research communications

Received 30 September 2014 Accepted 7 October 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; tetradentate ligand; Fe^{III} high-spin complex

CCDC reference: 1027864 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of dichlorido{2-[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]ethanolato- $\kappa^4 N, N', O, O'$ }iron(III) dihydrate from synchrotron data

Jong Won Shin, Dae-Woong Kim and Dohyun Moon*

Beamline Department, Pohang Accelerator Laboratory/POSTECH 80, Pohang 790-784, Republic of Korea. *Correspondence e-mail: dmoon@postech.ac.kr

In the title compound, $[Fe(C_{10}H_{15}N_2O_2)Cl_2]\cdot 2H_2O$, the Fe^{III} ion is coordinated by two N and two O atoms of the tetradentate 2-{(2-hydroxyethyl)(pyridin-2ylmethyl)amino}ethanolate ligand and by two chloride anions, resulting in a distorted octahedral coordination sphere. The average Fe - X (X = ligand N and O atoms) and Fe - Cl bond lengths are 2.10 and 2.32 Å, respectively. In the crystal, duplex $O - H \cdots O$ hydrogen bonds between the hydroxyl and ethoxy groups of two neighbouring complexes give rise to a dimeric unit. The dimers are connected to the lattice water molecules (one of which is equally disordered over two sets of sites) through $O - H \cdots Cl$ hydrogen bonds, forming undulating sheets parallel to (010). Weak $C - H \cdots Cl$ hydrogen bonds are also observed.

1. Chemical context

Tetradentate ligands including pyridine and hydroxyl groups have attracted considerable attention in chemistry and materials science (Paz *et al.*, 2012; Li *et al.*, 2007). These ligands are able to form multinuclear complexes with various transition metal ions, leading to dimeric, trimeric, tetrameric or polymeric structures through the deprotonation of hydroxyl groups (Shin *et al.*, 2010; Han *et al.*, 2009). Such multinuclear complexes have potential applications in catalysis and magnetic materials. For example, Fe^{III} and Co^{II/III} complexes with aminoethanol moieties have been studied as oxidation catalysts of various olefins and investigated due to their magnetic properties (Shin *et al.*, 2011, 2014). Moreover, Mn^{II/III} complexes containing hydroxyl substituents exhibit excellent single-molecular magnetic properties due to magnetic spin-orbit anisotropy (Wu *et al.*, 2010).

Here, we report the synthesis and crystal structure of a complex with six-coordinate Fe^{III} constructed from the tetradentate ligand 2-[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]ethanol (H₂pmide; C₁₀H₁₇N₂O₂) and chloride anions, [Fe(Hpmide)Cl₂]·2H₂O, (I).

View of the molecular structure of the title compound, showing the atomlabelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms and lattice water molecules are omitted for clarity except for the H atom of the hydroxyl group.

2. Structural commentary

A view of the molecular structure of compound (I) is shown in Fig. 1. The coordination sphere of the Fe^{III} ion can be described as distorted octahedral, consisting of the two N atoms and two O atoms from the Hpmide ligand, and two chloride anions. The chloride anions are *trans* to the deprotonated ethoxy O atom and the N atom of the pyridine group of the Hpmide ligand, respectively, and coordinate in *cis* position to each other. The average Fe $-X_{\text{Hpmide}}$ (X = N, O) bond length is 2.10 Å and the Fe-Cl bond lengths are

Figure 2

View of the crystal packing of the title compound, with intermolecular $O-H\cdots O$ hydrogen bonds between Fe^{III} complex molecules drawn as blue dashed lines. $C-H\cdots Cl$ hydrogen bonds are indicated as red dashed lines; water molecules and chloride anions are also connected through $O-H\cdots O$ hydrogen bonds (black dashed lines).

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1W1 - H1W1 \cdots Cl1$	0.84(1)	2.51 (3)	3.279 (4)	152 (5)
$O1W2 - H2W2 \cdot \cdot \cdot Cl1$	0.84(1)	2.91 (5)	3.470 (4)	125 (5)
$O2-H1O2\cdotsO1^{i}$	0.83(2)	1.69 (2)	2.5196 (14)	177 (2)
$O1W1 - H2W1 \cdots O2W^{ii}$	0.84(1)	2.15 (4)	2.876 (7)	144 (7)
$O1W2 - H1W2 \cdots O2W^{ii}$	0.84(1)	2.06 (5)	2.647 (8)	126 (5)
$O1W2 - H1W2 \cdot \cdot \cdot O2W^{iii}$	0.84(1)	2.06 (3)	2.836 (8)	153 (6)
$C4-H4\cdots Cl1^{iv}$	0.95	2.76	3.5962 (16)	147
$C9-H9A\cdots Cl1^{v}$	0.99	2.78	3.6371 (15)	145
$C3-H3\cdots Cl2^{vi}$	0.95	2.80	3.5721 (16)	139

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x, -y + 1, -z + 1; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

2.2773 (5) (equatorial) and 2.3581 (7) (axial) Å. Both the average Fe–N (2.182 Å) and Fe–O (2.010 Å) distances in (I) are comparable to those found in related N₂O₂-chelated high-spin Fe^{III} complexes (Shin *et al.*, 2014; Cappillino *et al.*, 2012). The bite angles of the five-membered chelate rings in (I) range from 76.59 (5) to 81.45 (4)°.

3. Supramolecular features

The hydroxyl substituent of the Hpmide ligand forms a strong hydrogen bond with the O atom of the deprotonated ethoxy group of a neighbouring molecule. These duplex interactions lead to a dinuclear dimeric unit. The dimers are linked through $O-H\cdots$ Cl interactions to the lattice water molecules, that are likewise connected to each other through $O-H\cdots$ O hydrogen bonds. All these hydrogen-bonding interactions (Steed & Atwood, 2009) lead to the formation of undulating sheets parallel to (010). Further weak hydrogen bonding between pyridine and methyl H atoms and chloride anions stabilizes this arrangement (Fig. 2 and Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014) indicated that five complexes derived from the H₂pmide ligand have been reported. These include Ni^{II} and Mn^{II/III}; Fe^{III} complexes have been studied for their magnetic properties and catalytic effects (Saalfrank *et al.*, 2001; Wu *et al.*, 2010; Shin *et al.*, 2014).

5. Synthesis and crystallization

The H₂pmide ligand was prepared following a previously reported method (Wu *et al.*, 2010). Compound (I) was prepared as follows: to a MeOH solution (4 ml) of FeCl₂·4H₂O (81 mg, 0.408 mmol) was added dropwise a MeOH solution (3 ml) of H₂pmide (80 mg, 0.408 mmol). The colour became yellow, and then the solution was stirred for 30 min at room temperature. Yellow crystals of (I) were obtained by diffusion of diethyl ether into the yellow solution for several days, and were collected by filtration and washed with diethyl ether and

research communications

Table	2	
Experi	mental	details.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal data	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chemical formula	$[Fe(C_{10}H_{15}N_2O_2)Cl_2]\cdot 2H_2O$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M _r	358.02
Temperature (K)100a, b, c (Å)7.2690 (15), 14.497 (3), 14.094 (3)β (°)95.86 (3)V (Å3)1477.4 (5)Z4Radiation typeSynchrotron, $\lambda = 0.62998$ Åμ (mm ⁻¹)0.99Crystal size (mm)0.10 × 0.10 × 0.08Data collectionEmpirical (using intensity measurements) (<i>HKL3000sm</i> <i>SCALEPACK</i> ; Otwinowski & Minor, 1997)T _{min} , T _{max} 0.907, 0.925No. of measured, independent and observed [I > 2σ(I)] reflections0.021 (0.696Refinement $R[F^2 > 2σ(F^2)], wR(F^2), S$ 0.027, 0.073, 1.04 4056No. of restraints7 H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	Crystal system, space group	Monoclinic, $P2_1/c$
a, b, c (Å)7.2690 (15), 14.497 (3), 14.094 (3) β (°)95.86 (3) γ (Å3)1477.4 (5) Z 4Radiation typeSynchrotron, $\lambda = 0.62998$ Å μ (mm ⁻¹)0.99Crystal size (mm)0.10 × 0.10 × 0.08Data collectionEmpirical (using intensity measurements) (<i>HKL3000sm</i> <i>SCALEPACK</i> ; Otwinowski & Minor, 1997) T_{min}, T_{max} 0.907, 0.925No. of measured, independent and observed [$I > 2\sigma(I)$] reflections0.021 (sin $\theta(\lambda)_{max}$ (Å ⁻¹) $Refinement$ $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.027, 0.073, 1.04 4056No. of parameters197 No. of restraintsNo. of restraints7 H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	Temperature (K)	100
$ \begin{array}{lll} \beta\left(^{\circ} \right) & 95.86 \left(3 \right) \\ V\left({{\rm \AA}}^3 \right) & 1477.4 \left(5 \right) \\ Z & 4 \\ {\rm Radiation type} & {\rm Synchrotron}, \lambda = 0.62998 {\rm \AA} \\ \mu \left({{\rm mm}}^{-1} \right) & 0.99 \\ {\rm Crystal size (mm)} & 0.10 \times 0.10 \times 0.08 \\ \end{array} $	<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.2690 (15), 14.497 (3), 14.094 (3)
$ \begin{array}{lll} V(\mathring{A}^3) & 1477.4(5) \\ Z & 4 \\ \mbox{Radiation type} & Synchrotron, $\lambda = 0.62998 \mbox{ \AA} \\ μ (mm^{-1}) & 0.99 \\ \mbox{Crystal size (mm)} & 0.10 \times 0.10 \times 0.08 \\ \end{array} $	β (°)	95.86 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V(Å^3)$	1477.4 (5)
Radiation typeSynchrotron, $\lambda = 0.62998$ Åμ (mm ⁻¹)0.99Crystal size (mm)0.10 × 0.10 × 0.08Data collectionEmpirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)Tmin, Tmax0.907, 0.925No. of measured, independent and observed [I > 2σ(I)] reflections0.021 0.696Refinement $R[F^2 > 2σ(F^2)]$, wR(F²), S0.027, 0.073, 1.04 4056No. of restraints7 H-atom treatmentH atoms treated by a mixture of independent and constrained refinementΔρmax, $\Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	Ζ	4
$\begin{array}{lll} \mu \ (\mathrm{mm}^{-1}) & 0.99 \\ \mathrm{Crystal size} \ (\mathrm{mm}) & 0.10 \times 0.10 \times 0.08 \\ \end{array}$	Radiation type	Synchrotron, $\lambda = 0.62998$ Å
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\mu \text{ (mm}^{-1})$	0.99
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal size (mm)	$0.10 \times 0.10 \times 0.08$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Data collection	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Diffractometer	ADSC Q210 CCD area-detector
$\begin{array}{ll} T_{\min}, T_{\max} & 0.907, 0.925 \\ \text{No. of measured, independent and observed } [I > 2\sigma(I)] \text{ reflections} \\ R_{\text{int}} & 0.021 \\ (\sin \theta/\lambda)_{\max} (\text{\AA}^{-1}) & 0.696 \end{array}$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.027, 0.073, 1.04 \\ \text{No. of reflections} & 4056 \\ \text{No. of restraints} & 7 \\ \text{H-atom treatment} & H \text{ atoms treated by a mixture of independent and constrained refinement} \\ \Delta\rho_{\max}, \Delta\rho_{\min} (\text{e} \text{\AA}^{-3}) & 1.51, -0.84 \end{array}$	Absorption correction	Empirical (using intensity measurements) (<i>HKL3000sm</i> <i>SCALEPACK</i> ; Otwinowski & Minor, 1997)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections14975, 4056, 3866 R_{int} 0.021 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.696Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.027, 0.073, 1.04No. of reflections4056No. of reflections197No. of restraints7H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	T_{\min}, T_{\max}	0.907, 0.925
$ \begin{array}{ll} R_{\rm int} & 0.021 \\ (\sin \ \theta \lambda)_{\rm max} (\mathring{A}^{-1}) & 0.696 \end{array} \\ \begin{array}{ll} {\rm Refinement} \\ R[F^2 > 2\sigma(F^2)], \ wR(F^2), \ S & 0.027, \ 0.073, \ 1.04 \\ {\rm No. \ of \ reflections} & 4056 \\ {\rm No. \ of \ restraints} & 197 \\ {\rm No. \ of \ restraints} & 7 \\ {\rm H-atom \ treatment} & {\rm H \ atoms \ treated \ by \ a \ mixture \ of \ independent \ and \ constrained \ refinement \\ \Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ (e \ \mathring{A}^{-3}) & 1.51, \ -0.84 \end{array} $	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14975, 4056, 3866
$\begin{array}{ll} (\sin \ \theta \lambda)_{\max} (\mathring{A}^{-1}) & 0.696 \\ \\ \text{Refinement} \\ R[F^2 > 2\sigma(F^2)], \ wR(F^2), \ S & 0.027, \ 0.073, \ 1.04 \\ \text{No. of reflections} & 4056 \\ \text{No. of parameters} & 197 \\ \text{No. of restraints} & 7 \\ \text{H-atom treatment} & \text{H atoms treated by a mixture of} \\ \text{Independent and constrained} \\ \alpha \rho_{\max}, \ \Delta \rho_{\min} (e \ \mathring{A}^{-3}) & 1.51, \ -0.84 \\ \end{array}$	R _{int}	0.021
Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.027, 0.073, 1.04No. of reflections4056No. of parameters197No. of restraints7H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.696
$\begin{split} R[F^2 > 2\sigma(F^2)], & wR(F^2), S & 0.027, 0.073, 1.04 \\ \text{No. of reflections} & 4056 \\ \text{No. of parameters} & 197 \\ \text{No. of restraints} & 7 \\ \text{H-atom treatment} & \text{H atoms treated by a mixture of independent and constrained refinement} \\ \Delta\rho_{\text{max}}, \Delta\rho_{\text{min}} (e \text{ Å}^{-3}) & 1.51, -0.84 \end{split}$	Refinement	
No. of reflections4056No. of parameters197No. of restraints7H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.073, 1.04
No. of parameters197No. of restraints7H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	No. of reflections	4056
No. of restraints7H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	No. of parameters	197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)1.51, -0.84	No. of restraints	7
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$ 1.51, -0.84	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.51, -0.84

Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2013/1 and SHELXL2014/7 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

dried in air. Yield: 67 mg (46%). Elemental analysis calculated for $C_{10}H_{15}Cl_2FeN_2O_2$: C 37.30, H 4.70, N 8.70%; found: C 37.19, H 4.58, N 8.78%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.95 (aromatic H atoms) and 0.99 Å (open-chain H atoms) and with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ of the parent atoms. One lattice water molecule (OW1) was found to be equally disordered over two positions. The H atoms of this disordered water molecule (H1W1 and H1W2) were located from difference Fourier maps and refined with restraints and a fixed O-H distances of 0.84 Å, with $U_{\rm iso}(H)$ values of $1.2U_{\rm eq}(O)$. Moreover, the second water molecule (O2W) was modelled without hydrogen atoms because difference Fourier maps did not suggest suitable H atoms.

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2002507) and supported by the Institute for Basic Science (IBS, IBS-R007-D1-2014-a01). X-ray crystallography at the PLS-II 2D-SMC beamline was supported in part by MSIP and POSTECH.

References

- Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
- Cappillino, P. J., Miecznikowski, J. R., Tyler, L. A., Tarves, P. C., McNally, J. S., Lo, W., Kasibhatla, B. S. T., Krzyaniak, M. D., McCracken, J., Wang, F., Armstrong, W. H. & Caradonna, J. P. (2012). Dalton Trans. 41, 5662–5677.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. Engl. 53, 662–671.
- Han, J. H., Shin, J. W. & Min, K. S. (2009). Bull. Korean Chem. Soc. 30, 1113–1117.
- Li, F., Wang, M., Li, P., Zhang, T. & Sun, L. (2007). *Inorg. Chem.* 46, 9364–9371.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Paz, F. A. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S. & Rocha, J. (2012). *Chem. Soc. Rev.* 41, 1088–1110.
- Saalfrank, R. W., Bernt, I. & Hampel, F. (2001). Chem. Eur. J. 13, 2770–2774.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999–4008.
- Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). *Dalton Trans.* 40, 5762–5773.
- Shin, J. W., Rowthu, S. R., Kim, B. G. & Min, K. S. (2010). Dalton Trans. 39, 2765–2767.
- Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.
- Wu, C.-C., Datta, S., Wernsdorfer, W., Lee, G.-H., Hill, S. & Yang, E.-C. (2010). *Dalton Trans.* 39, 10160–10168.

supporting information

Acta Cryst. (2014). E70, 334-336 [doi:10.1107/S1600536814022089]

Crystal structure of dichlorido{2-[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]ethanolato- $\kappa^4 N, N', O, O'$ }iron(III) dihydrate from synchrotron data

Jong Won Shin, Dae-Woong Kim and Dohyun Moon

Computing details

Data collection: *PAL ADSC Quantum-210 ADX* (Arvai & Nielsen, 1983); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS2013*/1 (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Dichlorido{2-[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]ethanolato- $\kappa^4 N, N', O, O'$ }iron(III) dihydrate

Crystal de	ata
------------	-----

$[Fe(C_{10}H_{15}N_2O_2)Cl_2] \cdot 2H_2O$
$M_r = 358.02$
Monoclinic, $P2_1/c$
a = 7.2690 (15) Å
b = 14.497 (3) Å
c = 14.094 (3) Å
$\beta = 95.86 \ (3)^{\circ}$
V = 1477.4 (5) Å ³
Z = 4

Data collection

ADSC Q210 CCD area-detector diffractometer Radiation source: PLSII 2D bending magnet ω scan Absorption correction: empirical (using intensity measurements) (*HKL3000sm SCALEPACK*; Otwinowski & Minor, 1997) $T_{\min} = 0.907, T_{\max} = 0.925$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.073$ S = 1.044056 reflections 197 parameters 7 restraints F(000) = 740 $D_x = 1.610 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.62998 \text{ Å}$ Cell parameters from 47717 reflections $\theta = 0.4-33.6^{\circ}$ $\mu = 0.99 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.10 \times 0.10 \times 0.08 \text{ mm}$

14975 measured reflections 4056 independent reflections 3866 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.5^\circ$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -19 \rightarrow 19$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0354P)^2 + 1.6679P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.51$ e Å⁻³ $\Delta\rho_{min} = -0.84$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.49921 (2)	0.59458 (2)	0.35450 (2)	0.00581 (6)	
Cl1	0.66209 (5)	0.61966 (2)	0.22045 (2)	0.01181 (8)	
C12	0.32215 (5)	0.47400 (2)	0.29547 (2)	0.01270 (8)	
01	0.70234 (13)	0.53542 (7)	0.42787 (7)	0.00933 (18)	
O2	0.33434 (14)	0.60360 (7)	0.46844 (7)	0.00925 (18)	
H1O2	0.322 (3)	0.5590 (12)	0.5041 (13)	0.011*	
N1	0.32550 (15)	0.70945 (8)	0.30279 (8)	0.0085 (2)	
N2	0.62789 (15)	0.71338 (8)	0.43157 (8)	0.0075 (2)	
C1	0.15712 (19)	0.70132 (10)	0.25359 (10)	0.0117 (2)	
H1	0.1099	0.6415	0.2383	0.014*	
C2	0.05082 (19)	0.77769 (11)	0.22469 (10)	0.0143 (3)	
H2	-0.0669	0.7703	0.1896	0.017*	
C3	0.1193 (2)	0.86521 (11)	0.24795 (11)	0.0156 (3)	
Н3	0.0492	0.9185	0.2288	0.019*	
C4	0.2913 (2)	0.87365 (10)	0.29950 (11)	0.0130 (3)	
H4	0.3401	0.9328	0.3169	0.016*	
C5	0.39138 (18)	0.79407 (9)	0.32537 (10)	0.0089 (2)	
C6	0.58321 (19)	0.79876 (9)	0.37700 (10)	0.0107 (2)	
H6A	0.6743	0.8079	0.3302	0.013*	
H6B	0.5917	0.8522	0.4210	0.013*	
C7	0.82796 (18)	0.69147 (9)	0.43890 (10)	0.0102 (2)	
H7A	0.8958	0.7310	0.4879	0.012*	
H7B	0.8770	0.7035	0.3771	0.012*	
C8	0.85570 (19)	0.58946 (9)	0.46615 (11)	0.0125 (3)	
H8A	0.9699	0.5663	0.4416	0.015*	
H8B	0.8706	0.5835	0.5365	0.015*	
C9	0.56136 (19)	0.71512 (10)	0.52794 (10)	0.0113 (2)	
H9A	0.5759	0.7781	0.5548	0.014*	
H9B	0.6373	0.6726	0.5708	0.014*	
C10	0.35997 (19)	0.68663 (10)	0.52331 (10)	0.0117 (2)	
H10A	0.3250	0.6762	0.5885	0.014*	
H10B	0.2804	0.7362	0.4932	0.014*	
O1W1	0.4145 (8)	0.5368 (3)	0.0321 (3)	0.0527 (11)	0.5
H1W1	0.444 (8)	0.551 (5)	0.0896 (16)	0.063*	0.5
H2W1	0.300 (3)	0.526 (6)	0.025 (4)	0.063*	0.5
O1W2	0.3007 (7)	0.5629 (4)	0.0504 (3)	0.0549 (11)	0.5
H1W2	0.190 (3)	0.546 (5)	0.041 (4)	0.066*	0.5
H2W2	0.314 (8)	0.593 (4)	0.101 (3)	0.066*	0.5
O2W	0.0911 (9)	0.4335 (4)	0.9619 (4)	0.182 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.00713 (10)	0.00133 (10)	0.00853 (10)	-0.00039 (6)	-0.00140 (6)	0.00067 (6)
Cl1	0.01740 (15)	0.00679 (15)	0.01158 (14)	-0.00204 (11)	0.00321 (11)	0.00141 (10)
Cl2	0.01370 (15)	0.00686 (15)	0.01705 (15)	-0.00509 (10)	-0.00075 (11)	-0.00279 (11)
01	0.0089 (4)	0.0039 (4)	0.0146 (4)	-0.0005 (3)	-0.0017 (3)	0.0029 (3)
O2	0.0115 (4)	0.0047 (4)	0.0117 (4)	-0.0016 (3)	0.0018 (3)	0.0014 (3)
N1	0.0085 (5)	0.0051 (5)	0.0115 (5)	0.0001 (4)	-0.0005 (4)	0.0023 (4)
N2	0.0082 (5)	0.0031 (5)	0.0105 (5)	-0.0002 (4)	-0.0016 (4)	0.0019 (4)
C1	0.0100 (6)	0.0114 (6)	0.0132 (6)	-0.0008(5)	-0.0009(5)	0.0036 (5)
C2	0.0083 (5)	0.0179 (7)	0.0165 (6)	0.0022 (5)	-0.0004 (5)	0.0072 (5)
C3	0.0129 (6)	0.0134 (7)	0.0206 (7)	0.0072 (5)	0.0025 (5)	0.0074 (5)
C4	0.0144 (6)	0.0056 (6)	0.0191 (6)	0.0035 (5)	0.0025 (5)	0.0040 (5)
C5	0.0102 (5)	0.0045 (6)	0.0121 (6)	0.0012 (4)	0.0010 (4)	0.0023 (4)
C6	0.0120 (6)	0.0019 (5)	0.0172 (6)	-0.0010 (4)	-0.0033 (5)	0.0028 (4)
C7	0.0072 (5)	0.0068 (6)	0.0161 (6)	-0.0016 (4)	-0.0022 (4)	0.0025 (4)
C8	0.0079 (5)	0.0077 (6)	0.0207 (7)	-0.0005 (4)	-0.0041 (5)	0.0046 (5)
C9	0.0156 (6)	0.0083 (6)	0.0099 (6)	-0.0024 (5)	0.0001 (5)	-0.0024 (4)
C10	0.0147 (6)	0.0070 (6)	0.0140 (6)	0.0008 (5)	0.0041 (5)	-0.0012 (5)
O1W1	0.095 (4)	0.035 (2)	0.0249 (16)	-0.019 (2)	-0.0105 (19)	0.0025 (14)
O1W2	0.066 (3)	0.069 (3)	0.0270 (18)	-0.008 (2)	-0.0078 (18)	-0.0038 (18)
O2W	0.229 (6)	0.182 (5)	0.138 (4)	-0.037 (5)	0.023 (4)	0.009 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Fe1—O1	1.9165 (11)	C4—C5	1.3925 (18)
Fe1—O2	2.1036 (12)	C4—H4	0.9500
Fe1—N1	2.1704 (12)	C5—C6	1.5071 (19)
Fe1—N2	2.1939 (12)	C6—H6A	0.9900
Fe1—Cl2	2.2773 (5)	C6—H6B	0.9900
Fe1—Cl1	2.3581 (7)	С7—С8	1.5360 (19)
O1—C8	1.4229 (16)	С7—Н7А	0.9900
O2—C10	1.4326 (17)	С7—Н7В	0.9900
O2—H1O2	0.829 (15)	C8—H8A	0.9900
N1C5	1.3433 (17)	C8—H8B	0.9900
N1—C1	1.3488 (17)	C9—C10	1.516 (2)
N2—C6	1.4759 (17)	С9—Н9А	0.9900
N2—C7	1.4818 (17)	С9—Н9В	0.9900
N2—C9	1.4878 (18)	C10—H10A	0.9900
C1—C2	1.387 (2)	C10—H10B	0.9900
C1—H1	0.9500	O1W1—H1W1	0.842 (10)
С2—С3	1.390 (2)	O1W1—H2W1	0.842 (10)
С2—Н2	0.9500	O1W2—H1W2	0.842 (10)
C3—C4	1.386 (2)	O1W2—H2W2	0.839 (10)
С3—Н3	0.9500		
O1—Fe1—O2	94.79 (4)	C3—C4—H4	120.6

O1_Fe1_N1	156 10 (4)	C5_C4_H4	120.6
O_2 Fe1 N1	81 <i>A</i> 5 <i>(A</i>)	N1 C5 C4	120.0 122.05(13)
O1 Fe1 N2	70 52 (5)	N1_C5_C6	122.05(13) 116.46(11)
$O_2 = F_{e1} = N_2$	79.52(3)	C_{4} C_{5} C_{6}	110.40(11) 121.45(12)
$N_1 = 1 N_2$	79.00 (4)	$C_{+} C_{5} C_{5}$	121.43(12)
N1 - Fe1 - N2	102.25(4)	$N_2 = C_0 = C_3$	100.5
$O_1 = Fe_1 = C_{12}$	105.25(4)	$N_2 = C_0 = H_0 A$	109.5
02 - FeI - CI2	88.90 (<i>3</i>)	C_{3}	109.5
NI—FeI—Cl2	100.28 (4)		109.5
N_2 —FeI—Cl2	168.51 (3)	С5—С6—Н6В	109.5
OI—FeI—CII	94.54 (4)	H6A—C6—H6B	108.0
02—Fel—Cll	166.87 (3)	N2—C/—C8	109.06 (11)
N1—Fe1—Cl1	86.28 (3)	N2—C7—H7A	109.9
N2—Fe1—Cl1	92.98 (3)	С8—С7—Н7А	109.9
Cl2—Fe1—Cl1	97.869 (19)	N2—C7—H7B	109.9
C8—O1—Fe1	119.26 (8)	С8—С7—Н7В	109.9
C10—O2—Fe1	114.30 (8)	H7A—C7—H7B	108.3
C10—O2—H1O2	110.1 (14)	O1—C8—C7	110.95 (11)
Fe1—O2—H1O2	121.2 (14)	O1—C8—H8A	109.4
C5—N1—C1	118.97 (12)	С7—С8—Н8А	109.4
C5—N1—Fe1	116.11 (9)	O1—C8—H8B	109.4
C1—N1—Fe1	124.88 (9)	С7—С8—Н8В	109.4
C6—N2—C7	112.22 (11)	H8A—C8—H8B	108.0
C6—N2—C9	112.75 (11)	N2-C9-C10	111.01 (11)
C7—N2—C9	110.38 (11)	N2—C9—H9A	109.4
C6—N2—Fe1	109.90 (8)	С10—С9—Н9А	109.4
C7—N2—Fe1	103.42 (8)	N2—C9—H9B	109.4
C9—N2—Fe1	107.66 (8)	С10—С9—Н9В	109.4
N1—C1—C2	122.02 (13)	H9A—C9—H9B	108.0
N1—C1—H1	119.0	O2—C10—C9	108.90 (11)
C2—C1—H1	119.0	O2—C10—H10A	109.9
C1C2C3	118.93 (13)	C9-C10-H10A	109.9
C1—C2—H2	120.5	O2—C10—H10B	109.9
C3—C2—H2	120.5	C9-C10-H10B	109.9
$C_4 - C_3 - C_2$	119 12 (13)	H_{10A} C_{10} H_{10B}	108.3
C4-C3-H3	120.4	$H1W1 \longrightarrow O1W1 \longrightarrow H2W1$	108.3
$C_2 - C_3 - H_3$	120.4	H1W2 - 01W2 - H2W2	100(3)
$C_2 C_3 C_4 C_5$	118.00(14)	111 W 2 01 W 2 112 W 2	107 (3)
05-04-05	110.90 (14)		
C5 N1 C1 C2	0.7(2)	E_{01} N2 C6 C5	24 62 (12)
$C_3 = N_1 = C_1 = C_2$	(2)	$N_1 = C_5 = C_6 = N_2$	-26.62(13)
$\frac{1}{10000000000000000000000000000000000$	1/6.20(10)	$NI = C_3 = C_0 = N_2$	-20.03(17)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-0.0(2)	C4 - C3 - C0 - IN2	133./1(13)
$C_1 - C_2 - C_3 - C_4$	-0.2(2)	$C_{0} = N_{2} = C_{1} = C_{2}$	-101.0/(11)
12 - 13 - 14 - 15	0.8(2)	$V_{-N2} = V_{-V} = V_{0}$	/1.04 (14)
C1 - N1 - C5 - C4	-0.1 (2)	re1 - N2 - C/ - C8	-43.28 (12)
rei—NI—C5—C4	-177.80 (10)	FeI = OI = C8 = C7	-0.47(15)
C1—N1—C5—C6	-177.70 (12)	N2-C7-C8-O1	31.76 (16)
Fel—N1—C5—C6	4.56 (16)	C6—N2—C9—C10	83.81 (14)
C3—C4—C5—N1	-0.7 (2)	C7—N2—C9—C10	-149.79 (11)

supporting information

C3—C4—C5—C6	176.80 (13)	Fe1—N2—C9—C10	-37.58 (12)
C7—N2—C6—C5	149.11 (12)	Fe1-02-C10-C9	-35.00 (13)
C9—N2—C6—C5	-85.49 (14)	N2-C9-C10-O2	48.37 (15)

Hydrogen-bond geometry (Å, °)

HA	D—H	H···A	D···A	D—H··· A
O1W1—H1W1…C11	0.84(1)	2.51 (3)	3.279 (4)	152 (5)
O1 <i>W</i> 2—H2 <i>W</i> 2···Cl1	0.84 (1)	2.91 (5)	3.470 (4)	125 (5)
O2— $H1O2$ ···O1 ⁱ	0.83 (2)	1.69 (2)	2.5196 (14)	177 (2)
$O1W1$ — $H2W1$ ···O2 W^{ii}	0.84 (1)	2.15 (4)	2.876 (7)	144 (7)
$O1W2$ — $H1W2$ ··· $O2W^{ii}$	0.84 (1)	2.06 (5)	2.647 (8)	126 (5)
O1W2—H1W2···O2W ⁱⁱⁱ	0.84 (1)	2.06 (3)	2.836 (8)	153 (6)
C4—H4···Cl1 ^{iv}	0.95	2.76	3.5962 (16)	147
C9—H9A···Cl1 ^v	0.99	2.78	3.6371 (15)	145
C3—H3····Cl2 ^{vi}	0.95	2.80	3.5721 (16)	139

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x, -y+1, -z+1; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+3/2, z+1/2; (vi) -x, y+1/2, -z+1/2.