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1. Introduction

With the increasing global population, it has become more challeng-

ing to ensure food and nutrition security for the ever-growing population.

Climate change, global warming, reduction in agricultural land, and an

ongoing pandemic are the major constraints in the adequate production

of agricultural food supply. According to the World Health Organization

(WHO), around 47 million children below the age of 5 are wasted globally,
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from which 14.3 million children are severely affected. Apart from human

health and economic crises, pandemics impart severe impact on agricultural

productivity and food availability (Mumtaz et al., 2021). The current

coronavirus outbreak has further intensified the global hunger index and

the already existing nutritional crisis (Muthamilarasan and Prasad, 2021).

Therefore, the term nutritional security has come into the context, which

needs to be focused on and prioritized on the agenda of plant breeders.

Since the major components of nutrients, including carbohydrates, proteins,

fats, vitamins, fibers, micro-, and macronutrients, are not produced in the

human body, they must absorb from external dietary sources rich in them

(Reider et al., 2020). The per-day recommended values of the essential

micronutrients like zinc, iron, and vitamin A are 15mg, 15mg, and 600μg,
respectively. These nutrients are yet to be fortified in commonly utilized staple

crops, including rice and wheat, which contains suboptimal fraction only

(Gaikwad et al., 2020; Ram et al., 2020). However, several underutilized

cereals, including millets, contain ample micronutrients, vitamins, dietary

fibers, micro- and macronutrients that can be supplemented in a diet plan

(Dhaka et al., 2021; Shyamli et al., 2021).

Advancements in genetics and genomics studies have led to detecting

genes, alleles, and QTLs underlying complex nutritional traits in cereals.

These genetic determinants can further be utilized in the breeding program

to enhance grain nutritional content. Besides molecular breeding, several

biotechnological approaches, including recombinant DNA technologies

and targeted genome editing, are also reported to improve cereals’ nutri-

tional potential (Singh et al., 2020). During the last decade, the application

of linkage disequilibrium (LD) based association mapping (AM), often ter-

med genome-wide association studies (GWAS), has been increased signifi-

cantly in cereals focusing mainly on nutrient traits (Gupta et al., 2014; Jaiswal

et al., 2019). A GWAS in a crop can be performed with two primary pur-

poses: firstly, to dissect marker-trait associations (MTAs) for a given pheno-

type, and secondly, to identify all the available QTLs, alleles, and interactions

among them. The results obtained are an overview of the genetic basis of the

trait, and the marker-trait associations which are most auspicious can be rec-

ognized and shortlisted for further analysis. MTAs for several nutrition-

related traits have now been carried out in several cereal species. The recent

advancements in whole-genome sequencing platforms have also prompted

the application of GWAS study with fine resolution (Xiao et al., 2017).

Improved computational biology tools have now been generated to extract

more meaningful information from genome sequencing data and the
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high-throughput phenotypic evaluation of a large number of accessions

performed using advanced phenomics platforms. Following MTAs through

GWAS, the reverse genetics approach is used to validate the molecular func-

tion of identified candidate gene(s). This includes gene silencing through

RNA interference (RNAi), retrotransposon-mediated gene disruption,

targeted genome editing using CRISPR/Cas9, and variants of CRISPR/

Cas technology (Singh et al., 2021). The present chapter discusses the

prerequisite genomic resources and various approaches to association map-

ping. Also, the chapter elaborates on integrating association mapping with

multiple omics technologies, applying improvement of nutritional traits,

and providing a roadmap for crop improvement.

2. Population structure and genetic base-broadening

Genetic resources in terms of germplasm collection form the base for

crop improvement (Fig. 1). The commencement of an association mapping

study should begin with gathering all the necessary information about the

genotypes that are to be included in it. The selection of germplasms is a

critical determinant of a prolific association study (Yu et al., 2006). Prior

knowledge regarding genetic diversity, degree of genome-wide LD, and

Fig. 1 Next-generation genomics approaches available for improving the nutritional
profile of crops by exploiting genetic diversity.
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population structure in the population are requisite in determining the

marker density, mapping resolution, selection of statistical methods for asso-

ciation analysis, and the strength of identified marker-trait associations (Zhu

et al., 2008). The association mapping population can be divided into five

groups based on population structure and relatedness: (i) ideal sample set

with fine population structure and familial relatedness, (ii) multifamily

sample set, (iii) sample set with population structure and but without familial

relatedness, (iv) sample set consisting both population structure and famil-

ial relatedness, and (v) sample set with a strong population structure and

familial relatedness. Based on the source of the population, it can be divided

into germplasm bank collection, elite germplasm, and synthetic populations

(Breseghello and Sorrells, 2006). From the germplasm bank collection,

genotypes from the core collection can provide a source of genetic diversity

due to the encompassing of a vast allele diversity and a population size that is

easy to handle, making it a good source for association studies. The ploidy

level should be evaluated of accessions from a plant species whose genetic

architecture is unknown, specifically if the composed population comprises

wild accessions collected from a germplasm bank. This will reduce the effort

to distinguish the effects of functional polymorphisms from allele dosage.

Biparental populations, multiparental populations [nested association

mapping (NAM) population, multiparent advanced generation intercross

(MAGIC) population, and random-open-parent association mapping

(ROAM) population], and breeding populations are already being used

for GWAS and linkage studies. Biparental mapping population generated

by crossing two contrasting parents. It includes F2, F2:3, backcross populations,

advanced backcross populations, Double haploids population (DH), Near

Isogenic Lines (NILs), and Recombinant Inbred Lines (RILs). The biparental

population possesses a lower level of allelic variations and segregates only for

a limited number of traits (Tripodi, 2021). The selection of any of these

populations depends on the nature of the breeding system (inbred vs outbred)

of particular crop species; for example, a multiparental population such as

NAM is applicable for the cross-pollinated species like maize but may not

be as suitable for an autogamous species. Various variants of the NAM pop-

ulation, including backcross NAM (BC-NAM), doubled haploid NAM

(DH-NAM), and advanced backcross NAM(AB-NAM), have also been gen-

erated for crop plants (Li et al., 2016; Nice et al., 2016). It was suggested that a

multiple-hybrid population (MHP) could also be applied for cross-pollinated

species than the biparental or multiparental population (Wang et al., 2017).

A comparative analysis of different mapping populations used for the

GWAS analysis is illustrated in Table 1.
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3. Genotyping approaches for association mapping

DNAmarkers are utilized to analyze linkage maps, association studies,

quantitative trait loci (QTL) findings, and marker-assisted selection (MAS)

in crops. Before the next-generation sequencing (NGS) era, the digestion-

based markers such as Random Amplified Polymorphic DNA (RAPD),

Simple Sequence Repeats (SSRs), and Amplified Fragment Length

Polymorphisms (AFLPs). Advancement in NGS technology has enhanced

computational capabilities. The introduction of new rapid genotyping

technologies in the past decade has prompted the identification of high-

throughput heritable genomicmarkers for most essential crops. This has illu-

minated the path of discovering causal genetic polymorphic factors for any

phenotype. The application of large numbers of high-throughput genotypic

markers within the entire set of the population has shifted the population

genomics to the level of pangenome genetics. This allows the generation

of several types of structural marker systems, including copy number variations

(CNVs), presence/absence variations (PAVs), insertion-site-based polymor-

phisms (ISBPs), InDels, transposons, and epigenetic variations.

NGS technology is primarily based on large-scale parallel sequencing

and imaging methods to produce as large as 100 billion bases in a single

run (van Dijk et al., 2018). Several advanced platforms are available for

NGS technology, including the Roche 454 FLX Titanium, Ion Torrent

PGM, Illumina MiSeq, and HiSeq2500. Most of these platforms efficiently

generate dependable DNA sequences and show high coverage on average,

GC-rich, and a modest level of AT ratio in the genome. However, these

Table 1 Comparative analysis of mapping populations used for GWAS study in plants.
Features Biparental mapping NAM MAGIC

Number of parents involved 2 >2 8

Mapping resolution Low High High

Power of mapping High High Moderate

Recombination derived LD Yes Yes Yes

Historical LD No Yes Yes

Chance to detect rare QTLs High High Moderate

Multiple alleles detection Yes Yes Up to 2 alleles

Genetic base and parental diversity Narrow Board Moderate
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factors affect the quality of the results generated and the application in which

it has to be utilized. The amount of genotypic data generated through these

platforms often creates analytical and statistical challenges, requiring a

suitable computational program for accurate analysis. There is an affluence

of single nucleotide polymorphisms (SNPs) due to the advancements of

NGS techniques, and hence these have become the most extensively

exploited markers for association studies. The identification and genotyping

of SNPs at whole-genome levels in a given set of the population is known as

genotyping-by-sequencing (GBS). GBS has rapidly gained popularity

because of its comparatively low cost, even in the species lacking the refer-

ence genome sequence (Scheben et al., 2017). This technique detects nucle-

otide sequences and scores SNPs simultaneously, which surpasses the DNA

marker development procedure.

4. High-throughput phenotyping platforms
and statistical tools

Along with genotyping, phenotyping is another crucial factor that

decides the fate of a successful association study. Accurate phenotyping is

an extensively distributed and arduous step that requires large-scale manage-

ment and quantification of plants. It involves maintaining hundreds or

thousands of plants grown at different geographical locations in diverse envi-

ronments over multiple years. The data obtained from these experiments is

utilized in studies conducted to delineate factors governing stress, yield,

quality, and nutritional aspects in crops. There have been rapid advance-

ments in genotyping facilities; however, phenotyping technologies have

not been developed to that extent and consume much more time and

employees. The experimental field design is a critical parameter for an

efficient association study. The data generated from an adequately designed

field experiment will be more reliable, and statistical deductions will be

more. The foundation of a reliable experimental design depends on the size

of the experimental unit, replication, blocking, and randomization (Casler,

2015). Other factors are to be considered while carrying out phenotypic

analysis, including photoperiod sensitivity, flowering time, pathogen

susceptibility, water, and fertilizer applications.

High-throughput phenotyping (HTP) methods can provide precise and

rapid results for a large set of accessions. It is generally known as phenomics,

and it utilizes automated technologies to measure phenotypic traits (Rafalski,
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2010). However, not all phenotypic traits can be visually evaluated and

thus create a genotype-phenotype bottleneck. Nevertheless, image-based

phenomics provides a promising platform for the visually scored traits

to record the dynamic changes occurring throughout the experiment.

Examples for some of the existing phenomics platforms are International

Plant Phenomics Network (IPPN), European Plant Phenotyping

Network (EPPN), Australian Plant Phenomics Facility, French Plant

Phenomics Network (FPPN), German Plant Phenotyping Network

(DPPN), High-Throughput Rice Phenotyping Facility (HRPF), Green

Crop Network (GCN), Biotron Experimental Climate Change Research

Facility, Laboratory of Plant Ecophysiological responses to Environmental

Stresses (LEPSE), The Australian Plant Phenomics Facility, and LeasyScan

at ICRISAT (Knecht et al., 2016). These noninvasive HTP platforms utilize

advanced technologies including infrared thermography and imagery, fluo-

rescent spectroscopy, 3D reconstruction, light detection and ranging

(LIDAR), magnetic resonance imaging, positron emission tomography,

canopy spectral reflectance, nuclear magnetic resonance, hyperspectral

imaging, and digital RGB imaging for the measurement and assessment

of various traits like plant growth, structure, water relations and other

dynamic attributes (Mir et al., 2019). This whole process generates large-

scale data and thus requires its systematic storage, management, and retrieval.

New methods of data mining and machine learning can provide valuable

assistance in managing large datasets. HTP has been used in many crop stud-

ies. Campbell et al. (2015) used temporal imaging in 378 diverse rice lines to

understand the factors behind salinity-induced growth in plants. Further, a

greenhouse-based HTP platform helped assess water usage and projected

shoot area in 357 rice genotypes (Baba et al., 2020). The genetic information

combinedwithHTPdata can providemore depth in genotype-trait association

analysis.

Several software are available to carry out association mapping, and new

methodologies and programs keep developing for the same. The frequently

used software package for plants is Trait Analysis by aSSociation, Evolution,

and Linkage (TASSEL). It provides a user-friendly interface and gets

updated with new methods and features (Bradbury et al., 2007). Other soft-

ware, including R, STRUCTURE, Genome Association and Prediction

Integrated Tool (GAPIT), Spatial Pattern Analysis of Genetic Diversity

(SPAGeDi), and others along with their applications related to association

studies are listed in Table 2.
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Table 2 List of software used in association mapping analysis.
Software package Focus Remarks Website

TASSEL (Trait

Analysis by

aSSociation,

Evolution and

Linkage)

Association

analysis

Freely available. It

calculates marker-traits

associations, evolutionary

relationships, and linkage

disequilibrium

https://www.

maizegenetics.

net/tassel

R General Freely available for

statistical computing and

graphics

http://www.

r-project.org/

STRUCTURE Population

structure

Widely used and freely

available for evaluating

population structure

analysis

https://web.

stanford.edu/

group/

pritchardlab/

structure.html

GAPIT (Genome

Association and

Prediction

Integrated Tool)

Association

analysis

Widely used and freely

available for GWAS and

Genomic Selection (GS).

Methods used are Q+K,

CMLM, FarmCPU and

BLINK

http://www.zzlab.

net/GAPIT/

SAS (Statistical

Analysis System)

General Used for data mining,

statistical analysis and

simulation

http://www.sas.

com

SPAGeDi (Spatial

Pattern Analysis of

Genetic Diversity)

Population

relatedness

Freely available for

characterizing spatial

genetic structure of

mapped population

http://ebe.ulb.ac.

be/ebe/

SPAGeDi.html

GenAlEx Population

relatedness

Runs within Microsoft

Excel and provides both

frequency-based and

distance-based analyses

https://

biology-assets.

anu.edu.au/

GenAlEx/

Welcome.html

Matapax

(MArker-Trait

Association

Platform And

eXplorer)

Association

analysis

Web-based freely

available program that

utilizes R library EMMA

and GAPIT

http://matapax.

mpimp-golm.

mpg.de/

GenAMap Association

analysis

Freely available. Visual

analytics system for

structured association

mapping

http://sailing.cs.

cmu.edu/

genamap
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5. Integrating omics with association mapping

Other than genomics, different omics approaches, including trans-

criptomics, proteomics, and metabolomics, are also essential to understand-

ing gene function. An integrated omics approach can be employed together

with association mapping studies to decipher the underlying mechanism of

phenotype variation. Global transcriptome analysis is used to determine the

transcripts abundance, comparative variation in gene expression, and epige-

netic silencing (Singh et al., 2021).With the advancements in NGS technol-

ogy, RNA-Seq based expression analysis has been available for many crop

plants. Unlike genome sequencing, RNA-Seq is not largely affected by the

Table 2 List of software used in association mapping analysis.—cont’d
Software package Focus Remarks Website

Pascal (Pathway

scoring algorithm)

Enrichment

analysis

Computes gene and

pathway scores from

marker-trait association

statistics

https://www2.

unil.ch/cbg/

index.php?

title¼Pascal

NAM (Nested

Association

Mapping)

Association

analysis

Designed to carry out

association studies in

NAM populations

through likelihood and

Bayesian methods

https://cran.

r-project.org/

web/packages/

NAM/index.html

SNPEVG Visualization

tool

Graphical tool for

visualization of SNP

effects in GWAS

https://

animalgene.umn.

edu/snpevg

EMMAX (Efficient

Mixed-Model

Association

eXpedited)

Association

analysis

Utilize variance

component model for

considering sample

structure in association

mapping

http://genetics.cs.

ucla.edu/emmax/

PLINK Association

analysis

Open source tool that can

handle large datasets

http://zzz.bwh.

harvard.edu/

plink/

HaploView Haplotype

analysis

User friendly tool for

analysis and visualization

of LD haplotype maps

https://www.

broadinstitute.

org/haploview/

haploview
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organism’s ploidy or large genome complexity. By analyzing the transcript

sequence of a large number of accessions, SNP associated with genic regions

can be analyzed. Thus, it can be utilized to conduct a GWAS study to delin-

eate the effect of the difference in gene and regulatory sequence on desirable

traits. The significant advantage of a transcriptome-wide association study

(TWAS) is its applicability to crops with limited genomic resources.

Several TWAS has been carried out in various crops, including rapeseed

(Tang et al., 2021), maize ( Jia et al., 2020; Kremling et al., 2019), rice

(Anacleto et al., 2019), barley (Sharma Poudel et al., 2019), and others.

The integrated use of GWAS and transcriptome data is much more reliable

evidence of the association of genic regions to the desirable trait. Similarly,

metabolite-based GWAS, often called mGWAS, is a recently emerging area

and gaining popularity as metabolites directly affect plant phenotype.

Considering the relative accumulation of a specific metabolite in the

accessions of a population as trait, mGWAS can be performed. The major

platforms used for the separation, detection, characterization, and quantifica-

tion of metabolites are based on chromatography coupled to mass spectrom-

etry or nuclear magnetic resonance (NMR) spectroscopy. Metabolome

profiling integrated with advanced genomics to elucidate the genomic loci

controlling natural diversity in the abundance of specific metabolites.

Several such studies have been carried out in various crop species, including

wheat (Chen et al., 2020; Shi et al., 2020), maize (Zhou et al., 2019), rice

(Matsuda et al., 2015), and others. These studies suggest that the metabolites

can bridge genotype and phenotype for a specific trait. The integrative

approach consisting of GBS, metabolic profiling, and transcriptome analysis

can provide an in-depth mechanism behind the cause of natural variation

in a given population. Fig. 2 briefly illustrates the strategies of integrating

omics with association mapping and further crop improvement through

marker-assisted breeding (MAB).

6. Application of association mapping in genetic
improvement of nutritional traits

Association mapping has primarily been used for exploring polymor-

phisms governing variations in the desired trait in cereals. There are many

studies reported where association mapping has been applied in determining

genetic regulators of agronomic and physiological traits in various crops

(Dang et al., 2014; Kikuchi et al., 2017; Maurer et al., 2016; Melandri

et al., 2020; Pauli et al., 2014; Sahoo et al., 2020; Setter et al., 2011;
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Fig. 2 Schematic representation of the steps involved in association analysis and integration of various omics approaches.
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Tian et al., 2011; Zhang et al., 2014). In this section, we have focused on

applying association mapping in delineating nutritional traits in cereal crops.

6.1 Protein content
A minicore collection was selected from the rice global population collec-

tion of the US Department of Agriculture (USDA). Through association

mapping, variation in protein content (5.4–11.9%) helped identifying eight

nucleotide markers that were linked with genes of protein precursors

(Bryant et al., 2013). Laidò et al. (2014) selected 970 polymorphic DArT

markers for marker-phenotypes association analysis in 230 inbred wheat

lines. The generalized linear model (GLM) and mixed linear model

(MLM) approach of association mapping identified 44 MTAs for protein

content that identified 39 putative QTLs. From these QTLs, one was deter-

mined to be significantly linked to the Gpc-B1 gene. This gene plays an

essential role in determining protein content in both tetraploid and hexa-

ploid wheat. This gene is translated into a NAC-domain transcription factor

that increases the rate of senescence, which culminates in the increased

mobilization of nitrogen into the grain. In another study, a diverse panel

of 390 sorghum accessions was evaluated for variation in grain nutritional

traits, including starch, protein, and fat content. Using near-infrared spec-

troscopy (NIRS), protein content was measured that fell in the range of

8.1–18.8% and identified a QTL through GWAS analysis (Rhodes et al.,

2017). Besides the grain content, protein quality is also an essential factor

determining essential amino acid content and protein digestibility. Out of

the 20 amino acids, 9 are regarded as essential amino acids as the human

body cannot synthesize them and hence are to supplemented through

diet. These include lysine, tryptophan, threonine, methionine, phenylala-

nine, isoleucine, leucine, valine, and histidine. In cereals, the amino acids

lysine, threonine, and tryptophan are present in a limiting amount, and

therefore, studies have been conducted to biofortify their amount. Opaque2

modifiers (Opm) gene belongs to bZIP transcription factor family and has a role

in regulating tryptophan content in grains. A total of 74 genic and 46 genomic

SSR markers were used in association mapping to identify QTLs tightly

linked toOpm variation in tryptophan content. The study has led to the iden-

tification of two QTLs linked to tryptophan content and a QTL for total

protein content (Babu et al., 2014). Protein content in barley grain is crucial

for determining its quality when used for malt and food applications. Genetic

determinants governing protein grain contents in 99 wild and 59 cultivated
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barley have been identified, and markers generated through diversity arrays

technology (DArT) were used for association mapping. From the associated

5, 7, 6, 5, 6, and 8 markers that were localized on the 1, 2, 3, 5, 6, and 7 chro-

mosomes, respectively, HvNAM1 and HvNAM2 were selected as candidate

genes for further protein content improvement (Cai et al., 2013).

6.2 Carbohydrate and related traits
The chief carbohydrate component in cereal grains is starch, which is also

the primary energy source for humankind. Apart from starch, cereal grains

also contain nonstarch polysaccharides like arabinoxylans and β-glucans.
β-Glucans are sometimes considered antinutritional factors due to hindrance

in absorption (Rudi et al., 2006). However, their functions as an immuno-

modulator, serum cholesterol reducer, and prebiotic effect have attracted

attention. MTAs for β-glucan content in 230 tetraploid wheat genotypes

utilizing SNPs retrieved from the 90k-iSelect array were generated. This

led to the identification of potential candidate genes that might have a role

in regulating β-glucan content in grains through carbon partitioning

(Marcotuli et al., 2016). The identified putative genes were glycosyl hydro-

lases endo-β-(1,4)-glucanase, (1,4)-β-xylan endohydrolase, and xylanase

inhibitor protein I. To unfold genomic regions governing protein content

and cooking quality parameters in rice, Wang et al. (2017) have selected

an association panel of 22,488 SNPs from 258 diverse rice accessions.

Association studies had led to the determination of 19 QTLs regulating

the 4 characters, including gel consistency, gelatinization temperature,

apparent amylose content, and protein content. These 19 QTLs were linked

to genes of the starch synthesis pathway. In another study, a diverse panel of

591 landraces constituting 2.9 billion SNP and 0.39 billion InDels were

investigated to discover regions governing grain width of raw and cooked

rice grain. Novel GWi7.1, GL3.1, GWi5.1, and GWi11.1 genomic regions

were identified, controlling the desired trait (Misra et al., 2017). Further, to

identify genetic determinants for amylose content in maize, Li et al. (2018)

used a collection of 464 maize varieties incorporating 9 million SNPs

markers. The GWAS study led to identifying 39 putative genes having a role

as transcription factors, glycosidases, glycosyltransferases, and hydrolases that

might regulate the amylose content in grains. Glycemic index (GI) is an

essential nutritional trait, and to discern its genetic regulators, an association

panel of 305 diverse resequenced Indica accessions was explored. Combined

with a transcriptome-wide association study (TWAS), GWAS indicated a
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novel factor ascertained at locus LOC_Os05g03600 responsible for the var-

iation in the desired trait (Anacleto et al., 2019).

6.3 Micronutrients
A total of 17,937 SNP markers have been used for 246 wheat genotypes

to identify markers associated with micronutrients like zinc, iron, and

beta-carotene and grain protein content (Kumar et al., 2018). Several

marker-trait associations were identified using SLST, MLMM, MTMM,

and mvLMM methods, from which nine highly associated and significant

MTAs were selected for further investigation. For calcium content in wheat,

MTAs were carried out using 7761 SNP generated from 90k iSELECT

ILLUMINA chip and 7762 mapped SNPs from a 35k Affymetrix chip

(Alomari et al., 2017). In total, 276 SNPs with positive allele effect led to

identifying candidate genes located in the proximity of associated SNPs,

which participate in transport and uptake of calcium. In barley, a set of

336 genotypes utilizing 6519 SNP markers, GWAS resulted in the identi-

fication of 2 QTLs to be associated with calcium, 2 with barium, 3 with

sulfur, 4 with sodium, 4 with copper, 11 with iron, 2 with potassium, 3 with

magnesium, and 3 with zinc (Gyawali et al., 2017). In the case of millets,

74 marker-trait associations were identified in foxtail millet for 10 micro-

nutrients (Ni, K, Ca, B,Mg, P, S, Zn,Mn, and Fe) using an association panel

of 96 diverse accessions and 10k SNPs generated through resequencing

( Jaiswal et al., 2019). Further, Puranik et al. (2020) utilized an association

panel of 190 finger millet genotypes to identify MTAs for micronutrients

like iron, zinc, calcium, magnesium, potassium, and sodium, along with

protein content. Through GLM and MLM approach, 34 high confidence

MTAswere identified, fromwhich 18markers were found to be linked with

genes having a role in the binding and movement of metal ions.

6.4 Secondary metabolites
Polyphenols are compounds imparting antioxidant benefits to the human

body. In sorghum, phenols, proanthocyanidins, and 3-deoxyanthocyanidins

contents were studied in a panel of 381 accessions. Utilizing 404,628 SNPs

for GWAS analysis, novel QTLs were detected that contained homologs of

Pr1 and TT16 (Rhodes et al., 2014). An interesting study conducted by

Colasuonno et al. (2017) identified 24 candidate genes for the carotenoid syn-

thesis pathway, a precursor in the synthesis of precursors of vitamin A. The

identified QTLs and genes might provide an insight into the development
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of advanced high nutritional wheat varieties. Noteworthy, maize grains are

limited in tocopherols, with vitamin E activity. Through the GWAS study,

an SNPmarkerwasmapped 85kb upstream to aZea maysVTE4, which codes

for a γ-tocopherol methyltransferase. Additionally, two InDels markers were

also found to be associated, out of which one was located to the promoter area

and possibly regulating transcriptionally (Li et al., 2012). The candidate-gene

approach of GWAS lycopene epsilon cyclase (LCYE) and β-carotene hydrox-
ylase 1 (CRTRB1) had already been identified in the maize breeding

scheme of CIMMYT. Further, high density 476,000 SNPs assisted in iden-

tifying genomic regions possessing a salient role in accumulating precursors of

isoprenoids, namely, GGPS1, GGPS2, and DXS1. Also, genes like HYD5,

CCD1, andZEP1, responsible for hydroxylation and carotenoid degradation,

were identified (Suwarno et al., 2015).

7. Biofortification using conventional and genomic
approaches

Biofortification aims to improve the nutritional qualities of a crop

plant. Both the conventional breeding and recent genomics approaches have

been successfully applied in the biofortification of cereal crops. The conven-

tional approach mainly includes mineral fertilization through soil or foliar

application and crossing contrasting parents to obtain desired progenies with

improved nutrient bioavailability. The genomics approach initiates with

genotyping of the population to identify genomic determinants responsible

for improved nutritional traits and completes with introgression to the elite

species either through molecular breeding or genetic engineering/genome

editing to get desired lines (Singh et al., 2020). To eradicate micronutrient

deficiency, HarvestPlus biofortification program has floated since the early

2000s employing conventional breeding and genomics approaches. More

than 240 crops with improved iron, zinc, and vitamin A have been released

under the program, and several are in the delivery phase (https://www.

harvestplus.org/knowledge-market/publications). In India, research was

mainly focused on developing zinc and iron-enriched crops and, to date,

has been able to release zinc fortified wheat varieties, BHU-6 (Chitra)

and BHU-3; and iron-enriched pearl millet varieties including ICMH

1201 (Shakti-1201) and ICTP 8203-Fe-10-2 (Dhanashakti). The program

had set a target of reaching more than 1 billion people with a supply of

biofortified crops to combat hidden hunger by 2030.
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Through overexpression, silencing, and gene editing, the functional

genomics approach is a rapid and widely utilized strategy to generate bio-

fortified crop plants. Provitamin A enriched wheat plants have been gener-

ated by introducing bacterial carotenoid biosynthetic genes CtrB and ctrl

(Wang et al., 2014). Similarly, lysine rice grains have been achieved by

induced expression of endogenous rice lysine-rich histone proteins,

RLRH1 and RLRH2 (Wong et al., 2015). In contrast to biofortification,

bioelimination is also essential to reduce antinutrient substances from food

grains. Phytic acid is one of such antinutrient in cereals that has the ability

to chelate micronutrients and restrict the bioavailability of essential nutri-

ents. Targeted silencing of inositol pentakisphosphate kinase (TaIPK1), a gene

involved in the phytic acid biosynthesis pathway, has resulted in up to 58%

reduced accumulation of phytic acid with enhanced grain mineral contents

in wheat (Aggarwal et al., 2018). Similarly, CRISPR/Cas9-mediated

knockdown of Inositol 1,3,4-trisphosphate 5/6-kinase (OsITPK1–6) has sig-
nificantly lowered the levels of phytic acid in rice ( Jiang et al., 2019).

These studies further need to be expanded to millets and other cereals crops

where phytic acid is a major nutritional constraint.

8. The way forward

Food scarcity and disease outbreaks have coexisted with us since

the beginning of human evolution. Similar to the previous pandemics,

COVID-19 pandemics have posed an intense threat to the food supply

around various parts of the world. The majority of the human population

is following social distancing, which has reduced the efficiency of enterprises

and risks the farmers wealth. The other most important aspect of this pan-

demic is the vulnerability of marginal people, which require a high nutri-

tious diet during infection and recovery. Since cereals share more than

half of total food consumption worldwide, fortification of nutritional traits

in them would be the prime concern of crop breeders.

The significance of improving nutritional traits in cereals is well under-

stood, and multidimensional approaches are being used to address this.

Undoubtedly, the association mapping approach has been beneficial in

finding QTLs and genomic regions associated with nutritional traits in

plants. During the last decade, remarkable advancements have been achieved

in GWAS. However, there is a need for further advancements for more effi-

cient use of the approach. Along with several advantages of association map-

ping, some restrictions still exist. One such limitation is the reproducibility
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of the identified regions when the same association study is repeated.

Another limitation is the occurrence of false positives and false negatives

data. The risk of false positive occurs due to a strong association of the

studied trait with population structure. To minimize this, it has been

suggested to use the STRUCTURE program that utilizes structured asso-

ciations. Further, incorporating principal component analysis (PCA) is also

recommended to resolve issues related to population structure. When large-

scale genetic markers are used, the errors in false associations increase, which

requires the validation of MTAs distinctively. GWAS analysis identifies only

the genomic locus associated with the desirable trait and does not identify

the gene(s) responsible for phenotypic polymorphism. Genes flanking to the

identified regions need further investigation to establish the gene-trait asso-

ciation. Integration of data from various omics is also being suggested for

exploring the molecular mechanisms behind genotype-phenotype relation-

ships. Many studies have been conducted in recent years to explore the

genetic determinants governing nutrition-related traits in various crops;

however, there is a need to increase further the number of studies in the area

of cereal nutritional traits under the present scenario of the global pandemic

and food scarcity. NGS technologies can be utilized in the generation of

more detailed whole-genome scans. Still, high-throughput phenotyping

platforms are not in the reach of most of the breeders. An efficient associ-

ation mapping largely depends on the size of the population, standard of

the genotyping and phenotyping, statistical methods used, and experimen-

tal validation of MTA. Altogether, association mapping provides a high-

throughput platform to uncover the cause of phenotypic variation, which

is widely used in crop improvement through molecular breeding. These

studies can be combined with functional genomic approaches to generate

more and more biofortified cereal crops targeting to achieve zero hunger.
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