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Injury mechanism of COVID-19–induced cardiac 
complications
Ling Leng1, Xiu-Wu Bian2,3*

Abstract 
Heart dysfunction is one of the most life-threatening organ dysfunctions caused by coronavirus disease 2019 (COVID-
19). Myocardial or cardiovascular damage is the most common extrapulmonary organ complication in critically ill patients. 
Understanding the pathogenesis and pathological characteristics of myocardial and vascular injury is important for improving 
clinical diagnosis and treatment approach. Herein, the mechanism of direct damage caused by severe acute respiratory 
syndrome coronavirus 2 to the heart and secondary damage caused by virus-driven inflammation was reviewed. The pathological 
mechanism of ischemia and hypoxia due to microthrombosis and inflammatory injury as well as the injury mechanism of tissue 
inflammation and single myocardial cell necrosis triggered by the viral infection of pericytes or macrophages, hypoxia, and 
energy metabolism disorders were described. The latter can provide a novel diagnosis, treatment, and investigation strategy for 
heart dysfunctions caused by COVID-19 or the Omicron variant.
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INTRODUCTION
There have been at least six million deaths led by the 
novel coronavirus disease 2019 (COVID-19) on a global 
scale[1]. Heart complications are among the most severe 
manifestations in patients with COVID-19[2–4]. As the 
incidence of myocarditis and cardiovascular diseases 
due to COVID-19 continuously increases, the effect 
of COVID-19 on heart tissues has garnered consider-
able attention. The cardiovascular system affected by 
COVID-19 has complications including myocardial 
injury, myocarditis, myocardial infarction, heart failure, 
arrhythmia, and venous thromboembolic events[5]. In 
view of the essential role of heart disease symptoms in 
patients with COVID-19, it is essential to identify the 

cardiac injury mechanism of COVID-19. Previously, 
several mechanisms have been postulated to explain 
COVID-19–associated cardiac injury, including direct 
myocardial injury mediated via angiotensin converting 
enzyme 2 (ACE2), immune dysregulation mediated by 
cytokine storm, hypoxia from imbalance in oxygen sup-
ply, cardiotoxicity of antiviral drugs as well as demand 
mediated by ischemia[6–9]. Descriptions regarding the 
pathological presentation of COVID-19 cardiac injury 
was predominantly obtained from autopsy-based litera-
ture. Cardiac abnormalities have been discovered in the 
gross pathology or histologic findings in approximately 
all of the cases. In these cases, the average age of the 
deceased was 69 years, and male cases account for more 
than half of all cases[10].

MOLECULAR PATHOLOGY REVEALS THE 
PRESENCE OF SARS-CoV-2 IN THE HUMAN 
HEART
Currently, researchers utilize reverse transcription poly-
merase chain reaction (RT-PCR), in situ hybridiza-
tion, electron microscopy, and other methodologies to 
detect and localize severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infections in the heart. 
Furthermore, proteome technology is used to obtain a 
panoramic view of molecular changes in cardiac pro-
teins in patients with COVID-19[11–15]. To verify whether 
the virus can self-replicate in the heart, Bulfamante et 
al.[16] employed digital PCR technology to detect viral 
RNA in the total RNA extracts from heart tissue samples 
and detected viral RNA in all six COVID-19 heart spec-
imens, although not in the healthy controls. The copy 
number of the SARS-CoV-2 RNA molecule is 4.44–5.33 
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log10 (copies/mL). Lindner et al.[12,13] used RNA range 
in situ hybridization to detect SARS-CoV-2 viral RNA 
minus strands in autopsy heart tissues and reported that 
the virus was detected in 61.5% patients while a high 
viral load of >1,000 copies/μg RNA was identified in 
41.0% patients, in whom the expression levels of six 
proinflammatory factors (tumor necrosis factor α [TNF-
α], interferon γ [IFN-γ], C–C motif ligand 5 [CCL5], 
interleukin [IL]-6, IL-8, and IL-18) were upregulated 
compared with that in the patients with low-virus cop-
ies. However, the degree and levels of myocardial leu-
kocyte infiltration in patients with high-virus copies 
were not significantly different from those of the other 
patients[16].

Brook et al.[17].performed in situ hybridization experi-
ments on tissue samples obtained via minimally invasive 
autopsy and about 10% of the patients were reported 
with a low viral load (not more than 120 copies/μg total 
RNA). Hanley et al.[18] collected fresh cardiac tissue from 
autopsy samples and quantified viral load via quanti-
tative real-time PCR (qRT-PCR), targeting the viral E 
gene, and reported higher viral loads in 2 of 5 patients. 
Lindner et al.[12] detected SARS-CoV-2 viral particles in 
the heart tissue obtained from 24 of 39 (59%) consec-
utive autopsies. Subsequently, additional studies have 
reported SARS-CoV-2 copies in heart tissues[12,19,20], fur-
ther suggesting that SARS-CoV-2 can infect the heart 
tissue directly. The abovementioned studies demonstrate 
that the virus can self-replicate in the heart; however, the 
results based on minimally invasive autopsies may con-
siderably vary from those of other studies owing to the 
heterogeneity of the collected materials.

To examine the localization of SARS-CoV-2 in the 
infected heart, Bois et al.[14] performed immunohisto-
chemistry with SARS-CoV-2 nucleocapsid–based anti-
bodies. The results revealed focal and nonspecific staining 
in all the evaluated samples, with three patients exhibit-
ing arterial or capillary endothelial cells staining and one 
patient exhibiting endocardium and macrophages stain-
ing. Bradley et al.[21] utilized SARS-CoV-2 immunohisto-
chemistry using a monoclonal antibody against the spike 
protein; nonetheless, the immunohistochemical results of 
SARS-CoV-2 S protein in patients with myocarditis were 
negative.

Fox et al.[22] detected particles consistent with the 
SARS-CoV-2 in cardiac endothelial cells but not in adja-
cent cardiomyocytes (CMs) using electron microscopy. In 
that study, CD8+ and CD4+ lymphocytes were primarily 
identified in or near small vessels. Schurink et al.[19] using 
two different antibodies against SARS-CoV-2 nucleocap-
sid proteins demonstrated positive immunohistochem-
ical staining of CMs in 27% patients. Bulfamante et 
al.[16] utilized immunohistochemistry to identify SARS-
CoV-2 nuclear and spike proteins in left ventricular heart 
samples, which were positive for lipofuscin expression, 
predominantly in CMs, and confirmed this result via 
the immunofluorescence staining of viral nucleolin and 

sarcomeric α-actin (αSARS)-positive cells. This finding 
was verified via immunofluorescence costaining of viral 
nucleoprotein with αSARS-positive cells.

In the minimally invasive autopsy of 11 children 
infected with COVID-19, Dolhnikoff et al.[23] detected 
viral particles in CMs, capillary endothelial cells, endo-
cardial endothelial cells, macrophages, neutrophils, and 
fibroblasts in the patient’s heart. Gauchotte et al.[24] 
performed immunohistochemical assessment using 
anti-SARS-CoV-2 nucleocapsid protein antibodies and 
demonstrated intense multifocal granular cytoplasmic 
staining in CMs. Moreover, in heart tissue, immunohisto-
chemistry using anti-CD163 antibodies revealed numer-
ous stromal macrophages, while anti-CD20, anti-CD3, 
anti-CD4, and anti-CD8 staining revealed that the vast 
majority of lymphocytes were CD3+, CD8+, and T-cell 
intracytoplasmic antigen (TIA)-1 cytotoxic T lympho-
cytes. Although, Rapkiewicz et al.[25] did not discover any 
viral inclusion bodies via cardiac electron microscopy, 
they reported platelet-fibrin microthrombi and apparent 
megakaryocytes in the heart microvasculature.

SARS-CoV-2–INDUCED DIRECT 
MYOCARDIAL INJURY
Various pathological reports have identified SARS-CoV-2 
viral proteins and genetic material in the CMs of patients 
with COVID-19[16,26]. Furthermore, in vitro studies using 
human induced pluripotent stem cells (hiPSC) and iso-
lated adult CMs as well as in vivo experiments using ani-
mal models confirm that SARS-CoV-2 infection occurs in 
CMs[27–30]. Collectively, these data support the hypothe-
sis that COVID-19–associated myocardial injury can be 
caused by the direct infection of CMs and cardiotoxic 
defects in SARS-CoV-2.

Direct disruption of the sarcomere structures by 
SARS-CoV-2

The pathogenic mechanisms of SARS-CoV-2 are com-
monly considered multidimensional. Among these 
mechanisms, one is based on data suggesting that 
viral infection directly disrupt sarcomeres in CMs. 
Sarcomere disruption and muscle fiber loss in CMs 
have also been sporadically observed in vitro and in 
vivo studies with similar features[16,20,27]. Perez-Bermejo 
et al.[31] discovered that myofibrillar fragments in the 
cytoplasm are produced by gradually dividing the sar-
comeres into single sarcomeric units in the cytoplasm 
of hiPSC–CM with viruses infection time, indicating 
that SARS-CoV-2 infection exacerbated this nonspe-
cific cytopathy. In addition, at the genetic level, genes 
encoding sarcomere structural proteins, myosin light 
chains, and linkers of nucleoskeleton and cytoskeleton 
complexes (a subset of important proteins that anchor 
the nucleus the actin cytoskeleton) were significantly 
reduced in infected hiPSC–CMs. Moreover, altered 
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gene expression was correlated with energy produc-
tion in hiPSC–CMs, which -CMs triggers a shift from 
mitochondrial oxidative phosphorylation to glycolytic 
metabolism[29].

Researchers further assessed the contractile properties 
of hiPSC–CMs at the tissue level using three-dimension-
ally engineered heart tissue (3D-EHTs) and observed that 
3D-EHTs infected with SARS-CoV-2 exhibited weaker 
contractile force compared with the mock control 
group[29,32]. In addition to the mechanical dysfunction, 
the SARS-CoV-2–infected CMs demonstrate impaired 
electrical function[33]. Marchiano et al.[29] discovered that 
SARS-CoV-2 infection can result in abnormal generation 
and transmission of electrical signals from hiPSC–CMs 
and human embryonic stem cell–derived CMs (hESC–
CMs), demonstrating reduced beating rate, peak ampli-
tude of depolarization, and electrical conduction velocity. 
The formation of syncytia in SARS-CoV-2–infected cells 
and tissue has also been reported, which is relatively 
rare[34]. Coronaviruses commonly induce cell–cell fusion 
because of the S protein fusion properties and its abil-
ity to trigger virus–cell membrane fusion. Based on the 
above, these studies provide a new perspective regarding 
the pathogenic mechanisms of COVID-19–associated 
arrhythmias and validate the deleterious effects of the 
direct infection of CMs with SARS-CoV-2.

Straight cardiac injury tightly associated with 
ACE2

SARS-CoV-2 infects host cells by attaching its surface 
spike protein to the human ACE2 receptor. Briefly, the 
spike protein is activated by transmembrane protease 
serine 2 (TMPRSS2), allowing the fusion of SARS-CoV-2 
and host cellular membranes[7,8,35]. After binding, SARS-
CoV-2 enters the cell, consequently altering the ACE2 
pathway and leading to cardiac injury. Another study 
reported that ACE2-dependent SARS-CoV-2 infection 
can decrease myocardial ACE2 protein expression cor-
related with macrophage infiltration and myocardial 
damage[36]. Cells expressing high levels of ACE2, includ-
ing CMs, are more susceptible to SARS-CoV-2 inva-
sion, which subsequently leads to organ damage[37]. A 
single-cell sequencing study[38] reported high expression 
levels of the viral ACE2 receptor in the CMs of normal 
hearts and that ACE2 expression is higher in the heart 
than in the lung of adults. In the absence of ACE2 in 
CMs, a crosstalk between angiotensin II (Ang II) and 
angiotensin-(1-7) (Ang- [1–7]) signaling may have more 
deleterious effects in the heart. The detrimental effect 
of ACE2 downregulation would inhibit the cardiopro-
tective effects of Ang-(1–7), leading to increased TNF-α 
production[39,40]. Moreover, ACE2 expression was sub-
stantially increased in the CMs of cardiac patients (e.g., 
dilated cardiomyopathy, hypertrophic cardiomyopa-
thy, non–COVID-19 myocarditis, aortic stenosis, and 
heart failure) compared with healthy controls[41–43]. This 

finding indicates that patients with COVID-19 infection 
and underlying cardiovascular diseases are more suscep-
tible to myocardial injury[44,45].

The downregulation of ACE2 may result from 
the activation of a disintegrin and metallopeptidase 
domain-17/tumor necrosis factor-alpha converting 
enzyme (ADAM-17/TACE) by SARS spike proteins that 
cleave and release ACE2 or endocytosis and the subse-
quent degradation of the ligand/receptor complex[46,47]. 
Type II transmembrane serine protease (TMPRSS2) is a 
protein implicated in the cleavage of numerous SARS-
CoV-2 variants. TMPRSS2 degrades S protein into S1 
and S2 subunits, exposing the receptor binding domain 
of the S1 subunit to facilitate the identification of and 
binding to the ACE2 receptor. Bailey et al.[32] reported 
the inhibition of TMPRSS2 and observed no defect in 
hiPSC–CMs infection while endosomal cysteine prote-
ase inhibitors eliminated SARS-CoV-2 infection. These 
data indicate that endosomal-dependent proteases can 
compensate for S protein priming to facilitate SARS-
CoV-2 infection in CMs. Nevertheless, Omicron, a vari-
ant of SARS-CoV-2, requires only ACE2 to invade cells 
and no TMPRSS2 mediation. This variant is enclosed 
in endosomal bubbles, which floats into the cells and 
bursts[48]. Thus, the specific role of Omicron in cardiac 
injury requires further clarification.

Directly infection of the interstitial cells in heart by 
SARS-CoV-2

In some published cases, the viral particles of SARS-
CoV-2 were not isolated within the CMs, but rather 
in the interstitial cells, including pericytes and mac-
rophages. SARS-CoV-2–infected pericytes may play a 
role in capillary endothelial cell or microvascular inju-
ries and individual cell necrosis[12,22,49]; nevertheless, 
SARS-CoV-2-macrophages infected can mediate both 
local and systemic responses to viral infection, which 
can also repair the complement, potentially causing 
the death of myocytes by activating apoptotic attack 
complexes[50].

COVID-19–associated myocarditis may differ from 
traditional viral myocarditis

Interestingly, diffuse lymphocytic myocarditis was not 
discovered in patients with traditional viral myocardi-
tis without COVID-19; cardiac histopathology studies 
have reported the expected absence of confluent myocyte 
necrosis in fulminant myocarditis[20,22,51–53]. Conversely, a 
greater number and more diffuse distribution of CD68+ 
cells has been reported in the heart tissues of patients with 
COVID-19, suggesting that the cells of monocyte/macro-
phage lineage may be dominant in the hearts of patients 
with COVID-19 compared with lymphocytes[50]. These 
findings indicate that COVID-19–induced myocarditis is 
different from the typical lymphocytic myocarditis with 
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viral myocarditis presentations, suggesting that SARS-
CoV-2–associated myocarditis may instead be correlated 
with diffusely infiltrative cells of the monocyte/macro-
phage lineage[49,50,52]. Based on the above, although there 

is no adequate evidence suggesting that SARS-CoV-2 
directly infects myocardial cells, SARS-CoV-2 can lead 
to direct heart injury by reducing the expression of ACE2 
or infecting interstitial cells (Figure 1).

Figure 1.  Injury mechanism of cardiac complications caused by COVID-19.
ACE2: angiotensin converting enzyme 2; CCL2: C–C motif ligand 2; COVID-19: coronavirus disease 2019; CXCL10: C-X-C Motif Chemokine 
Ligand 10; IL-1: interferon 1; IL-16: interferon 16; IL-17: interferon 17; IL-22: interferon 22; IFN-γ: interferon γ; SARS-CoV-2: severe acute respiratory 
syndrome coronavirus 2; TNF-α: tumor necrosis factor α.
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COVID-19–ASSOCIATED CYTOKINE STORM 
IN MYOCARDITIS
Previous studies have reported that the mechanisms 
underlying heart injuries in patients with COVID-19 
are associated with the unusual inflammatory responses 
elicited by COVID-19. Approximately 7 to 10 days 
after COVID-19 onset, high cytokine levels are secreted, 
leading to a high inflammatory response in patients 
with COVID-19, which is probably the main cause of 
COVID-19 pneumonia and acute respiratory distress 
syndrome. Previous studies have demonstrated that 
proinflammatory cytokines such as IL-2, IL-6, IL-7, 
TNF-α, C-X-C motif cytokine 10 (CXCL10), and CCL2 
are released into the circulation of patients with severe 
COVID-19 infection[6,7], which is described as a cytokine 
release syndrome (CRS) and can overactivate T lympho-
cytes, resulting in myocardial damage. Among these 
cytokines, increased serum levels of IL-6 observed in 
CRS have been identified as a predictor of mortality and 
morbidity in retrospective studies of COVID-19[6]. This 
hyperinflammation could be the cause of acute heart 
failure and thromboembolic events[54–58]. The inflam-
matory activation and oxidative stress present in these 
patients may predispose them to a more severe clinical 
course following infection, leading to increased mortal-
ity of the patients with COVID-19 and heart failure[59,60].

Moreover, the increased activation of innate immune 
pathways alongside the surge in proinflammatory cyto-
kines, deregulation of thromboinflammation, throm-
botic microangiopathy, and endothelial dysfunction can 
trigger an unbalanced host immune response, which is 
also revealed in the pathogenesis of COVID-19–related 
cardiac injury[50,61]. Thus, the types of cardiac inflamma-
tion caused by COVID-19 include extensive myocardi-
tis, focal active myocarditis, multifocal myocarditis, and 
infiltrates with no myocyte damage. Infiltrates with no 
myocyte damage represent the highest amount of cardiac 
inflammation (44%).

Immunostaining revealed scattered CD4+ and CD8+ 
lymphocytes adjacent to the vascular structures. In 
uncommon locations, lymphocytes are adjacent to blood 
vessels while no peripheral degenerated myocytes are vis-
ible. The heart demonstrates a single-cell dropout/necro-
sis/apoptosis pattern, independent of any lymphocytic 
infiltration. Few CD3+ T cells can be found in the myocar-
dium[62]. Macrophage density was superior in the epicar-
dium and myocardium in the 2019 coronavirus disease 
group compared with the control group. Coronavirus 
2019 disease hearts with single CM necrosis exhibited 
higher epicardial macrophage density compared with 
hearts without CM necrosis. These observations con-
tribute to our growing understanding regarding the role 
of macrophages in the pathophysiological response to 
SARS-CoV-2 infection[63]. Most patients exhibit inter-
stitial macrophage increase but show no associated CM 
damage. Basso et al.[49] demonstrated that SARS-CoV-
2-induced myocardial inflammation is predominantly 

mediated by macrophages. Nevertheless, some research-
ers consider that macrophage infiltration may reflect the 
underlying disease and not COVID-19.

Leng et al.[30] detected myocardial cells and microves-
sels in myocardium infiltrated by lymphocytes and 
monocytes under pathological conditions, leading to 
myocarditis, individual myocyte necrosis, and vasculitis 
in the heart tissues of patients with COVID-19. Using 
the laser microdissection approach combined with pro-
teomics, they discovered that the pathological changes in 
myocardium or microvessels due to the infiltration of the 
inflammatory cells and factors exhibited region specific-
ity at the spatial level. Furthermore, they reported that 
multiple proteins involved in the inflammatory response 
of the high expression of inflammatory cells infiltrated 
the myocardium of patients with COVID-19, particularly 
the right atrium myocardia. Energy metabolism–associ-
ated proteins were downregulated in the myocardium 
of COVID-19 patients compared with that of patients 
without COVID-19. For instance, the left atrium–specific 
highly expressed protein translocase of inner mitochon-
drial membrane 50 (TIMM50) was significantly down-
regulated in the myocardia of patients with COVID-19 
patients, which can result in heart failure and myocyte 
death. The researchers also reported that cardiac conduc-
tion, including calcium-mediated signaling, membrane 
potential, and cell communication–associated proteins, 
was downregulated in the myocardium of patients with 
COVID-19, which could be a cause of cardiac conduction 
abnormalities in COVID-19. Based on the above, a high 
inflammatory response in patients with COVID-19 can 
induce inflammatory cells infiltration into the myocar-
dium and promote specific chamber–associated molec-
ular signal changes, leading to heart failure (Figure 1).

HYPOXIA-INDUCED CARDIOVASCULAR 
INJURY IN PATIENTS WITH COVID-19
Cytokine storm induced an increase in the levels of 
cytokines, such as IL-1, IL-16, IL-17, IL-22, IFN-γ, and 
TNF-α, which also played a role in myocardial injury 
by inducing endothelial dysfunction, platelets activation, 
neutrophils recruitment, and eventually a hypercoagu-
lable state[64,65]. Patients with COVID-19 exhibit higher 
frequency and severity of clotting events along with 
increased D-dimer plasma, C-reactive protein, P-selectin, 
and fibrinogen levels[66–68]. Post-mortem fibrin micro-
thrombi were even more common (80%) compared with 
acute ischemic injury (13%) and myocarditis (33%), 
suggesting that thrombosis was involved in accentuat-
ing myocardial injury, which is a major complication 
of COVID-19[14,24]. Microthrombus fibrin and termi-
nal complement C5b-9 immunostaining results were 
similar to those of intramyocardial thromboembolic in 
patients without COVID-19. Microthrombosis can lead 
to endothelial dysfunction, which is considered a key 
contributor to the COVID-19 vasculopathy pathogene-
sis[69–71]. Leng et al.[30] employed spatial region–resolved 
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proteomics to conform whether the molecular function 
of microvessels in the myocardium infiltrated by mono-
cytes or lymphocytes is damaged. They discovered that 
the proteins of acute inflammatory and innate immune 
responses were predominantly elevated in the cardio-
vascular system of patients with COVID-19, especially 
in the left atrium, indicating regionally specific injury, 
which is characteristic of microvessel damage following 
COVID-19 infection.

The mechanism of heart injury induced by micro-
thrombosis is thus a question that needs to be addressed. 
It was previously established that microthrombosis can 
hinder the capillaries of vital target organs, including the 
heart, brain, and lungs, causing ischemia and hypoxia. 
Previous studies have also demonstrated that patients 
with COVID-19 exhibit myocardial injury triggered 
by demand ischemia and stress- and hypoxia-induced 
myocardial injury[72]. Proteins correlated with hypoxic 
response were detected in the right atrium, and their 
expression difference among the four chambers of the 
heart was the most predominant[30]. Hypoxia and pul-
monary microvascular damage can lead to right heart 
stress and myocyte necrosis[73]. Furthermore, COVID-
19 can elevate myocardial oxygen consumption and 
energy expenditure[74]. The two abovementioned factors 
lead to hypoxemia in patients with COVID-19, which 
is an additional hallmark of COVID-19 and is associ-
ated with enhanced oxidative stress alongside reac-
tive oxygen species production, intracellular acidosis, 
mitochondrial damage, and cell death[74–77]. Baseline 
comorbidities, involving metabolic syndrome, hyperten-
sion, and cardiovascular disease may also play a role. 
Moreover, ACE2 controls the renin–angiotensin–aldo-
sterone and kallikrein kinin systems, which may lead 
to a “kallikrein storm” during COVID-19 and increase 
the vascular permeability, inflammation, and fluid accu-
mulation[78,79]. Cardiovascular damage can be further 
induced by local microvascular effects, endocarditis-re-
lated microthrombosis, and renin–angiotensin homeo-
stasis[80,81]. Based on the above data, the cytokine storm 
in patients with COVID-19 causes microthrombosis that 
triggers hypoxia in myocardial cells, leading to vasculitis 
and myocardial injury (Figure 1).

CONCLUSIONS
Extrapulmonary complications due to COVID-19 
threaten the health of patients significantly. In particu-
lar, cardiac disease caused by myocardial and vascular 
injuries is one of the main causes of death. Compared 
with viral myocarditis, virus-driven inflammatory cell–
induced myocarditis die to ischemia and hypoxia occu-
pied a dominant position. Furthermore, myocarditis and 
vasculitis injury mechanisms caused by COVID-19 differ 
from those of common viral myocarditis, which may be a 
keystone for developing therapeutic targets for COVID-
19–induced heart disease in the future. Understanding 

the injury mechanism underlying COVID-19–induced 
heart complications is also crucial for the current emer-
gency treatment of patients infected with the Omicron 
variant. Finally, it can help clinicians effectively treat 
such patients based on specific conditions and reduce 
mortality.
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