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Abstract

Background: Cryo-electron tomography (Cryo-ET) is an imaging technique used to generate three-dimensional
structures of cellular macromolecule complexes in their native environment. Due to developing cryo-electron
microscopy technology, the image quality of three-dimensional reconstruction of cryo-electron tomography has
greatly improved.

However, cryo-ET images are characterized by low resolution, partial data loss and low signal-to-noise ratio (SNR). In
order to tackle these challenges and improve resolution, a large number of subtomograms containing the same
structure needs to be aligned and averaged. Existing methods for refining and aligning subtomograms are still highly
time-consuming, requiring many computationally intensive processing steps (i.e. the rotations and translations of
subtomograms in three-dimensional space).

Results: In this article, we propose a Stochastic Average Gradient (SAG) fine-grained alignment method for
optimizing the sum of dissimilarity measure in real space. We introduce a Message Passing Interface (MPI) parallel
programming model in order to explore further speedup.

Conclusions: We compare our stochastic average gradient fine-grained alignment algorithm with two baseline
methods, high-precision alignment and fast alignment. Our SAG fine-grained alignment algorithm is much faster than
the two baseline methods. Results on simulated data of GroEL from the Protein Data Bank (PDB ID:1KP8) showed that

two baseline methods.

our parallel SAG-based fine-grained alignment method could achieve close-to-optimal rigid transformations with
higher precision than both high-precision alignment and fast alignment at a low SNR (SNR=0.003) with tilt angle
range £60° or +40°. For the experimental subtomograms data structures of GroEL and GroEL/GroES complexes, our
parallel SAG-based fine-grained alignment can achieve higher precision and fewer iterations to converge than the
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Background

Cryo-electron  tomography visualizes the three-
dimensional structures in situ and sub-molecular
resolution within single cells [1-5]. However, due to
the radiation damage caused by electrons, the original
tomograms’ signal-to-noise ratio (SNR) is extremely
small, which typically limits the resolution of the original
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tomograms data to 5-10 nm [6]. At such a low SNR, the
traditional 3D image registration methods are very dif-
ficult to apply. In normal conditions, thousands or even
tens of thousands of subtomograms are aligned and aver-
aged to obtain structures with higher resolutions, which
reduces noise and eliminates missing wedge effects. A
number of individual macromolecules are picked from a
3D tomogram and then classified into structural classes
by pair-wise comparisons. Alignment and averaging of
subtomograms in each class result in a clearer structure
with increased SNR.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3003-2&domain=pdf
mailto: lvyongchun@ncic.ac.cn
mailto: mxu1@cs.cmu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

LU et al. BMC Bioinformatics (2019) 20:443

Subtomogram alignment aims to rotate and translate a
subtomogram to minimize its dissimilarity measure with
a reference structure. The reference-free averaging pro-
cess iteratively aligns a large number of subtomograms
together with their own simple average as the initial ref-
erence to approximate the macromolecular structure of
interest [7—10]. In the iteration procedure of optimiz-
ing subtomogram averaging, each subtomogram is rotated
and translated in different ways but with the same ref-
erence structure. Much software has been developed for
subtomogram alignment and classification [8, 11, 12].
Most implement algorithms that use a dissimilarity mea-
sure or a distance function as the alignment metric
between the subtomogram and the reference [8, 12—14].
In three dimensional space, there is one translation and
one rotation parameter along each axis. Therefore, for
averaging N subtomograms, the parameter search space
is 6N~1 dimensional. If an exhaustive 6D search was per-
formed in Cartesian space or in Fourier space for each
subtomogram, the computational cost would be infeasi-
ble. To accelerate the search of translational parameters,
Fourier transform is commonly used [15]. However, the
computational cost for the exhaustive search of rotational
parameters is still a major bottleneck. Fast translation-
invariant rotational matching that obtains better rota-
tional parameter candidate sets using spherical harmonics
functions in Fourier space [16] has been proposed [17, 18]
and extended to subtomogram alignment [9, 10, 19, 20].

A local fine-grained alignment can be applied for
obtaining a better rotational parameter candidate set close
to the optimal solution. Based on previous local refine-
ment alignment on a very sparsely distributed starting
rotational parameter candidate set [20, 21], we further
explore the potential of utilizing locally optimized align-
ment methods in a sparse rotational parameter candidate
set.

In this article, we design a competent stochastic aver-
age gradient (SAG) fine-grained alignment algorithm for
dissimilarity measure between a pair of subtomograms
in real space. We utilize an MPI parallel architecture,
which can distinctly fulfill the simultaneous improvement
of different alignment candidates. We demonstrate our
SAG-based fine-grained alignment algorithm on realisti-
cally simulated data of GroEL and experimental GroEL
and GroEL/GroES complexes subtomograms. The results
show that SAG-based fine-grained alignment method can
achieve higher alignment precision and better averag-
ing of subtomograms at a low SNR of 0.003 with tilt
angle range from +60° to -60° and from +40° to -40°, as
compared to baseline methods.

Methods
We design a three-dimensional fine-grained align-
ment framework for subtomogram alignment based on
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stochastic average gradient [22], which minimizes the dis-
similarity score defined by the Euclidean distance between
a function with fixed parameters and a function with
optimized parameters. We design dissimilarity scores of
subtomogram alignment with missing wedge correction:
constrained dissimilarity score in real space. We pro-
vide parallelization of our algorithm on the MPI parallel
computing platform.

Parameter definitions

We define a subtomogram as an integrable function,
V(x): R3 — R. We define Tr as the operator of trans-
lation on subtomogram for T € RR3, which be expressed
by

TrV(x): = Vix—T) (1)

In the 3D rotation group SO(3), we define Ap as the
operator of rotation for a rotation R, which be expressed
by

ARV(x): = VIR (0)] (2)

where rotation R is a 3 x 3 rotation matrix [17]. The 3D
subtomograms V(x) rotation and translation operation
can be described as:

Tr(ARV (X)) = V(R (x) — T) (3)

The transformation parameters include rotation oper-
ation and translation operation can be represent as 8 =
(R T) = (¢,0,v, 11,72, 73)T, where rotation parameters
R = (¢,0,¥)T can be deemed as Euler angles in the ‘ZYZ’
usage [23] or ‘y’ usage [24], and translation parameters as
T = (11,72, 73)7.

Fine-grained alignment of subtomograms using
constrained dissimilarity measure in a real space

We now propose a fine-grained registration algorithm
for the subtomogram alignment based on the stochastic
average gradient. The goal of fine-grained alignment is
to search for a local minimum value provided the given
rough parameters of rotation R and translation 7. To per-
form the alignment, one must define an alignment metric.
We use a dissimilarity measure function for the align-
ment of two subtomograms. Many challenges exist, such
as low resolution, low SNR, distortions owing to par-
tial data loss (i.e., missing wedge effect). These factors
must be considered during the subtomogram alignment
procedure.

To handle the significant missing wedge in Fourier
space, the most common approach to correct the miss-
ing wedge is the constrained correlation coefficient (CCC)
measure recommended by Forster et al. [8]. A binary mask
function M : R® — {0,1} is defined to represent the
corresponding missing wedge. In cryo-electron tomogra-
phy with single tilt +6, the missing wedge mask functions
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M@): = Ig)<|cijtan©)) (), where I is symbolic func-
tion [19]. The overlap region after the alignment of two
subtomograms in the Fourier space Q2 : = MArM.
It only considers the best overlap region by rotation in
Fourier space when two subtomograms are aligned, and
eliminates the transform depending on the property of
Fourier space. To reduce the effects of noise, focus on the
particles, we also define a binary mask M in real space.

Related to the Fourier space, the constrained function of
subtomogram f can be expressed as:

_ (FTNET() - Q) —f*) - M(x,3,2)
Ve (FTAET() - Q) — ) - (M(x,9,2))?

",

(4)

where FT denotes the Fourier transformation, FT~!
denotes the inverse Fourier transformation.

The subtomogram mean value of f* must be restricted
toMand Q:

1

fr =
Zx,y,z M

Y FTUET(f) - Q) (5)

x5z

The constrained function of subtomogram g can be
expressed as:

(FT~N(FT(T1Arg) - Q) — g5) - M(%,9,2)

(6)

gE: - -1 * 2
\/ Yy (FTYET(TrARg) - Q) — g5) - (M(x,5,2)))

where g5 : = m Dz FT-FT(T7Azg) - Q).

In fact, for convenient calculation on discrete voxel
points, we define the constrained cross-correlation func-
tion of normalized and aligned subtomograms f* and gg
can be given as:

CCC: =) f @32 g2 (7)

X952

During the alignment, the dissimilarity score d is nor-
malized, which is derived from the CCC. Given a nor-
malized and aligned subtomogram f* and g3, d can be
represented as:

dif*,gp): = (f* —gp)* =2—-2.CCC(f*-g5)  (8)

By using the fast rotational matching (FRM) [9, 19, 20],
we can get an initial set of the top N best rough rotations
candidate set {R',R?,...,RN}, and then obtain the top
N best rough translations candidate set {T%, T2,..., TN},
that can efficiently minimize the normalized Euclidean
distance d using fast translational matching (FTM), where
N is the cardinality of the rotations or translations set.
The selected rotation candidate sets have the highest
CCC value compared to other rotation sets that are not
selected. For each rotation R in the set {R1,R?,..., RN},
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we can utilize FTM to search the best translations 77
between f* and g(*T’ ) For comparison purpose, the acqui-
sition of the initial rotations candidate set was imple-
mented using the corresponding fast rotation matching
code of Chen’s method. Two volume (subtomogram and
reference) are transferred into Fourier space, the power
spectrum (i.e. the magnitude of Fourier components) of
a subtomogram and reference are only considered, and
then we convert the Fourier coefficients to spherical coor-
dinates and calculate fast rotational match by spherical
harmonics convolution. The power spectrum is transla-
tion invariant. Therefore the fast rotation matching does
not depend on translation.

Given a certain combination of R and T, we can get the
new rotation value R* and translation value T* using the
stochastic average gradient (SAG) fine-grained alignment
algorithm on three-dimensional density map, so that the
normalized Euclidean distance decreases.

de,Tk > de+1,Tk+1 (9)

The SAG algorithm was firstly applied to the two-
dimensional matrix [22]. Standard stochastic gradient
descent algorithm implements sublinear rates, because
the randomness introduces variance. The SAG algorithm
stores previous calculated gradients to achieve a linear
convergence rate. We expand the SAG algorithm and
apply it to the three-dimensional matrix to form the 3D
SAG algorithm. We design a 3D version of SAG algorithm
and apply it to 3D rigid registration on subtomogram
alignment procedure.

Since the function f* is fixed, we only use SAG fine-
grained alignment algorithm to update the § = (R, T).
Now we redefine the loss function J for 3D subtomogram
alignment.

1 n
J(B) =T R T) = - 3 hawr) @) (10)
i=1
where 7 is the length of the volume on the x-axis, x; is
a slice of subtomogram along x-axis, index i € {1,.,n},
hg(xi) = he(x:) = = (f*(%) — &7 r) ()2
The recursive form of the SAG algorithm is given as:

o n
gk =,3k*1_7kzy§,k31 (11)
i=1

where at each iteration a index iy along the x-axis in the
experimental data is random selected redundantly and
uniformly in {1,. .., n}, a is step size and yf can be given
as:

1= e

if i =ik

. (12)
otherwise

Similar to the standard full gradient (FG) method, the
procedure contains a gradient in regard to the whole
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experimental subtomogram data. However, similar to the
stochastic gradient (SG) method, the each iteration of
SAG method only calculates the gradient in regard to a
slice of the whole experimental subtomogram data along
the x-axis. So, the iterative cost is independent of #, thus
giving the SAG method low iteration cost and a linear
convergence rate. In other words, by randomly choosing
index iy and maintaining the memory of the latest gradient
value calculated for each slice of the whole experimen-
tal subtomogram data, the iteration accomplishes a faster
convergence rate than the iteration of the SG method. So
SAG method does not increase the capability of getting
trapped into local minima.

For our loss function J, we adopt empirical step size
ar = 1/L. In practice, Lipschitz constant L is unknown.
The estimation of Lipschitz constant L will be doubled
when the instantiated Lipschitz obeys the inequality [22].

We modify the estimation rule of Lipschitz constant L
by selecting the max value in the experimental data.

L'=A+A; (Lipschitz constant for all ],f) (13)

where A; denotes the one dimensional norm of maximum
squared 3D matrix max;{||x; 1%}

We implement the method in Algorithm 1 through
equation 11 and 12, and we utilize a variable D to express
the gradient of . For the purpose of parallelism and
vectorization, the stochastic average gradient comple-
tions usually divide the data into “small batches” and
implement the stochastic average gradient iterations on
small batches. We similarly perform the 3D version of
the SAG-based fine-grained subtomogram alignment on
small batches (a slice) along the x-axis.

Algorithm 1 Basic SAG fine-grained subtomogram align-
ment method for minimizing constrained dissimilarity
score 5= | hp(x;) with a step size a.
D=0,y;=0fori=1,2,...,n
for k = 0; k < maxlter;k + + do
select index i from {1,2,...,n} randomly
hg(xi) = (f* (%) — g5 (x:))?
D=D—y;+ hg(x)

yi = hg(x;)
B=pB-73D
end for

In order to speed up the SAG algorithm convergence
rate and adequately decrease the memory space of SAG
method, we optimize small batches SAG algorithm in
3D space, which select small batches slices along the x-
axis in the experimental subtomograms data, rather than
only selecting a slice along the x-axis in the experimen-
tal subtomograms data in Algorithm 2. In an optimized
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SAG fine-grained subtomogram alignment algorithm
(Algorithm 2), small batches slices depends on the side
length of subtomogram data, for example, small batches
is about 4 ~30 for our simulation subtomogram, in which
the side length is 64. We use a loop to judge whether each
slice is visited, instead of the visitation policy of each slice
in the SAG algorithm.

Algorithm 2 Optimized SAG fine-grained alignment
method for minimizing constrained dissimilarity score
S | hp(x;) with astep size o and B.
D=0,y,=0fori=12,...,n
B = batchsize
for k = 0; k < maxlter; k + + do
select index i from {1,2,...,n-B} randomly
hp (i) = (f*(x:) — gf(x:)*

B
D=D- 232 5+ 5> hpx)
i=1

yi = hg(x;)
p=p-1%
end for

The comparison of computing time between Algo-
rithm 1 and 2 is described in the Results section.
Algorithm 2 is faster than Algorithm 1, so Algorithm 2
is selected for fine-grained subtomogram alignment. In
the optimized SAG fine-grained subtomogram alignment
algorithm, the number of x-slices in each iteration is about
% to % of side length of subtomogram.

For the original candidate set R and 7, the final result
of iteration produces the refined parameters of subtomo-
gram alignment RA+1 = Rk — %k 3™ | yKand T4+ = 74—
4 5™ | y¥ through optimized SAG fine-grained subto-
mogram alignment algorithm (Algorithm 2), where k and
k + 1 are the iteration numbers.

Message passing interface frame parallel fine-grained
subtomogram alignment procedure

To find global optimal rotation and translation param-
eters, it is necessary to perform multiple refining pro-
cesses from different rotation and translation parameter
candidate sets. To initialize on different parameter sets
synchronously, we use Message Passing Interface (MPI)
frame to calculate the score of dissimilarity in parallel.
We compare dissimilarity scores gained by using differ-
ent candidate rotation and translation parameter sets to
find the least dissimilarity score in Algorithm 3. With the
MPI parallel model, we can quickly search for the opti-
mal rotation and translation candidate parameter in all
candidate sets.
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Algorithm 3 Based on MPI parallel SAG fine-grained
subtomogram alignment procedure

1: get top N candidate set (rotation and translation)

2: for each candidate set, we use SAG refine-grained
subtomogram alignment method to optimize the sum
score of dissimilarity between subtomograms and refer-
ence in parallel mode

3: get the minimum score of dissimilarity in the score of
dissimilarity data sets

4: end procedure

Message Passing Interface is a communication protocol
on different computing nodes for concurrent computa-
tion, and supports peer to peer and broadcast. MPI is also
a messaging application interface that includes protocol
and semantic descriptions. MPI is specifically designed to
allow applications to run in parallel on multiple indepen-
dent computers connected over a network in Fig. 1.

We choose MPI frame as parallel programming for
several advantages:

e MPI is the message passing library that can be
regarded as a standard library. In fact, almost all HPC
platforms support it.

e When we change applications to different platforms
that conform to MPI standards, there is little or no need
to modify the source code.

e There are many functions and a variety of implemen-
tations are available.

Finally, we outline some key differences of our stochastic
average gradient fine-grained alignment method for the
subtomogram alignment from Chen’s approach [20] and
Xu'’s approach [21]:

1. In Xu’s approach, they use Levenberg-Marquardt
algorithm to calculate increment value, which needs
total volume data to calculate the Jacobian matrix and
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parameters. In Chen’s approach, they calculate the cross-
correlation coefficient of a 3D matrix in each iteration and
find the best rotation and location values in the 3D matrix.
They also utilize spherical harmonic function to calcu-
late the new cross-correlation coefficient between the 3D
experimental volume and the reference volume, to find the
best cross-correlation score in each iteration.

2. Xu’s approach uses stochastic parallel refinement
framework. Chen’s approach uses MPI frame to parallelize
subtomogram alignment.

3. Our method utilizes a 3D version of stochastic aver-
age gradient algorithm to execute fine-grained subtomo-
gram alignment and apply MPI frame to parallelize subto-
mogram alignment. Our SAG-based fine-grained align-
ment only needs a partial batch slices of the 3D volume in
each iteration.

Generating simulated cryo-electron tomograms

We downloaded the atomic model from Protein Data
Bank (PDB), specified the resolution and voxel spacing,
and conducted low-pass filtering of the data. After get-
ting the density maps, we performed random rotation and
translation operations. Contrast Transfer Function (CTF)
was simulated using a known defocus value. The vol-
ume density maps were projected onto the specified tilt
angles and angle increment. The projection images were
applied with Gaussian-distributed noise and Modulation
Transfer Function noise (MTF) to simulate electron opti-
cal effect. The projection images were reconstructed with
a weighted back projection (WBP) algorithm to produce
the simulated subtomogram datasets.

Atomic model (PDB ID:1KP8) was used to generate
subtomograms of size 643 with voxel size 0.6nm and
-6um defocus. We utilized tilt angle +60° and +40°
with 1° angular increment respectively. The simulations
procedure were implemented using the Situs PDB2VOL
[25] program to get volume electron density maps.

Fig. 1 MPI architecture with different hardware platform

network
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The central slices of different tilt ranges and SNRs are
shown in Fig. 2. Subtomograms with smaller tilt range
and lower SNR shows more deformation than noise-free
subtomograms (i.e. reference).

Experimental groEL and groEL/ES subtomograms

The experimental GroEL and GroEL/ES dataset were
obtained in [8]. To collect the GroEL;4GroES;, 1uM
GroELj4 and 5uM GroES; were incubated in a buffer for
15 min at 30°C, which contained 5mM MgCl,, 5mM KCl,
5 mM ADP, 1mM DTT, and 12.5 mM Hepes (pH 7.5).
3.5ul of protein solutions were confused with 0.5u1 of a 10
nm BSA-colloidal gold suspension using mesh grids. The
sample was vitrified with plunge-freezing. The single-axis
tilt series were obtained by a Tecnai G2 Polara micro-
scope, which was equipped with 2k x2k FEI CCD camera.
The tilt series were acquired from tilt angle +65° with
2° or 2.5° angular increment at a different defocus levels
between 7 and 4 pum. The object pixel size was 0.6nm.

Results

Classification of experimental groEL and groEL/ES
subtomograms

Thousands of subtomograms, which also contain putative
particles, were selected manually and aligned to subtomo-
grams average according to cross-correlation. Eliminating
lower cross-correlation coefficients (e.g., CCC <0.42),
the remainder of particles were chosen for subtomogram
alignment and classification. The dataset of experimen-
tal ~800kDa GroELjs and GroEL14/GroES; subtomo-
grams complex basically conducted as a quasi-standard in
the subtomogram alignment and classification’s research
8, 12, 26, 27].
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The 786 subtomograms in the data set were aligned
by the average of all subtomograms in the facultative
direction and an unsupervised manner. Subsequently, we
used an MCO-A classification [12] with 10 initial classes
and a seven-fold symmetry. The MCO-A method con-
verged to three different class, whose result is consis-
tent with those published previously in [8, 12, 27, 28].
The central slices with each classification average result-
ing from the MCO-A classification are shown in Fig. 3,
and class 1 is look-like the fitted volume of GroELja,
class 2 is associated with the fitted atomic model of
GroEL14/ES7, class 3 is virtually less than the volume of
GI’OEL14.

Comparison of fine-grained subtomogram alignment
accuracy to the baseline methods

We simulated 20 GroEL subtomograms with random
rotation and translation of various SNRs under tilt range
+40° and +60° respectively. We first compared our
method with Chen’s approach [20] and Xu'’s approach [21]
to assess the subtomogram alignment accuracy against
the noise-free reference volume, which was produced
from the GroEL structure (PDB ID: 1KP8). The refer-
ence volume was low-pass filtered to 6nm resolution
and was used as the starting reference for the alignment
procedure.

We aligned the 20 simulated subtomograms with the
reference volume using the three methods. The align-
ment accuracy was assessed using the constrained cross-
correlation (CCC) defined in Section Parameter defi-
nitions. The resulting CCCs were compared using the
t-test of pair-wise data between our method and the
two baseline methods, where the data are assumed by

Tilt angle range

designated SNRs and tilt angle ranges

Fig. 2 Center slices (x-z plane) of simulated subtomograms. Center slices (x-z plane) of simulated subtomograms (GroEL, PDB ID: 1KP8) of

SNR
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class 1

] “d
n ﬂ |

class 2

class 3
Fig. 3 MCO-A classification of GroEL4/GroEL4GroES; subtomograms complex. Slices of the three classes from MCO-A classification

normal distribution [29]. We also used non-parametric
test without Gaussian assumption (Wilcoxon signed-rank
test) to calculate P-value, and the results are similar to the
t test (Supplementary Section 1).

As shown in Table 1, our method outperformed the two
baseline methods using simulated subtomograms of SNR
0.03 and 0.003 under tilt range £60°.

The alignment accuracy comparison for subtomograms
simulated with tilt angle range £40° is shown in Table 2.

We note that although Chen’s method outperformed
ours under some conditions, under a more realistic SNR
0.003 with different tilt angle ranges, our method has
substantial improvement on the resulting CCC alignment
accuracy (Figs. 4 and 5).

We also used 50 particles to evaluate subtomogram
alignment accuracy under different conditions and com-
pared the resolution value under the 0.143 criteria of
FSC (Supplementary Section 2). This comparison proves
that our method outperformed the two baseline meth-
ods using simulated subtomgrams of SNR 0.003 under tilt
range £60° and £40°.

Table 1 Alignment accuracy using P-value between our method
and other methods under tilt range +60°

Computation time compared to other methods in
subtomogram alignment

Next, we compared the computational time between
our SAG fine-grained subtomogram alignment method
and the Xu’s method and Chen’s method. For an objec-
tive and fair comparison, we implemented the three
alignment method in Python and performed them on
20 simulated subtomogram of SNR 0.003 under tilt
range £60°.

We used the original reference-free model as the ini-
tial reference for our algorithm. The most common
Reference-free alignment rules are to use the subtomo-
grams average in a random direction as an original refer-
ence [28]. The so-called no reference is not without any
reference, but does not need a external reference, because
external reference leads to reference bias. We recorded
the running time of each method in obtaining the best
resolution.

Every time the subtomogram alignment method con-
verged, we got a resolution value. By defining the same
convergence times, we evaluated which method can get

Table 2 Alignment accuracy using P-value between our method
and other methods under tilt range +40°

SNR @ C2 SNR 3 Cc4

0.03 2.24E-05 0.01 0.03 0.04 1.32E-05
0.01 041 0.00 0.01 0.19 0.02
0.003 1.01E-15 2.14E-13 0.003 2.54E-05 3.08E-06

We define C1, which is considered as P-value derived from the CCC values of our
method minus the CCC values of the Xu's method. We similarly define C2

We define C3, which is considered as P-value derived from the CCC values of our
method minus the CCC values of the Xu's method. We similarly define C4
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Fig. 4 Comparison of methods under tilt range +60°. The mean value of difference of constrained cross-correlation obtained by our SAG
fine-grained subtomogram alignment method and the other method under tilt range £60°

the best resolution value with the shortest convergence
times.

After each iteration, we got the subtomograms averag-
ing and used FSC means to measure the resolutions, and
then reported the running time for our SAG fine-grained
subtomogram alignment method. Afterward, we repeated
the protocol using Xu’s method and Chen’s method with
an SNR of 0.003 conditions. Finally, we compared the res-
olutions of the average and the running time in three
different subtomogram alignment methods.

The computation time cost of basic SAG fine-grained
alignment method and optimized SAG fine-grained align-
ment method is 50.7 seconds and 40.5 seconds respec-
tively, but Xu’s method and Chen’s method cost 150.2
seconds and 149.4 seconds respectively (Fig. 6). The com-
putation time of different alignment method is the time
for each alignment algorithm to be used once. Figure 6
depicts the computation time of different alignment algo-
rithms (basic SAG fine-grained alignment method, opti-
mized SAG fine-grained alignment method, Xu’s method

0.12 4

0.08 -
0.06 -
0.04

0.02 - 0.01

-0.02 -

Average difference of our sag subtract the
other methods
S
®

-0.04

-0.06 -

® Our method subtract Xu's method

® Our method subtract Chen's method

0.11
0.1

SNR 0.003

-0.03

Signal-to-Noise Ratio

Fig. 5 Comparison of methods under tilt range +40°. The mean value of difference of constrained cross-correlation obtained by our SAG
fine-grained subtomogram alignment method and the other method under tilt range £40°
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and Chen’s method). We note that our SAG fine-grained
alignment method is faster than Xu’s method and Chen’s
method in the computation time.

Then we compared the elapsed time of getting the
best resolution in three alignment methods. To get the
best resolution, different alighment methods may run
many times, for example, our optimized SAG-based fine-
grained subtomogram alignment method got the best
resolution (37.1A) by iterating 14 times, Xu’s method got
the best resolution (40.7A) with 11 iterations and Chen’s
method got the best resolution (39.7A) with 13 iterations
(Fig. 8).

Reference-free fine-grained alignment of subtomograms
on simulated and experimental data set

We tested our SAG fine-grained alignment method and
the two baseline alignment methods for subtomogram
alignment without external reference. We first tested dif-
ferent alignment method on simulated subtomograms
data set. Then we applied the three methods to the
experimental GroEL subtomograms data set (Fig. 3) [8].
Subtomograms data sets were divided into odd and even
data sets and aligned separately. The odd and even
datasets were averaged separately. The normalised cross-
correlation coefficient between the odd and even average
density map over corresponding shells in Fourier space
is measured by FSC to get many FSC values. Under the
condition of FSC 0.143 that is “gold-standard” [30], the
corresponding resolution values were calculated by many
FSC and voxel values, and then the odd and even data

sets were combined as the subtomograms average. The
subtomograms average was used as a new reference and
was low-pass filtered until the end of the cycle or the
frequency did not meet the conditions.

We averaged the subtomograms after reference-free
subtomogram alignment and computed their resolution
curves. For simulated subtomograms dataset, our SAG
fine-grained alignment method was applied for subtomo-
gram alignment at SNR of 0.003 and tilt angle range +60°
(Figs. 7 and 8), and finally obtained the 37.1A average res-
olution after 14 iterations according to gold-standard cri-
teria of 0.143 FSC [30]. Applying Xu’s method and Chen’s
method to subtomogram alignment respectively, the final
average resolution (0.143 FSC criteria) was 40.7A after 11
iterations and 39.7A after 13 iterations respectively.

Our SAG fine-grained subtomogram alignment method
can get better resolution than Xu’s alignment method,
and slightly better than Chen’s alignment method. During
the subtomogram averaging, we often need thousands of
subtomograms and spend weeks to complete. Our SAG
fine-grained subtomogram alignment method can reduce
computational cost and get better resolution compared to
the two baseline methods.

We then applied the three methods to an experimen-
tal GroEL subtomogram dataset (Fig. 3). Throughout our
iterative alignment and averaging procedure, averaging of
GroEL subtomograms transformed from a blurring struc-
ture to the barrel structure of the seven symmetry, resem-
bling the true GroEL structure. According to the 0.143
criteria of FSC, the resolution of the final average was
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Fig. 7 Average of three alignment method in SNR=0.003 under tilt range £60°. a Surface of effective GroEL structure (PDB ID: 1KP8) filtered to a
resolution of 6nm. b Subtomograms average of our SAG fine-grained subtomogram alignment (resolution=37.1A). ¢ Subtomograms average of Xu's
alignment method (resolution=40.7A). d Subtomograms average of Chen'’s alignment method (resolution=39.7A)
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25.1A after 4 iterations (Fig. 9). In order to calculate the
FSC resolution, all alignment methods were performed on
the dataset divided into two independent halves.

Using Xu’s alignment method and Chen’s alignment
method, the resolution of the final average (0.143 criteria)
was 32.5A after 9 iterations and 27.9A after 12 itera-
tions according to the FSC. Furthermore, we utilized the
final average, which was acquired with different alignment
methods, to fit atomic structures of complexes (PDB ID:
1KP8) in Fig. 9. From Fig. 9, the final average acquired by
our SAG-based fine-grained alignment method is better
than the final average acquired by Xu’s alignment method
and Chen’s alignment method in subtomogram alignment

procedure. Therefore, our SAG-based fine-grained align-
ment method outperforms Xu’s alignment method and
Chen’s alignment method for subtomogram reference-
free averaging.

We also added FSC curves for reference-free fine-
grained alignment of subtomograms on simulated and
experimental data set according to the 0.143 criterion
(Supplementary Section 3).

Discussion

In this article, we propose the stochastic average gradi-
ent (SAG) fine-grained alignment method by optimizing
constrained dissimilarity scores. However, the original

60
=—o—Chen's method  =#—Xu's method ==our method
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g
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5 30
=]
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~
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Fig. 8 Iteration times of different alignment methods in obtaining the best resolution in SNR=0.003




Li et al. BMIC Bioinformatics (2019) 20:443

Page 11 0f 13

GroEL

Ours averaging

final 27.9A structure) fit into the GroEL;4 atomic model (purple)

Xu’s averaging
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(green). b The average of Xu's method (gray, final 32.5A structure) fit into the GroEL;4 atomic model (blue). ¢ The average of Chen'’s method (yellow,
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SAG algorithm was firstly applied to the two-dimensional
matrix. So we designed two versions of 3D SAG-based
fine-grained alignment method on subtomogram align-
ment procedure.

Since randomness introduces variance, standard
stochastic gradient descent algorithm implements sublin-
ear rates. Our SAG fine-grained subtomogram alignment
method only selects the slice or the mini-batch slices
along the x-axis in the experimental data in each itera-
tion, maintains the memory of the latest gradient value
calculated for each slice and the whole iteration produces
a gradient of the subtomogram alignment. The size of
mini-batch slices depends on the side length of subto-
mogram data. So our SAG fine-grained subtomogram
alignment method has a linear convergence rate. On
the other hand, by comparing the computational time
between Algorithm 1 and 2, Algorithm 2 is faster than
Algorithm 1, so Algorithm 2 is selected for fine-grained
subtomogram alignment. But, Xu’s method and Chen’s
method require the whole 3D volume to do the calcula-
tion in each iteration, and thus take more time. Compared
to other methods, our method requires more temporary
space in memory.

For the alignment accuracy comparison, Chen’s method
performs better than our SAG fine-grained alignment
method on SNR=0.03 and SNR=0.01 subtomograms
under tilt range £40°, probably because Chen’s method
searches for the best cross-correlation coefficient value
between 3D cross-correlation matrix, which is accurate

under higher SNR. However, our method is more robust
to a more realistic low SNR setting of SNR 0.003.

Our SAG fine-grained alignment method uses MPI
frame to calculate the score of dissimilarity in parallel
for subtomogram alignment, however, using MPI is not
easy to program and requires some experience, unlike
multi-threading.

Conclusion

Our SAG fine-grained subtomogram alignment method
optimizes a constrained dissimilarity score in real space.
It is obvious that our method is more accurate on subto-
mogram alignment and averaging at SNR=0.003 of tilt
range £60° and £+40°. By comparing the elapsed time of
different alignment method, our SAG fine-grained subto-
mogram alignment method is faster than Xu’s method and
Chen’s method, and our method obtains better resolution,
which is well validated on the simulated subtomograms
datasets and experimental GroEL and GroEL/ES subto-
mograms datasets.

Additionally, we utilized a very efficient Message
Passing Interface (MPI) frame parallel refinement align-
ment procedure, which is particularly designed to apply
in parallel on multiple independent computers nodes con-
nected by a network. MPI significantly accelerates the
simultaneous refinement of multiple subtomogram align-
ment candidates set.

We will consider classification problems in the future
and try to use new classification algorithms, not only
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including deep learning. In addition, we will continue to
study subtomogram alignment. We will also test the new
alignment algorithm with larger, updated subtomograms
data sets.

Computational analysis of cryo-electron tomography is
an emerging field due to its inherent content complex-
ity and imaging limits [27, 31-37]. Our method serves
as a useful step towards improved systematic recovery of
macromolecular structures captured by such tomograms.
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