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Abstract: In order to obtain highly active catalytic materials for oxidation of carbon monoxide and
volatile organic compounds (VOCs), monometallic platinum, copper, and palladium catalysts were
prepared by using of two types of ZSM-5 zeolite as supports—parent ZSM-5 and the same one treated
by HF and NH4F buffer solution. The catalyst samples, obtained by loading of platinum, palladium,
and copper on ZSM-5 zeolite treated using HF and NH4F buffer solution, were more active in the
reaction of CO and benzene oxidation compared with catalyst samples containing untreated zeolite.
The presence of secondary mesoporosity played a positive role in increasing the catalytic activity
due to improved reactant diffusion. The only exception was the copper catalysts in the reaction
of CO oxidation, in which case the catalyst, based on untreated ZSM-5 zeolite, was more active.
In this specific case, the key role is played by the oxidative state of copper species loaded on the
ZSM-5 zeolites.

Keywords: ZSM-5 zeolite; noble metals; hierarchical materials; catalysts; CO oxidation; benzene
oxidation

1. Introduction

The main atmospheric pollutants that have a direct impact on human health are
Volatile Organic Compounds (VOCs) and CO. The VOCs are a large group of hydrocarbon
compounds that are easily released into the air at atmospheric pressure and room tem-
perature. Waste gases can contain a variety of volatile hydrocarbons, alkanes, alcohols,
ketones, aldehydes, aromatics, organic acids, ethers, aldehydes, and others. Their emis-
sions into the environment originate mainly from the petroleum and chemical industry,
the production of solvents, cleaning products, printing machines, and others [1–3]. In
particular, benzene is one of the most dangerous and carcinogenic representatives of VOCs
due to its aromatic nature and high structural stability, requiring extreme experimental
conditions for its removal [4,5]. Another type of toxic gas, odorless, colorless, and tasteless,
that is especially important to emission control is CO—it is also called the silent killer. It is
well known that even very small amounts of CO in the air can be fatal, since the carbon
monoxide molecules have an affinity for binding to hemoglobin in blood cells, replacing
oxygen. In addition to waste gas treatment and automotive emissions, the CO oxidation
reaction is often used as a test reaction to monitor the efficiency of a catalyst. Therefore, it
is a crucial issue to minimize VOCs and CO emissions in the environment [6,7]. Among
the studied methods and techniques, catalytic oxidation is the most popular due to its
operating flexibility for a number of organic compounds under soft operating conditions
in combination with low energy use and destructive efficiency [8,9]. Although a signif-
icant number of industrial catalysts have been developed for the oxidation of CO and
VOCs, the creation of some new ones and optimization of the already existing ones is an
important goal of scientists due to the great variety of organic molecules and complex
nature of organic mixtures found in practice. The successful commercial catalysts can
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be classified into three groups: (1) noble metal catalysts; (2) oxides of transition metal
catalysts; and (3) mixed-metal catalysts [10]. The characteristics of catalysts, based on noble
metals, are their specific activity, resistance to disinfection, and ability to regenerate. The
catalysts, containing platinum (Pt) or palladium (Pd), are the most commonly used ones
to promote catalytic oxidation reactions. Despite their good efficiency, serious problems
are posed by their high cost, limited availability, and sensitivity to high temperatures and
poisons, which necessitate their replacement by catalysts containing transition metals such
as: manganese (Mn), nickel (Ni), chromium (Cr), copper (Cu), cobalt (Co), and others. The
activity of the loaded metal catalysts strongly depends on the method of preparation, the
type of precursors, the method of metal loading, the particle size, and the nature of the
carriers [11–13].

It was found out that applying noble metals and metal oxides on support materials
having a large active surface area and specific physicochemical properties results in the
reduction of the amount and the increase in degree of dispersion of metal phase into
the catalyst without changing its activity. Al2O3, SiO2, ZrO2, TiO2, zeolites, and others
have been often used as support materials [14–16]. The zeolite family is a suitable can-
didate for catalysts in the oxidation reaction of hydrocarbons due to their characteristic
crystalline microporous structure, having a high surface area to pore volume ratio, hu-
midity resistance, and thermal and acid stability [17,18]. Zeolite ZSM-5 is a well-known
high-silicon crystalline aluminosilicate with wide application both as a catalyst and as
a sorbent. Its chemical formula is |Na+

n(H2O)16|[AlnSi96-nO192], where n < 27, and its
structure is composed by five membered rings, forming the composite building units “mfi”,
“mor”, “cas”, and “mel”. By combining the building units, a three-dimensional structure is
formed, containing mutually intersecting 10-membered channel systems [19–21]. Although
it belongs to the group of medium porous zeolites, ZSM-5 has a relatively high resistance
to coke formation [22–24]. Pt and Pd impregnated ZSM-5 catalysts are the most effective
for purification of waste gases of chlorine-containing organic molecules, double bonded
compounds, aldehydes, and etc., which are considered to be among the most disturbing
indoor pollutants even in very small amounts [25–27]. The characteristics of these catalysts
are their ability to adsorb toxic molecules on the active crystal surface, to store chemical
intermediates, and their high selectivity for the formation of CO2 and H2O as end prod-
ucts instead of CO. There is a known case in which the ZSM-5 surface was previously
F-impregnated with subsequent deposition of metal phase for improving of water tolerance
of the catalyst, and its stability and lifetime during the processes [25]. The oxidative activity
of Pt/ZSM-5 systems is efficient enough and it is even used to convert diesel soot into
safe components for nature and humans [28]. The ability of the Pt/H-ZSM-5 catalyst to
oxidize soot was studied in both O2 and NO + O2 gas mixtures. Two main factors influence
the oxidation reaction. First was the ability of the acidic zeolite support to promote the
adsorption of NO2 on the catalyst, which helps to preferentially attach the soot to NO2
molecules, providing better opportunities for NO2-soot reactions. The second factor was
the strongly acidic sites, formed by Pt metal nanoparticles, which participate in the catalytic
reaction by formation and decomposition of surface oxygenated complexes. In order to
obtain zeolite catalysts having a large active surface area and the presence of more pores,
Chi He et al. impregnated Pd nanoparticles onto composite materials containing two types
of zeolites (ZSM-5 and MCM-48) with different acidities [29]. Thus, the so-formed catalysts
showed good activity in the complete elimination of benzene due to Pd0 and Pd2+ species,
which were formed predominantly on the acidic supports.

In order to reduce the final cost of catalytic materials, Xin Xing et al. monitored
the effect of various Cu-containing supports (ZSM-5, MOR, MCM-22, Hβ, and SAPO-34)
in the reaction of selective catalytic oxidation of n-butylamine [30]. In their study, they
reported that the different zeolitic structures significantly influenced the existing forms
and dispersion of Cu species, changing the redox properties of the catalysts, and among
them all Cu/ZSM-5 showed the best behavior in the reaction under consideration. A series
of studies have focused on Cu active sites, their amount, acidity, distribution and condition
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(Cu2+, Cu+ and/or Cu0), and their effect on activity in catalytic oxidation reactions of n
-butylamine, acrylonitrile decomposition, and Water-Gas Shift reaction [31–34]. The results
show that the formation of Cu2+ is strongly influenced by the Si/Al ratio of the zeolite
structure and the amount of the metal phase. Upon increasing SiO2/Al2O3 ratio above
25 the selectivity to N2 decreases, which is closely related to the Cu2+ species. Moreover,
upon increasing the Si/Al ratio, the isolated Cu2+ forms decreased, and the oligomeric
Cu2+-O2−-Cu2+ species are being formed predominantly. However, in reactions of NO
decomposition on the Cu/ZSM-5 catalyst, reversible poisoning of the catalyst by NO and
oxygen and its rapid deactivation has been observed [35].

From all these facts, it becomes clear that for the production of catalysts possessing
the desired properties and activity, many parameters must be taken into account, such as:
type of carrier material (crystal structure, active surface area, presence or absence of pores),
metal phase, dispersion of metals, type of organic compounds, and experimental conditions.
However, looking at a given chemical reaction on the molecular level, it becomes clear that
the diffusion properties of the supports are essential parameters, that is, the transport of
reagents and products to and from the active catalytic centers. Some of these diffusion
limitations could be avoided by choosing zeolite materials as carriers in the formation
of catalysts having wide applications. Their open structure allows interaction with the
surrounding environment, both with the external and internal surface area. Although ZSM-
5 has a three-dimensional, open structure with comparative resistance to coke formation, it
is known that during the temperature conversion of hydrocarbons, the catalysts decrease
their activity due to coke clogging and lack of access of reagents to the active sites. The
passage of reagents and products through the catalyst can be significantly improved by
creating of additional micro- and/or meso-pores on the support surface. The creation of
hierarchical zeolites can be carried out by two methods: the first one is during zeolite
synthesis (in-situ), and the second one is through post-synthesis methods and techniques
(post-situ). There are only a few articles related to the creation of ZSM-5 supports containing
additional porosity and its influence on catalytic combustion reactions of VOCs and CO.
Using an in-situ technique for the production of hierarchical ZSM-5 zeolite as a carrier,
Fujian Liu et al. reported the formation of effective and long-lifetime bi-metallic catalysts
for benzene combustion [36]. During the synthesis process, they added a copolymer
to the reaction mixture and, by high-temperature treatment of the crystalline product,
the organic molecule was burned out, yielding a mesoporous zeolite structure. Serious
disadvantages here include the high cost of organic structure-directing agents, the release
of emissions, and the time and energy required for their combustion. The alternatives of
these attempts are post-synthesis methods and techniques. Among post-synthesis methods,
the most commonly used ones are chemical treatment with various bases or acids and
steam treatment. Sibei Zou et al. applied etching of ZSM-5 with nitric acid to prepare Pt
mesoporous catalysts tested in toluene combustion [37]. The molecular size of toluene was
about 0.67 nm, which is very close to the pore size of parent zeolite, and it complicates
the reactions. The introduction of additional porosity leads to a significant facilitation of
the diffusion properties and an increase of the catalyst efficiency in the selected reaction.
During the treatment with steam and acidic solutions the extraction of aluminum atoms out
of the zeolite structure (dealumination) [38,39] takes place, while when treated with alkaline
solutions, removal of silicon tetrahedra is performed, preferentially (desilication) [40,41].
These approaches showed selectivity to one of the both skeletal elements, that is, the
Si/Al ratio of the parent zeolite structure changing Brönsted and Lewis acidity, which
may affect the activity of the final catalysts [42,43]. The chemical treatment by fluoride
ions is an interesting approach for creating secondary porosity in aluminosilicate zeolite
structure [44]. This method was used in the present work and the choice was based on
the statement that the formed HF2

− anion has a high reactivity and it does not show
any selectivity to either of the skeletal elements (Si or Al). It is known that in aqueous
solution of HF containing different types of fluorides, to ensure a chemical equilibrium
shift to obtain more active HF2

− anions, F− ions must be introduced into the system via
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NH4F buffer [45]. The zeolite dissolution by HF2
− initially affects the structural defects

and/or the adhesion positions of the individual crystallites and it continues deep inside
the crystals. The obtained hierarchical samples are expected to be a suitable support
material for the deposition of active metals to form catalysts in reactions of complete
oxidation of volatile organic compounds (VOCs). The obtained material will possess a
number of advantages: high surface area, reduced coke formation (slower deactivation
of the catalyst), facilitated movement of initial and final products, and its prevention
extraction of the active metals from the catalyst structure [46–48]. The fluorine etching was
tested onto a series of ferrierite crystals and mordenite type of zeolites. In our previous
work, we investigated in detail the catalytic activity of mordenite-type of zeolite in the
reaction of m-xylene transformation after acidic treatment with HF in combination with
NH4F. It was proved that the treated samples have chemical characteristics very close
to their parent counterparts, but some differences were observed in the catalytic activity,
where the hierarchical samples demonstrated significantly higher conversion [49,50]. By
impregnation of Zr over hierarchical mordenite crystals, we obtained catalysts with higher
catalytic activity in glycerol esterification with acetic acid and selectivity to valuable
triacylglycerol [51]. The structural and morphological changes of Al and Ga analogues
of ZSM-5 as a result of HF2

− treatment were also monitored in reaction of m-xylene
transformation [52].

The present work investigated all the stages of catalysts formation, acquiring a large
active surface area and stable catalytic behavior in reactions of complete oxidation of ben-
zene and CO. In order to obtain an effective zeolite support, ZSM-5 zeolite was successfully
synthesized by hydrothermal synthesis, followed by treatment with HF acid in combination
with NH4F. The features of these supports are combination of the properties of the parent
samples: crystalline structure, chemical composition, thermal and acid resistance, and
the specifications of the hierarchical materials: larger pore size, overcoming the transport
problems of reactants and products, easy access to the internal surface area of zeolite, large
active surface area, and etc. By a wet impregnation method, a series of metals, Pt, Pd, and
Cu, as active phase were successfully dispersed. Comparative analyses were performed
between parent and hierarchical catalysts. Series of physicochemical methods such as XRD,
physical adsorption/desorption of N2, TEM microscopy, TPR, and gas chromatography
were used to characterize the resulting catalysts.

2. Results and Discussion

Figure 1a represents the X-ray diffraction patterns of the hydrothermally synthesized
zeolite ZSM-5 (Par) and the one treated with an aqueous solution of 0.25 M HF and
NH4F zeolite ZSM-5 (Tr). The X-ray pattern for the parent sample contains all signals
corresponding to the ZSM-5 phase with a high degree of crystallinity. Despite the acidic
treatment, the crystallinity and structural characteristics were preserved in hierarchical
samples. Pt, Cu, and Pd were deposited on parent and on the treated supports by the wet
impregnation method and the X-ray patterns are shown in Figure 1b. The three series of
secondary porosity catalysts (Pt, Cu, and Pd) had diffractograms very similar to their parent
counterparts. Both Pt-containing samples, in addition to the zeolite phase, contained a very
weak signal, about 2θ ≈ 39.5, corresponding to platinum metal, while in the Cu samples a
signal of about 2θ ≈ 38.6, corresponding to the presence of CuO phase, was observed. In
the diffractograms of the Pd and Pt-deposited samples, there were no additional signals
corresponding to oxidized forms (for PdO 2θ ≈ 33.8; for PtO and/or PtO2 2θ ≈ 27.5 and
2θ ≈ 34.4), but this is not a characteristic for the absence of PdO and PtOx nanoparticles
due to the overlapping signal position of the metal oxides and zeolite phase [53–56]. The
low intensity and/or absence of signals in the Pt and Pd X-ray diffraction patterns can be
attributed to fine dispersion of metallic species on the zeolite supports (evidenced also
by TEM).
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2). Typically, for microporous materials, all the samples formed isotherms of type I. The 
higher nitrogen uptake was observed in the isotherms of the samples after acid attack 
(Figure 2) at partial pressure close to 1 as a result of the secondary porosity and reduced 
crystallite size. The metal-loaded initial catalysts demonstrated relatively uniform nitro-
gen adsorption at high partial pressure values (Figure 2b), whereas the acid-treated sam-
ples with applied active metals showed significantly improved physical nitrogen absorp-
tion at the same pressure values (Figure 2c). 
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Figure 1. XRD patterns of (a) parent and treated ZSM-5 samples; (b) parent and treated impregnated with Pt, Cu, and Pd.

The specific surface areas and micro-/mesopore volumes of parent, treated, and metal-
loaded ZSM-5 were analyzed by a physical nitrogen adsorption (Table 1 and Figure 2).
Typically, for microporous materials, all the samples formed isotherms of type I. The higher
nitrogen uptake was observed in the isotherms of the samples after acid attack (Figure 2) at
partial pressure close to 1 as a result of the secondary porosity and reduced crystallite size.
The metal-loaded initial catalysts demonstrated relatively uniform nitrogen adsorption at
high partial pressure values (Figure 2b), whereas the acid-treated samples with applied
active metals showed significantly improved physical nitrogen absorption at the same
pressure values (Figure 2c).

Table 1. Textural properties of samples investigated.

Sample SBET
a

m2/g
Smi

b

m2/g
Vt

c

cm3/g
Vmi

b

cm3/g
Vsec

d

cm3/g
Dav

e

nm

Par 290 242 0.22 0.13 0.09 3.0
Tr 270 212 0.36 0.11 0.25 5.4

Pt-Par 328 277 0.23 0.15 0.08 2.8
Pt-Tr 361 294 0.34 0.15 0.19 3.8

Cu-Par 297 255 0.20 0.14 0.06 2.8
Cu-Tr 319 272 0.24 0.14 0.10 3.1
Pd-Par 318 269 0.22 0.14 0.08 2.8
Pd-Tr 344 276 0.32 0.14 0.18 3.7

a BET surface area. b Microporous surface area and volume evaluated by the V-t method. c Total pore volume.
d Secondary meso- and macropores formed by chemical treatment (Vsec = Vt − Vmi). e Average pore size
determined by the BJH method.

The results of nitrogen adsorption/desorption isotherms were used to obtain the
specific surface areas and pore sizes of the initial and modified catalysts (Table 1). After the
etching process, changes in the textural properties (specific surface area and pore volume)
of the treated sample were observed. As a result of the applied acidic treatment, decreasing
of the specific surface area and micropore volume was observed, while the volume of
the mesopores increased significantly. Typical for the samples after metals deposition
is an increase in the pore volume and the specific surface area. However, in the case of
acid-treated catalysts this effect was reinforced, i.e., an additional increase in the active
surface and the porous volume was observed, regardless of the amount and type of applied
metals. It can be seen that the sample subjected to acidic treatment increased the volume
of the secondary mesopores more than two-fold compared with the parent sample. After
metals depositions over the parent and treated zeolite supports, a decrease in the volume
of meso- and macropores was observed, especially in the case of Cu-catalysts due to the
larger amount of the metal component. However, the treated catalysts retained a larger
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volume of meso- and macro-pores compared with the catalysts formed with the parent
zeolite. This effect can be explained by blockage of the zeolite channels after the metals
deposition on parent sample, while the hierarchical zeolite support provides a larger active
surface area and additional micro- and/or meso-pores allowing even distribution of the
metal clusters.
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Figure 2. Nitrogen adsorption/desorption isotherms of (a) parent and treated; (b) parent impregnated with Pt, Cu, and Pd;
and (c) treated impregnated with Pt, Cu, and Pd. Inset—corresponding pore size distribution.

TEM images (Figure 3) provide information about zeolite morphology, size, and
distribution of metal nanoparticles. The effect of the post-synthesis acidic treatment onto
the zeolite structure is represented in the micrographs. In parent ZSM-5 samples, aggregates
of zeolite crystals, on which the metal component was applied, were reported, but in
hierarchical analogs significant destruction of both aggregates and individual crystals was
observed with formation of crystals with reduced sizes. The reason for this is the high
activity of HF2

−, randomly attacking Si and Al from the zeolite structure and forming a
secondary porosity, but it initially affected the structural defects and adhesion positions of
the individual crystals, breaking them into smaller pieces. The newly formed crystals had a
larger active surface area, formed by the combination of reduced crystal size and additional
pores, improving the diffusion properties of the zeolite. All the catalysts were obtained by
wet impregnation of the metals on parent and acid-treated ZSM-5 supports. By measuring
the sizes of 100 randomly selected particles in the corresponding TEM images, the particle
size distribution histograms (Figure 3a–f) were obtained [57]. The histograms revealed a
close distribution of metal nanoparticles on the initial and treated counterparts. A difference
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was observed in the histograms at the average particle size, where on the acid-treated
catalysts (Pt-tr, Cu-tr, and Pd-tr—Figure 3b,d,f) the metal nanoparticles showed lower
values compared with the non-hierarchical ones (Pt-par, Cu-par, and Pd-par—Figure 3a,c,e).
The largest difference was observed in platinum-containing catalysts, where the average
size of the metal phase onto the parent zeolite was about 8.2 nm, but in the acid analogue
this value was about 7.3 nm. However, for catalysts having the other two types of metals,
this difference in the average size between parent and treated supports was only 0.5 nm.
In addition to the lower values of the mean metal particle size, there was also an increase
in the number of particles with sizes within the range of 2–10 nm at the expense of larger
metal aggregates at the treated catalysts. This fact is in agreement with the statement for a
finer distribution of metal particles on the hierarchical samples.
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An indicator of the activity of the catalysts is their reducibility, investigated by the H2
temperature-programmed reduction method (TPR—Figure 4). In the H2-TPR profile of the
Pt-parent catalyst, a low-intensity reduction peak, corresponding to the reduction of Pt2+

ions to Pt0 on the catalyst surface, was observed. On the other hand, the low-intensity can
be attributed to the metallic Pt phase (Pt0), which was formed during the high-temperature
catalyst preparation process (calcination) along with a small amount of the Pt2+ species.
However, for the Pt-treated catalyst, three reduction signals were observed. The low
temperature peak 190–280 ◦C can be attributed to reduction of the surface-located Pt2+

forms, the second peak 280–350 ◦C corresponds to the reduction of Pt species interacting
with support surface, and the highest 450–530 ◦C to the reduction of Pt species strongly
interacting with the zeolite support [58–60]. The different reduction behavior of Pts loaded
over acid-treated ZSM-5 can be explained by the reduction of the crystallite sizes and
formation of secondary porosity, leading to stronger Pt-support interactions. Regardless
of the higher intensity of the low-temperature peak, it can be explained by the lower
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oxidative decomposition of Pt-salt to Pt0 species during the calcination process, forming
more Pt2+ ions.
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A characteristic feature of the TPR profiles of both Pd-zeolite catalysts is the presence
of a negative peak within the temperature range 75–90 ◦C as well as a peak corresponding
to H2 consumption within the range 190–300 ◦C. It is well known that PdCl2 and/or
PdO are easily reduced at room temperature to Pd metal particles and they react with
hydrogen to form PdHx species. The low-temperature negative peaks were formed as a
result of the decomposition of this PdHx species releasing H2 during the initial stage of the
experiment [29]. The increased intensity and position of the decomposition peak can be
assigned to decreased of Pd dispersion over support zeolite. The second intensive peak
corresponds to a high H2 consumption and it was assigned to the reduction process of
Pd2+ (PdO) species into metallic Pd (Figure 4, Pd-par and Pd-tr). A difference between
the parent and treated Pd sample was observed at a temperature of 450–540 ◦C, wherein
the hierarchical analogue showed a signal associated with the reduction of Pd forms that
interact strongly with the zeolite support, while the parent catalyst had no peak within
this temperature range [36,61]. In the TPR curve of copper-loaded samples, two resolved
reduction peaks within the temperature interval 170–380 ◦C were observed. The two peaks
could be assigned to the stepwise reduction of CuO (CuO→ Cu2O→ Cu). According to
previous reports [62], the mechanism of copper-impregnated catalysts proceeds through
the following steps:

(1) CuO + H2 → Cu0 + H2O
(2) Cu2+ + 0.5H2 → Cu+ + H+

(3) Cu+ + 0.5H2 → Cu0 + H+

The reactions (1) and (2) occur within a lower temperature range, while reaction (3)
occurs at higher temperatures. In the TPR profile, curves of our two samples (parent and
treated) containing copper as an active phase showed a low-temperature reduction peak
corresponding to CuO reduction into Cu0 and Cu+ species at the same time. The presence
of a second peak within the temperature range 240–380 ◦C was assigned to the reduction
of Cu+ into Cu0. There was a difference between the two copper catalysts in the intensities
of the peaks. In the parent sample, a higher consumption of hydrogen was observed at
higher temperatures, while in the treated sample, the low temperature of the signal had
higher intensity. This fact is in a good agreement with the redox properties of Cu cations,
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which are controlled by the local Si/Al ratio and structural morphology of the support
zeolites, influencing their reducibility [63]. For all the treated catalysts (Pt-tr, Cu-tr, and
Pd-tr), the reduction peaks were shifted towards lower temperature, which means they
showed better redox ability and better activity at low temperatures compared with their
untreated analogues.

The temperature dependences of carbon monoxide and benzene oxidation over the
investigated catalysts are shown in Figure 5. In the case of benzene oxidation, H2O and
CO2 were the only detected reaction products in all studied samples. The samples were
compared according to the temperature for 90% reagent conversion or according to that
one for maximum of conversion in cases this value was not reached. The following order
of activity in the reaction of CO oxidation was established as follows: Pd-Tr > Pt-Tr >
Cu-Par > Pt-Par > Pd-Par > Cu-Tr (see Table 2). The row of activity in the complete benzene
oxidation is the following: Pt-Tr > Cu-Tr > Pd-Tr > Pd-Par > Cu-Par > Pt-Par (85%, 290 ◦C).
The value in brackets for the last sample shows the maximal conversion reached within the
studied temperature interval 100–290 ◦C. The sample Pt-Par had the lowest reducibility
(see Figure 4).
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Table 2. Catalytic activity in CO and benzene oxidation.

Sample 90% CO Conv.
(T ◦C)

90% C6H6 Conv.
(T ◦C)

Pt-Par 211 -
Pt-Tr 189 206

Cu-Par 191 289
Cu-Tr 234 242
Pd-Par 217 258
Pd-Tr 184 249

It is obvious that the preliminary treatment of the support has a crucial role on the
catalytic activity of the investigated samplesthe catalysts with treated support were more
active. The effect was more pronounced in the reaction of benzene oxidation. The size of
benzene molecules was higher than the size of CO molecules and the presence of secondary
mesoporosity had a bigger effect. The diffusion problems that could occur during the
oxidation of benzene on a parent samples did not exist in the cases of treated samples.
Benzene molecules improved access to the active catalytic sites.

In CO oxidation, also the catalysts based on the treated support were more active.
The only exception were copper catalysts. CuPar, the catalyst with parent support, was
more active for CO oxidation than CuTr. Copper can exist in different oxidation states
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such as Cu2+, Cu1+, and Cu0. These copper species can coexist together at different ratios
depending on many factors such as preparation method and reduction process. These
copper species have different CO oxidation activities. It is known that Cu1+ is very effective
in CO oxidation compared with Cu2+ [64]. This is in good agreement with our TPR results,
which showed preferable presence of Cu1+ in the sample CuPar rather than Cu2+. This is
the main reason for the higher activity of the CuPar sample.

3. Materials and Methods
3.1. Catalysts Preparation

ZSM-5 support was hydrothermally synthesized from a starting gel having molar
ratio: 50SiO2:Al2O3:5Na2O:5TPABr:2000H2O. The ZSM-5 phase was obtained in stainless-
steel Teflon-lined autoclave under static conditions for 120 h at 170 ◦C. The samples of
crystalline mordenite were modified by etching using an aqueous solution of hydrofluoric
acid (Sigma-Aldrich) and ammonium fluoride (Sigma-Aldrich). The solution was prepared
from 18 mL 0.25 mol/L HF acid, 18 g NH4F, and 18 g H2O, to which 0.3 g of well-dispersed
mordenite crystals were added. The so-obtained mixture was stirred for 20 min at 25 ◦C and
then followed by filtration, washing, and drying at 80 ◦C [52]. Platinum, palladium, and
copper were impregnated on both ZSM-5 materials (initial and acid treated analogues) by
incipient wetness technique. The amount of metallic component applied was as follows: Pt
= 0.5 wt %, Pd = 0.5 wt %, and Cu = 5 wt %. The metal salts used were: Pt(NH3)4Cl2×H2O
(Chem-Lab), Pd(NO3)2×H2O (Merck), and Cu(NO3)2×2.5H2O (Chem-Lab).

3.2. Characterization

The X-ray diffraction (XRD) powder patterns were recorded on diffractometer PANa-
lytical Empyrean using CuKα radiation. The 2θ scanned range was 4–50 at a step of 0.04◦

and 2 s acquisition time interval. Nitrogen adsorption-desorption isotherms were obtained
applying Quantachrome Instruments NOVA 1200e (USA) at a low temperature of 77 K.
Micro-pores contributions were determined by the t-plot method. The surface area was
calculated based on the BET equation and the mesopore distribution was evaluated by the
BJH method. The high-resolution transmission electron microscopy (HRTEM) images were
collected on HR STEM JEOL JEM 2100, equipped with LaB6 electron source at accelerating
voltage 200 kV. The specimens were prepared by grinding and dispersing the powders in
ethanol by ultrasonic treatment for 6 min. The suspensions were dripped upon standard
carbon/Cu grids. The temperature programmed reduction (TPR) measurements were car-
ried out on differential scanning calorimeter (DSC) model DSC-111 (SETARAM) connected
to a gas chromatography (GC) with mounted cooling trap (−40 ◦C) in the gas line prior
to the thermal conductivity detector. A hydrogen–argon mixture (10% H2), dried over a
molecular sieve 5 A (−40 ◦C), was used at a flowrate of 24 mL min−1 and the temperature
was linearly raised at a rate of 15 ◦C min−1.

3.3. Catalytic Activity Tests

The catalyst samples were tested in reactions of CO and benzene oxidation. The activ-
ity of materials in the CO oxidation was tested using an integrated quartz micro-reactor
with loading sample amount of 0.5 cm3 (fraction 0.63–0.80 mm) and gas chromatograph:
Hewlett Packard 5890 Series II. The chromatograph was equipped with a thermal con-
ductivity detector. The inlet gaseous air mixture contained 2 vol.% CO, 10 vol. % O2 and
N2 for balance to 100 vol. %, and GHSVSTP = 40.000 h−1. The benzene oxidation tests
were performed at atmospheric pressure within a temperature of 100–350 ◦C and samples
amount of 0.5 cm3 (fraction 0.42–0.63 mm) placed in a flow fixed bed micro-reactor. The gas
mixture passing through the catalysts bed was analyzed by gas chromatograph (Hewlett
Packard5890 series II, Wimington, Germany) containing a flame ionization detector with
capillary HP Plot Q column. The inlet benzene concentration 42 g m−3 in air and space
velocity 4000 h−1 were used as reaction conditions. The catalysts were pre-activated in
flowing pure air for 1 h at 350 ◦C.
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4. Conclusions

Synthetic ZSM-5 zeolite is obtained in the system 50SiO2:Al2O3:5Na2O:5TPABr:2000H2O.
It was modified with buffer solution of HF and NH4F to obtain a material with secondary
mesoporosity. In order to prepare active catalytic materials for oxidation of carbon monox-
ide and volatile organic compounds (VOCs), platinum, copper, and palladium were loaded
by using two types of ZSM-5 zeolite as supports—parent and the same one treated with
HF and NH4F buffer solution. The catalysts, obtained by use of ZSM-5 zeolites treated
with HF and NH4F, were more active in the reaction of CO and benzene oxidation com-
pared with the catalyst samples containing untreated zeolite. Both the finer dispersion of
metal particles on the hierarchical sample and the presence of secondary mesoporosity
played positive roles for increasing the catalytic activity. The creation of additional porosity
improved the diffusion of the reagents and minimized the formation of coke. The only
exceptions were the copper catalysts in the reaction of CO oxidation, wherein the catalyst
sample was more active based on untreated ZSM-5 zeolite. It turns out, that in this case, the
key role was played by the oxidative state of copper species loaded on the ZSM-5 zeolites
rather than the presence of secondary porosity.
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