 A
I12 Inorganic perchlorate LC/MS/MS - ES 04364.0 D
I13 Inorganic barium ICP/MS EPA 5030C EPA 200.8 B
I14 Inorganic beryllium ICP/MS EPA 5030C EPA 200.8 B
I15 Inorganic boron ICP/MS EPA 5030C EPA 200.8 B
I16 Inorganic manganese ICP/MS EPA 5030C EPA 200.8 B
I17 Inorganic molybdenum ICP/MS EPA 5030C EPA 200.8 B
I18 Inorganic selenium ICP/MS EPA 5030C EPA 200.8 B
I19 Inorganic zinc ICP/MS EPA 5030C EPA 200.8 B
I20 Inorganic argentum ICP/MS EPA 5030C EPA 200.8 B
P21 Pesticides metolachlor LC/MS/MS - EPA 549.2 C
P22 Pesticides diuron GC/MS/MS EPA 5030C EPA 8270 A
P23 Pesticides hexachlorobenzene GC/MS/MS - EPA 8270 A
P24 Pesticides carbofuran LC/MS/MS - EPA 549.2 C
P25 Pesticides heptachlor epoxide A GC/MS/MS - EPA 8270 A
P26 Pesticides heptachlor epoxide B GC/MS/MS - EPA 8270 A
P27 Pesticides heptachlor GC/MS/MS - EPA 8270 A
P28 Pesticides dieldrin GC/MS/MS - EPA 8270 A
P29 Pesticides bisphenol A LC/MS/MS - EPA 549.2 C
P30 Pesticides quinoline LC/MS/MS - EPA 549.2 C

2.3. Statistical Analysis

All statistical analyses were conducted using the RStudio program (Boston, MA, USA),
and all the variables were checked for normality (Shapiro–Wilk test, p > 0.05). Cluster
analysis (CA) was conducted using the Ward’s method to investigate the differences in
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water quality according to the pollutant source [6]. In addition, t-test, ANOVA, and post-
hoc (Scheffe’s method) tests were performed to identify differences between the clusters.
Pearson’s analysis was performed for 26 indicators with secured normality to investigate
the correlation between the variables (α < 0.05). We confirmed the suitability of PCA
by Kaiser–Meyer–Olkin (KMO) and Bartlett’s test (KMO: p > 0.05, Bartlett’s: p < 0.05).
Furthermore, PCA was conducted using over 1248 water quality data for 26 variables in
small coastal streams. Variables that do not exhibit a normal distribution were excluded
from the PCA analysis, and the variable data were used after normalization.

3. Results and Discussion
3.1. Water Quality by Season

The analysis of basic water quality indicators for the 16 coastal streams was divided
into dry (October–March, average rainfall 46.5 mm/h) and wet seasons (April–September,
average rainfall 155.3 mm/h) [32], as shown in Figure 2. Each water quality indicator was
comparatively evaluated to identify the seasonal trends. BOD displayed an insignificant
difference between the dry and wet season, but COD displayed higher average values
in the wet season than in the dry season. The average values in the wet season (BOD
5.25 mg/L, COD 10.46 mg/L) were higher than the values for grade III (fair), which was
set as the standard for coastal stream water quality in the West Coast [24]. For COD, the
proportion of measured data exceeding grade III (i.e., >7 ppm) reached 81.3% in the wet
season. This demonstrates that most small coastal streams were under significant organic
contamination during the wet season.
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Figure 2. Boxplot of the concentration of organic (BOD, COD), particulate (TOC, SS), and nutrient (TN,
TP) pollutants in coastal streams according to seasons. Lowercase letters (a,b) indicate significantly
different groups (p < 0.05, n = 96).

The average TOC and SS values were higher in the wet than in the dry season, and
both average values were higher than the limit of grade III in the wet season. The lowest
proportion of SS exceeding grade III was observed at 10.4% in the dry season. It reached
30.2% in the wet season, which represents the highest increase rate among all indicators
(Table S5). In addition, the coefficient of variation (CV) of the SS data was higher in the
wet season, at 1.56, compared to other indicators (CV, 0.44–0.95), except for TP. Meanwhile,
the TOC concentration was comparatively low even at high SS concentrations in the wet
season. This indicates that the particulate matter inflow during the wet season possessed a
relatively higher content of inorganic matter, such as soil and road sediment, compared to
the dry season [33].

Similar to the above indicators, the average values of TN and TP also exceeded
grade III limits in the wet season, and approximately half of them exceeded grade III
values during the wet season. The average TN value was higher in the dry than in
the wet season. The average TN in the dry season was 6.12 mg/L. In addition, 64.6%
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exceeded the grade III standard but decreased to 5.02 mg/L in the wet season. Considering
that the decrease in TN during the wet season was low and its concentration of TN
exhibited low variability (CV = 0.44) regardless of the season, its decrease in the wet
season was attributed to a dilution effect caused by the flow rate increase. This change
was greatest in W10, where the flow rate fluctuation was large (Table S5). Otherwise,
Xu et al. [34] reported that TN concentrations might reach a fixed value (or range) in
small shallow lakes receiving domestic sewage and farm drainage water by balancing the
ecological water nutrients. This regulates algae and plant growth according to temperature,
thereby mitigating eutrophication. The changes of TP were similar to those of SS, with
a large variability (CV = 2.59) in the wet season, which appeared to be highly correlated
with the inflow of particulate matter from non-point pollution sources during the wet
season. Particularly, TP at W1 (agricultural area) was the highest, with an average of
2 mg/L (Table S5), and it was affected by pollutants, such as livestock manure and fertilizer
utilization. In addition, among the coastal streams located in urban areas, W4 and W6
exhibited high values for all indicators, indicating a high degree of pollution.

3.2. Water Quality by Watershed Size

The CA was performed on the water quality data according to season, as displayed in
Figure 3. The coastal streams were classified into three clusters. The ANOVA and post-hoc
analysis (p < 0.05) confirmed that a significant difference exists between the water quality
of the clusters. The water quality of Cluster 1 was significantly lower in all indicators, and
was significantly higher in Cluster 2. Thus, Cluster 2 presented the highest pollution levels
among all clusters (Table 2). The water quality of Cluster 3 was similar to that of Cluster 1,
but its SS was significantly higher than that of Clusters 1 and 2. In addition, the average SS
of Cluster 3 increased from 27.92 mg/L in the dry season to 41.83 mg/L in the wet season.
Regardless of season, W2, W3, W5, W9, W14, and W15 belonged to Cluster 1; W4, W6,
and W16 to Cluster 2; and W11 to Cluster 3. Some coastal streams shifted from Cluster 1
to Clusters 2 or 3 in the wet season. For instance, W1, W7, W12, and W13 shifted from
Cluster 1 to 2, and W8 and W10 from Cluster 1 to 3. Clusters 2 and 3 presented high levels
of contamination by organic and particulate pollutants, respectively, which suggests that
organic and particulate matter represented their major pollutant inflow during the wet
season. These differences in water quality were likely related to the watershed size rather
than land use. The major land use pertaining to these areas with seasonal changes were
urban and agricultural activities. The watershed area of coastal streams that changed from
Cluster 1 to 2 was 3.30–14.97 km2, which is smaller than the watershed size of those that
changed to Cluster 3 (18.77–33.58 km2). In addition, the average flow rates of the coastal
streams that changed to Clusters 2 and 3 were 0.07 and 0.19 m3/s, respectively, which
represents a significant difference in the flow rate (t-test, p < 0.05).

Table 2. Mean value (mg/L) of water quality according to season and cluster.

Indicator
Dry Season Wet Season

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

BOD 3.41 a * 9.05 b 2.65 a 3.36 a 7.17 b 4.54 a

COD 6.93 a 13.36 b 5.30 a 7.89 a 13.12 b 9.40 ab

TOC 3.78 a 7.68 b 2.48 a 4.67 a 7.66 b 5.05 ab

SS 5.82 a 12.95 b 27.92 c 11.54 a 17.33 b 41.83 c

TN 6.23 a 6.86 a 2.59 b 4.27 a 6.03 a 4.16 a

TP 0.41 a 0.37 a 0.09 b 0.26 a 0.83 b 0.21 a

* Difference between lowercase letters within each group (quality indicator) between clusters means significant
statistical difference (p < 0.05).
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Figure 3. Heatmap showing the quality grade of coastal streams and seasonal changes in the cluster
of coastal streams.

To evaluate the correlation between seasonal water quality and watershed size during
the wet season, Pearson correlation analysis was performed on six streams that changed
clusters, using the mean value of the wet season, as shown in Figure 4. The flow rate
(r = 0.91) and SS (r = 0.89) were significantly positively correlated with watershed size,
whereas BOD, which represents organic pollutants, was significantly negatively correlated
with it (r = −0.78). In contrast, TP was not significantly correlated to watershed size because
of its large variability, but it demonstrated a negative correlation with it (r = −0.49). The
increased flow rate in the stream seemed to contribute to the inflow of particulate matter,
which is consistent with the results stating that SS was mostly composed of inorganic
substances, such as soil and road sediment from non-point sources, in the wet season.
Overall, the flow rate varied according to watershed size. Therefore, coastal streams with a
relatively large flow rate (i.e., Cluster 3) were more likely to have a high inflow of particulate
matter, such as soil and road sediments, from non-point sources. In contrast, coastal streams
with a low watershed size (i.e., Cluster 2) were more likely to present an inflow of dissolved
organic pollutants because of their low flow rate. These results indicate that the water
pollution in these small coastal streams increased mainly because of the inflow of pollutants
during the wet season. Accordingly, watershed size can be a major factor influencing the
water quality of small coastal streams owing to its influence on non-point pollution sources
during the wet season.
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3.3. Changes in the Inflow of Hazardous Substances According to Season and Land Use

To investigate the spatiotemporal characteristics of four small coastal streams accord-
ing to land use, the seasonal distribution and potential sources of hazardous substances
were investigated (Figure 5). Out of the total 30 investigated hazardous substances, S8
(dicamba), P21 (metolachlor), P27 (heptachlor), and P30 (quinoline) were not detected in
the stream water samples. In addition, V3 (bromoform) and P24 (carbofuran) were detected
only once throughout the study period (Table S6). The concentrations of all other haz-
ardous substances were significantly lower than the internationally recommended criteria
for drinking water [27,28]. Therefore, aquatic ecology and humans were at lower risk.
However, different trends were observed depending on season and land use. The relative
concentrations of V1 (o-xylene) and P28 (dieldrin) were significantly higher in the wet than
in the dry season. In addition, the relative concentrations of S7 (fluoranthene), I12 (perchlo-
rate), and P23 (hexachlorobenzene) were higher in the wet season as 4.2–4.9, suggesting
that the hazardous substances are highly likely to be introduced from nonpoint sources. On
the other hand, the relative concentrations of S11 (dinoseb) and P25 (heptachlor epoxide A)
were < 1, with higher values in the dry than in the wet season. These results may indicate
that the substances are continuously detected after exposure to water, considering that
they are persistent organic pollutants (POPs) [27,28]. According to land use, in agricultural
areas, no hazardous substances exhibited high concentrations in the dry season. However,
six hazardous substances exhibited high concentrations in the wet season. These hazardous
substances were related to pesticides (e.g., P22, P26, and P28), which are commonly used in
agricultural areas. In addition, both V1 and P28 are known to be used as inert ingredients
in agricultural crop products, post-harvest grain storage products, and residential pesti-
cides [35]. In urban areas, the concentrations of SVOCs and inorganic matter were mostly
high during the wet season, and SVOCs likely originated from non-point anthropogenic
sources. The relative concentrations of S5 (phenol), S9 (diethylphthalate), and P25 were
high, and higher concentrations were observed in urban areas. In this context, S5 is usually
observed in complex wastewater from several industries, such as chemical, petrochemical,
coke plant, and refineries [36]. In addition, S9 is widely utilized in plastics, coatings, and
cosmetics [37,38]. Accordingly, S5, S9, and P25 displayed particularly high values in W4
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(Table S7), where the industrial areas are distributed. In summary, the results confirmed
that hazardous substances in coastal streams can be distributed differently depending on
the season and land use, and most of the hazardous substances showed high concentrations
in the urban watershed during the rainy season.
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3.4. Spatiotemporal Trends by Pollutant Source

To investigate the correlation between and among water quality indicators and haz-
ardous substances, the Pearson correlation analysis was performed excluding the 12 haz-
ardous substances with insufficient data (Figure 6). Among the water quality indicators,
COD exhibited the highest correlation with TOC (r = 0.92, p < 0.05), and hazardous sub-
stances exhibited a significant correlation (r > 0.7, p < 0.05) with COD, SS, and TOC. COD
was positively correlated with S5 (phenol), S9 (diethylphthalate), I16 (manganese), I19
(zinc), and P25 (heptachlor epoxide A); and TOC was positively correlated with S5, S9, and
I19. Hazardous substances were highly correlated with indicators of recalcitrant organic
matter and demonstrated a high concentration mostly in urban areas during the wet season
(Figure 5). In addition, SS was positively correlated with S7 (fluoranthene), displaying a
result consistent with previous studies confirming the fact that highly hydrophobic haz-
ardous substances mostly exist in the adsorbed state on the particles rather than dissolved
substances [39]. Among the hazardous substances, S5 displayed a significant positive cor-
relation with S10 (r = 0.81, p < 0.05), and S9 exhibited a significant positive correlation with
I19 (r = 0.80, p < 0.05), indicating that the pollutant sources of these hazardous substances
could be similar and/or the fate of these three hazardous substances could be controlled by
the same biogeochemical and physical processes [8,36].
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Figure 6. Pearson correlation between water quality indicators and hazardous substances. The size
and color of the circles indicate the correlation coefficient values, and the cross indicates statistical
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alphabet indicates each hazardous substance, see Table 1).

To further investigate the changes in water quality and inflow of hazardous substances
according to pollutant source, PCA was conducted using water quality and hazardous
substances as variables (Figure 7). Principal components 1 and 2 (PC1 and PC2) explained
27.3% and 11.8% of the total variations, respectively. Although the coverage of data
variability was rather low to understand the entire data set, it was possible to confirm the
water quality trend of coastal streams through each major component. PC1 displayed a
positive relationship with most water quality indicators (i.e., COD, TOC, BOD, SS, TN,
and TP) but a negative relationship with DO (Figure 7a). The loading of variables that
cause oxygen depletion (e.g., COD, TOC) exhibited a positive value for PC1, whereas
that for DO exhibit the opposite value, suggesting that a positive PC1 score represents
the degree of water pollution. PC2 displayed a significant positive correlation with metal
substances, such as I17 (molybdenum), I18 (selenium), and I20 (argentum), and a significant
negative correlation with organic pollutants, such as V1 (o-xylene) and S7 (fluoranthene).
Furthermore, S7, which is a PAH that can be discharged from roads and vehicles [36,37], was
negatively correlated with organic water quality indicators. Therefore, PC2 was assumed
to represent the type of hazardous substances. Specifically, we assumed that when PC2
was positive, the degree of contamination by inorganic matters was high, and when PC2
was negative, the influence of organic matter was high.
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month (1 for January, 2 for February, and so on).

The comprehensive evaluation of monthly data confirmed that seasonal water quality
fluctuations varied according to land use (Figure 7b). In W4 and W6, which are located
in urban areas, the seasonal data fluctuation was larger than that for W1 and W5, which
are located in agricultural areas. Coastal streams in urban areas displayed extremely high
PC1 during the wet season compared to those in agricultural areas. As of January 2020,
the water pollution level of the coastal streams increased but further decreased again
during the wet season (Figure 7b). These results indicate that the water quality of coastal
streams deteriorates because of the influx of pollutants during the wet season, but it is
recovered in the dry season, further confirming that water quality is more deteriorated by
the inflow of non-point pollutants from urban areas. As confirmed earlier, this is consistent
with the result of high concentrations of specific hazardous substances (i.e., S5, S9, etc.)
from urban areas during the wet season. However, in coastal streams of urban areas, the
occurrence of hazardous substances seemed to differ depending on the main pollutant
sources. For instance, in W4, which is near an industrial area [24], the inflow of metal
substances was high during the wet season, whereas in W6, which is in a residential
area [24], the high inflow of organic pollutants (i.e., S8, fluoranthene) likely originated
from roads and agricultural land [40,41]. Therefore, the results confirmed that different
pollution patterns and characteristics in this small coastal stream are undoubtedly affected
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by pollutant sources, such as industrial effluents, road runoff, and pesticides, rather than
land use.

4. Conclusions

In this study, changes in the water quality of 16 small coastal streams and hazardous
substances in four watershed areas were evaluated according to the characteristics of
their respective watershed. We observed higher pollution levels in the wet than in the
dry season. Particularly, coastal streams with a relatively large watershed area presented
greater contamination by particulate matter (SS, r = 0.89, p < 0.05) during the wet season.
In addition, greater pollution by organic matter (with BOD, r = −0.78, p < 0.05) was
observed for smaller watersheds. Most hazardous substances also demonstrated higher
concentrations in the wet season. Furthermore, the type of hazardous substances at higher
concentrations changed depending on the pollutant source. VOC and pesticide levels,
SVOC levels, and metal concentrations were higher in agricultural areas, residential areas,
and industrial areas, respectively. These trends were more pronounced in the PCA results,
which indicated a more evident inflow of pollutants during the wet season in urban areas
regarding industrial and residential sources than in agricultural ones. Our results confirm
that the spatiotemporal characteristics of water quality indicators and hazardous substances
are highly influenced by watershed characteristics, such as climate, size, land use, and
distribution of pollutants. Although this study has limitations regarding a wide variety of
sampling points for monitoring of hazardous substances, the results also suggest that water
system management in small coastal streams can be more easily performed by examining
the characteristics of water pollution. In future research, it is expected that more various
analyses can be conducted through water quality monitoring at multiple points exposed to
more diverse pollutants.
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