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Abstract

Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to
cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and
proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the
dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury
(CCI) model of neuropathic pain in mice. In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve
induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained
stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and
TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their
distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no
alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold
transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced. Our
results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and
that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold
allodynia in this neuropathic pain model.
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Introduction

Neuropathic pain is a debilitating condition that is poorly

understood and often untreatable. It is initiated by damage to the

nervous system and is characterized by the emergence of

spontaneous pain (i.e. pain that occurs in the absence of

stimulation), hyperalgesia (an increased sensitivity to noxious

stimuli), and allodynia (pain evoked by normally innocuous

stimuli) [1]. A common complaint of neuropathic pain patients

is an increased sensitivity to cold temperatures, or cold allodynia

[2–4]. This symptom, which is also observed in animal models of

neuropathic pain [5], leads to pain and discomfort at temperatures

that are normally perceived as being innocuously cool. Despite the

importance and prevalence of cold allodynia, little is known about

the underlying molecular mechanisms.

Recently, much progress has been made in our understanding

of cutaneous thermosensation and of the thermal transduction

mechanisms intrinsic to peripheral sensory neurons [6]. Several

candidate thermosensor molecules have been identified belonging

to the Transient Receptor Potential (TRP) ion channel family [7].

Two of these ion channels, termed TRPM8 and TRPA1, have

been proposed to function as cold transducers [8,9]. TRPM8 is

expressed by a small population of cold-sensitive sensory neurons

and is activated at cool temperatures (,26uC) and by the cooling

compound menthol [10,11]. Mouse knockout studies have

revealed that TRPM8 is required for cold sensation over a broad

range of innocuous and noxious cold temperatures [12–14].

TRPA1 is also expressed by sensory neurons and was initially

described as a noxious cold sensor with an activation temperature

of 17uC [15]. However, many reports have indicated that TRPA1

is not directly gated by cold [16–19] or may only be weakly

activated after prolonged exposure to cold temperatures [20–22]

We reasoned that cold-activated TRP channels in primary

afferent neurons might play an important role in the pathogenesis

of cold allodynia. An increased expression of these channels or an

alteration in their functional properties could lead to the lower

thresholds for cold pain and increased sensitivity to cold seen in

neuropathic pain states. We therefore examined the expression

and function of TRPM8 and TRPA1 in DRG neurons in a mouse

model of neuropathic pain. We demonstrate that the TRPM8

agonist menthol evokes nociceptive behavior after nerve injury,

and that TRPM8 is a potential transducer molecule for cold-

mediated allodynia. However, we find no evidence of increased

expression of TRPM8 and TRPA1, or of changes in the cold

sensitivity of sensory neurons after injury.

Results

Behavioral responses to cold and menthol
We used a chronic constriction injury of the sciatic nerve to

model neuropathic pain. Cold allodynia is prevalent in this model
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[23] and using the acetone test we observed robust behavior such

as licking, brushing and flinching of the paw indicative of cold

allodynia (Fig. 1a).

The ion channel TRPM8 is the best candidate cold transduc-

tion molecule that has been identified to date [12–14]. We

therefore investigated whether TRPM8 activation might be

important for cold allodynia. We reasoned that if TRPM8 is a

receptor for cold-evoked allodynia after injury, then activation of

the ion channel with its agonist menthol should also evoke

nociceptive behavior.

We applied 40 ml of (-)-menthol or vehicle to the ipsilateral paw

of CCI or control mice and monitored behavioral responses

(Fig. 1b). Vehicle application did not evoke nociceptive behavior in

CCI or control mice. Application of (-)-menthol in control mice led

to a small increase in licking duration compared to vehicle, but this

was not statistically significant (P = 0.0956, two-way repeated

measure ANOVA). However, application of (-)-menthol in CCI

mice led to a significant increase in licking duration (P,0.001

compared to (-)-menthol control mice, two-way repeated measure

ANOVA) that became apparent 2 days after injury and peaked 7

days after injury, paralleling the development of cold allodynia in

the acetone test. In addition to licking of the treated paw, CCI

mice also displayed behaviors such as flinching of the paw and

brushing of the affected area that also developed with a similar

time course to cold-evoked behavior. This suggests that activation

of TRPM8 after nerve injury, either by (-)-menthol or cold, can

evoke nociceptive behavior.

TRPM8 and TRPA1 expression levels after nerve injury
Injury-induced alterations in the number of cold transduction

molecules in sensory neurons could underlie the development of

cold allodynia. We therefore examined gross expression levels of

TRPM8 and TRPA1 mRNA in DRG of injured neurons using

qRT-PCR. We detected a relatively low level of mRNA for

TRPM8 and TRPA1 in the DRG of control mice (TRPM8,

106400 copies/mg total RNA, TRPA1, 280900 copies/mg RNA)

which correlates well with the selective expression of these

channels within small subpopulations of neurons. After injury,

the expression level of the channels was slightly decreased,

reaching statistical significance on day 14 for TRPM8 (Fig. 2a)

and on day 7 and 14 for TRPA1 (Fig. 2b). We investigated the

relevance of these small reductions by comparing them to the

expression of the neuropeptide galanin as a positive control.

Galanin has been shown to be strongly up-regulated after nerve

injury [24] and indeed in our experiments we measured a

considerable increase in galanin mRNA levels at 7 and 14 days

post CCI (Fig. 2c). This demonstrates that the CCI model and

qRT-PCR technique used here are feasible methods for measuring

injury induced alterations in mRNA levels.

Because TRPM8 and TRPA1 displayed a reduced expression

after injury we reasoned that another cold-sensitive ion channel

might be upregulated instead. We thus performed qRT-PCR

experiments on the background K+ channel TREK-1 which has

been demonstrated to be thermosensitive [25]. However, similar to

TRPM8 and TRPA1, this mRNA was also expressed at a lower

level after injury (Fig. 2d).

It is also possible that changes in cold channel mRNA

expression levels are species dependent. We therefore examined

TRPM8 and TRPA1 expression in the rat after CCI injury. We

also investigated changes in individual L4 and L5 ganglia to ensure

that pooling of L3-L5 ganglia was not masking a potential increase

in expression. However in agreement with our results from mice,

TRPM8 and TRPA1 did not show upregulation after nerve injury

(Fig. 2e and f).

Distribution of TRPM8 and TRPA1 mRNA after nerve
injury

We examined the expression of TRPM8 and TRPA1 mRNA in

more detail using in situ hybridization of mouse DRG sections.

This technique allowed us to identify the neuronal subtype

expressing each channel.

To this end we employed a double-labeling technique utilizing

antibodies against calcitonin gene related peptide (CGRP) and

neurofilament 200 kDa (NF200) to identify peptidergic nociceptors

and myelinated neurons, respectively, and fluorescently labeled

IB4 to detect non-peptidergic nociceptors [26–28]

We detected TRPM8 mRNA in approximately 7% of neurons

within the DRG. This was reduced to ,5%, 7 and 14 days post

Figure 1. Time course of cold and (-)-menthol sensitivity following sciatic nerve ligation. (a) Cold sensitivity assessed by acetone response
score where 0 = no response, 0.5 = licking, 1 = flinching and brushing of the paw, 2 = strong flinching, 3 = strong flinching and licking. Circles, CCI
operated animals (n = 6) and triangles, control animals (n = 6). *P,0.05 CCI against control, two-way repeated measures ANOVA followed by Student-
Newman-Keuls test. (b), Menthol evoked paw licking duration. Filled circles, CCI operated mice treated with (-)-menthol (250 mM). Open circles, CCI
mice with vehicle (90%DMSO, 10% PBS). Filled triangles, control mice (-)-menthol. Open triangles, control mice vehicle. All values are mean6SEM.
*P,0.05 CCI (-)-menthol against control (-)-menthol, two-way repeated measures ANOVA followed by Student-Newman-Keuls test.
doi:10.1371/journal.pone.0007383.g001

TRP Channels and Pain

PLoS ONE | www.plosone.org 2 October 2009 | Volume 4 | Issue 10 | e7383



injury (Table 1). TRPM8 was co-expressed in very few CGRP-

positive peptidergic neurons (Fig. 3a) and essentially no IB4

positive non-peptidergic neurons (Fig. 3b) or NF200 containing

myelinated neurons (Fig. 3c). Co-expression of TRPM8 with any

of the markers did not change after injury (Table 1).

TRPA1 mRNA expression was also significantly reduced

following nerve injury (Table 2). The majority of TRPA1 positive

cells were co-labeled with IB4, with additional expression in some

CGRP-expressing neurons and almost no expression in NF200-

labeled cells (Fig. 3d–f, Table 2). Intriguingly the reduction in

TRPA1 expression was seen exclusively in the IB4-positive

neurons, with no change in the number of TRPA1 plus CGRP

or TRPA1 plus NF200 positive cells (Table 2).

In order to study the regulation of TRPA1 mRNA in another

model, we also examined its expression during inflammatory pain.

We injected Complete Freund’s Adjuvant (CFA) into the hind paw

to induce inflammation and assessed the expression of TRPA1

mRNA 48 hours later. In contrast to the reduction in expression

seen following nerve injury, we found no difference in the number

of cells expressing TRPA1 after CFA injection (Table 3).

Figure 2. Quantitative reverse-transcription PCR. mRNA levels for (a), TRPM8 (b), TRPA1 (c), galanin, and (d) TREK-1 in the mouse. Levels are
expressed relative to GAPDH in control animals and at 2, 7 and 14 days after surgery. I indicates ipsilateral to the injury, C, contralateral. (e) qRT-PCR
for TRPM8 and (f) TRPA1 in the rat at 14 days post injury. L4 and L5 indicate respective ganglia. *P,0.05 ipsilateral versus contralateral, paired T-test.
All values are mean6SEM (n = 6 animals for each group).
doi:10.1371/journal.pone.0007383.g002

Table 1. Distribution of TRPM8 mRNA in the DRG after nerve injury.

TRPM8 mRNA TRPM8 + CGRP TRPM8 + IB4 TRPM8 + NF200

Control 6.660.4 (796/12276) 0.260.1 (8/5283) 0 (2/4356) 0 (0/2637)

7 day Ipsi 4.560.3* (638/14523) 0.160.1 (6/3047) 0 (1/5998) 0 (1/5478)

14 day Ipsi 4.660.2* (725/15947) 0.260.1 (12/7621) 0 (0/4790) 0 (1/3536)

Table showing the percentage (6SEM, n = 6 mice per group) of neurons in the DRG expressing TRPM8 alone and co-localized with CGRP, IB4 or NF200. Numbers in
brackets indicate the total number of neurons counted.
*P,0.05 compared to control, T-test.
doi:10.1371/journal.pone.0007383.t001
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Our in situ hybridization data is in broad agreement with our

qRT-PCR data and shows that TRPM8 and TRPA1 mRNA are

down-regulated in the DRG following nerve injury. Furthermore,

there is no evidence of de novo synthesis of channel mRNA

amongst the different subpopulations of sensory neurons, suggest-

ing that a ‘‘phenotypic switch’’ in cold-sensing neurons is not a

mechanism for cold allodynia.

Functional properties of cold-sensitive sensory neurons
after nerve injury

We used Ca2+ microfluorimetry from acutely isolated mouse

DRG neurons to measure functional properties of cold-sensitive

neurons after nerve injury. TRP channel expression remains

constant for a period of hours after dissociation [29], therefore all

experiments were performed within 3 hours of plating cells.

Our aim here was to determine the number of cold responsive

cells in the DRG and to identify whether they contained TRPM8

or TRPA1 as potential transduction molecules. Figure 4 shows a

typical experiment in which sensory neurons were tested for

responses to cold, mustard oil (a TRPA1 agonist) and KCl. In this

example, 3 of 12 neurons responded robustly to cold, 5 of 12

responded to mustard oil (and therefore presumably expressed

TRPA1), and 1 of 12 cells responded to both stimuli. Similar

experiments were performed using (-)-menthol to identify TRPM8

positive neurons.

We analyzed a total of 3655 cells from control, 7 day and 14 day

post-injury mice. Cells sizes had a similar distribution in each

group indicating that we were not sampling from different

populations (Fig. 5a). In control animals we found that 3065%

of all DRG neurons responded to cooling, 1462% responded to

100 mM (-)-menthol and 4562% of cells responded to mustard oil

(Fig. 5b–e). After nerve injury, we observed no change in the

proportions of cells responding to cold or to a range of

concentrations of (-)-menthol (Fig. 5b, c, d). However, in

agreement with our expression analysis, the number of cells

responding to mustard oil was strongly reduced at days 7 and 14

post CCI (Fig. 5e) (although the amplitude of individual responses

was not changed). Additionally, we investigated mustard oil

responses in the CFA model of inflammation and at 48 hours post

injection there was no change in the number of cells responding to

Figure 3. Distribution of TRPM8 and TRPA1 in identified neuronal subpopulations in DRG. Combined in situ hybridization of TRPM8 (red)
with (a), immunohistochemistry (green) for CGRP, (b), IB4 and (c), NF200. TRPA1 mRNA expression (red) with (d), CGRP, (e), IB4 and (f), NF200 (green).
Scale bar 40 mm.
doi:10.1371/journal.pone.0007383.g003

Table 2. Distribution of TRPA1 mRNA in the DRG after nerve injury.

TRPA1 mRNA TRPA1 + CGRP TRPA1 + IB4 TRPA1 + NF200

Control 2861.2 (2678/9958) 2.560.4 (66/2688) 25.361.9 (766/2805) 0.660.2 (21/4465)

7d Ipsi 19.662.2* (1642/8514) 2.160.3 (57/2636) 1961.7* (484/2089) 0.760.1 (29/3789)

14d Ipsi 20.761.7* (1763/8834) 3.160.3 (154/4914) 17.462.2* (422/1729) 0.760.2 (17/2191)

Table showing the percentage (mean6SEM, n = 6 mice per group) of neurons in the DRG expressing TRPA1 alone and co-localized with CGRP, IB4 or NF200. Numbers in
brackets indicate the total number of neurons counted.
*P,0.05 compared to control, T-test.
doi:10.1371/journal.pone.0007383.t002
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mustard oil (Fig. 5f). However, we did observe significantly larger

mustard oil evoked responses in CFA-treated inflamed mice

compared to control mice (Fig. 5g).

Our Ca2+ imaging analysis allowed us to define different

subpopulations of cold-responsive neurons based upon their (-)-

menthol and mustard oil sensitivity. We observed a strong

association between (-)-menthol sensitivity and cold activation

such that 7268 percent of all (-)-menthol responding neurons were

also responsive to cold (,9% of all neurons in the DRG responded

to both (-)-menthol and cold and this value did not change after

injury (Fig. 5h)). In contrast, mustard oil and cold sensitivity

showed little correlation. Only 1862% of mustard oil sensitive

neurons responded to cold (861% of all DRG neurons) and this

value was further decreased 7 days following injury (261% of all

neurons). The lack of overlap between mustard oil and cold

sensitivity argues against a role for TRPA1 in cold sensation both

in control animals and following nerve injury. We therefore

continued our analysis by classifying cold sensitive neurons as

either menthol-sensitive or menthol-insensitive (Fig. 5i).

Sensory neurons can be classified by their cell size with smaller

neurons (,25 mm in the mouse) being predominantly nociceptive.

We measured cell soma diameters in cold-sensitive cells and

observed an average value of 18.860.4 mm in the menthol-

sensitive population and 19.561.1 mm in the menthol-insensitive

population. Mustard oil responsive neurons were significantly

larger with a diameter of 2361.3 mm (p,0.05 Mann-Whitney-U-

test) demonstrating the lack of functional overlap with cold sensing

neurons. None of these values changed after nerve injury

supporting our expression analysis and confirming that a novel

population of cold sensory neurons does not emerge after CCI.

We also measured functional properties of cold-responsive

neurons such as their activation temperature thresholds and the

maximum amplitude of response to cold, menthol and mustard oil.

Table 4 shows that temperature thresholds were similar in

menthol-sensitive and menthol-insensitive neurons and that this

value did not change after CCI. The size of the response was

significantly larger in menthol-sensitive and mustard oil responsive

neurons compared to menthol-insensitive cold neurons (P = 0.02

and P = 0.01 respectively, two-way ANOVA), although again, this

was not altered post injury.

Discussion

In the present study we explored the role of the ion channels

TRPM8 and TRPA1 in the development of cold allodynia

following nerve injury. We show that menthol evokes nociceptive

behavior after injury that parallels the emergence of cold-evoked

hypersensitivity. We examined the expression of TRPM8 and

TRPA1 in the DRG, and analyzed the receptive properties of cold

sensitive sensory neurons post-injury. Unexpectedly, we observed

a reduction in the expression of the TRP channel mRNA and no

difference in the functional properties of cold sensitive DRG cells.

Our results suggest that cold allodynia does not arise directly from

changes in TRP channel expression.

Menthol evokes nociceptive behavior post-injury
The psychophysical effects of menthol have been well

documented in humans. Menthol is known for its ability to evoke

a cooling sensation when applied to the skin [30–32], and high

concentrations (30–40% w/v) produce burning pain and cold

hyperalgesia [33–35]. There are fewer studies addressing the in

vivo effects of menthol in animal models, presumably because of

the difficulty in designing behavioral assays to assess innocuous

stimuli, and because higher nociceptive concentrations of menthol

induce ataxia when injected in mice [14].

In our experiments, we applied 250 mM (3.9% w/v) (-)-menthol

to a localized area of the hind paw. We observed no ataxia and

Table 3. Distribution of TRPA1 mRNA in the DRG after
inflammation.

TRPA1 mRNA TRPA1 + CGRP

Control 31.361.3 (2738/8558) 3.1860.4 (238/8558)

48 hours CFA 32.0460.9(4071/12601) 3.6960.31 (433/12601)

Table showing the percentage of neurons in the DRG expressing TRPA1 alone
and co-localized with CGRP in control and CFA injected mice (6SEM, n = 3 mice
per group). Numbers in brackets indicate the total number of neurons counted.
doi:10.1371/journal.pone.0007383.t003

Figure 4. Representative recordings of Ca2+ transients in DRG neurons from control mice. Responses to (a), cooling, (b), mustard oil and
(c), KCl (note different Y-axis scale for KCl).
doi:10.1371/journal.pone.0007383.g004
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indeed control mice behaved in much the same way as vehicle

treated animals. After nerve injury however, the same concentration

of (-)-menthol evoked strong nociceptive responses that developed

with a time course similar to acetone-induced cold behavior. This

indicates that activation of TRPM8 in CCI mice triggers

nociceptive behavior and that TRPM8 might be a key component

of cold hypersensitivity. In agreement, Colburn et al. (2007)

reported that TRPM8 knockout mice display reduced acetone

responses after nerve injury, suggesting that in neuropathic pain

states TRPM8 acts as the predominant sensor for cool-evoked pain.

Menthol is also known to have analgesic actions in a number of

painful conditions. A recent report demonstrated that activation of

TRPM8 by (-)-menthol and other agonists led to marked analgesia

in the CCI model of neuropathic pain in rats [36]. One major

difference between that study and ours was that considerably lower

concentrations of (-)-menthol were used (4 mM compared to

Figure 5. Proportions of cold, (-)-menthol and mustard oil responsive DRG neurons in control animals, at 7 and 14 days post-CCI
and at 48 hours post CFA. (a), Cell-size histogram in control mice and in mice at 7 and 14 days post CCI injury. (b), Percentage of cold-responsive
neurons in the DRG (n = 6–15 mice). (c), Percentage of neurons responsive to 100 mM menthol (n = 6–15 mice). (d), Concentration-response profile for
menthol. (e), Percentage of mustard oil-responsive neurons (n = 3 mice in each group). (f), Percentage of neurons responding to mustard oil in DRG
ipsilateral and contralateral to CFA injection (n = 3 mice). (g), Maximum amplitude of Ca2+ transients in mustard oil sensitive neurons following CFA
injection. (h), Percentage of neurons in the DRG responsive to both (-)-menthol and cold (n = 6–11). (i), Percentage of neurons in the DRG insensitive
to (-)-menthol but responsive to cold (n = 6–11). I indicates ipsilateral to the injury, C contralateral. *P,0.05 ipsilateral versus contralateral, paired T-
test. All values are mean6SEM.
doi:10.1371/journal.pone.0007383.g005
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250 mM used here). It is therefore likely that low concentrations of

(-)-menthol (4 mM) evoke anti-nociception, while higher concen-

trations (250 mM) are pro-nociceptive after injury. Intriguingly, in

healthy human volunteers, concentrations similar to the one used

here (320 mM–630 mM) induce a cooling sensation [30,32],

whereas concentrations of 1.9 M–2.6 M are required to evoke

pain [33–35]. An important question is whether the concentration

of menthol required to evoke pain is also lowered in neuropathic

pain patients.

Nerve-injury induced changes in the expression of
TRPM8 and TRPA1

Several studies have examined the expression of TRPM8 and

TRPA1 mRNA in rat models of neuropathic pain. mRNA

transcripts were reported to be weakly up-regulated in DRG when

measured using a ribonuclease protection assay [37], and TRPA1

mRNA was found to be down-regulated in injured neurons, but

up-regulated in uninjured neurons in the L5 spinal nerve ligation

(SNL) model [38]. However, using the same model, another study

reported down-regulation of both TRPA1 and TRPM8 in injured

neurons and no change in expression in the uninjured ganglion

[39]. At the protein level, the number of cells expressing TRPM8-

immunoreactivity is increased in the CCI model [36,40].

Interestingly, we observed that TRPA1 was predominantly

expressed in IB4 positive neurons and that it was in this

population of neurons that TRPA1 expression was lost after

injury. Previous studies have demonstrated that IB4 binding is

strongly reduced in injured neurons following SNL in the rat [41]

suggesting that loss of this population contributes to the reduction

in TRPA1 expression.

One common feature of these studies and of our results is that

injury induced changes in the expression of TRPA1 or TRPM8

were relatively minor, especially when compared to molecules

such as galanin. Moreover, Obata et al. (2005) reported that

TRPA1 up-regulation was only detected in uninjured neurons in

the SNL model. It was argued that this selective increase in

TRPA1 expression in the uninjured L4 DRG underlied the

emergence of cold hypersensitivity. However, we and others [39]

detected no up-regulation of TRPA1 in either injured or uninjured

neurons after nerve injury, but were still able to measure robust

cold allodynia.

We also considered the possibility that species differences

between rats and mice might account for this discrepancy. We

repeated our qRT-PCR experiments in rats and took the

additional step of measuring from individual L4 and L5 ganglia

to increase sensitivity. However, in agreement with our results in

mice, we were unable to detect an upregulation in TRP channel

expression in either ganglia following injury. This suggests that

cold hypersensitivity in neuropathic pain is not always dependent

upon increased expression of TRPA1 and TRPM8 in DRG.

Cold sensitivity of sensory neurons after nerve injury
We identified TRPM8 positive neurons by applying (-)-menthol

to dissociated DRG cells. Interestingly, the number of cells

responding to 100 mM menthol in culture was greater than

expected from our expression analysis and about a quarter of all

menthol-sensitive neurons did not respond to cold. One

explanation for this is that menthol is not selective for TRPM8.

Indeed, menthol has been demonstrated to evoke Ca2+ release

from intracellular stores via a TRPM8-independent pathway [42],

and to activate TRPA1 at lower concentrations [43,44]. We

observed a similar trend in experiments where we used lower

concentrations of menthol (Fig. 5d). For example at 30 mM

menthol, a reduction in the number of responders was evident in

neuropathic animals, paralleling our TRPA1 results. Thus a

TRPM8 independent mechanism could account for some of the

menthol responsive cells observed here.

TRPA1 containing neurons were identified by their response to

mustard oil and in these cells we observed no correlation between

cold and mustard oil sensitivity. We applied cold stimuli as low as

8uC (well below the proposed temperature threshold for TRPA1

[15,21]) but were unable to activate the majority of mustard oil

sensitive neurons (over 80%). It is possible that the duration of our

cold stimulus (30 seconds) was not sufficient to activate TRPA1

since it has been reported that prolonged cooling is required to

evoke a response [22]. We recently reported that TRPA1 is

activated by intracellular Ca2+ and that cold sensitivity occurs

indirectly through an increased Ca2+ concentration in HEK293

cells [19]. However, cold does not evoke a general increase in Ca2+

concentration in sensory neurons (as occurs in HEK293 cells), thus

even an indirect role for TRPA1 in acute cold sensation seems

unlikely. Consequently, we did not examine behavioral responses

to mustard oil in CCI mice and we continued our functional

analysis by designating cold responsive neurons as either menthol-

sensitive, or menthol-insensitive as has been reported in previous

studies [45-47].

Intriguingly, we found that the number of mustard oil responsive

cells was strongly reduced after CCI but not changed following CFA

injection. It is difficult to gauge the functional significance of

TRPA1 down-regulation and its contribution to the pathophysiol-

ogy of neuropathic pain. However, voltage-gated Ca2+ currents are

also diminished after nerve injury [48] and this has been proposed

to lead to increased excitability in injured sensory neurons via

reduced activation of Ca2+ activated K+ currents. Since TRPA1 is

gated by, and is permeable to Ca2+ [19], it is possible that reduced

expression of the channel might also contribute to diminished Ca2+

currents and enhanced excitability after injury. We also measured

the amplitude of responses to mustard oil in neuropathic and

inflammatory pain models. In CCI animals there was no alteration,

however CFA injection resulted in an increased amplitude. Again

this could reflect a change in basal intracellular Ca2+ concentration

Table 4. Temperature threshold and amplitude of Ca2+ transients in DRG neurons after nerve injury.

Temperature threshold Maximum response

MS MI Cold MS Cold MI Mustard Oil

Control 20.360.9uC 1862uC 110.9617.2% 58.9615.1% 108.1616.7%

7 day Ipsi 19.462uC 1661.3uC 116.3626.1% 51.467.13% 92.167%

14 day Ipsi 21.562uC 16.361.1uC 66.6621.6% 43.965.8% 86.6628.8%

Table showing the temperature threshold and maximum amplitude of Ca2+ responses (percent increase from baseline) in menthol sensitive (MS) and menthol
insensitive (MI) cold neurons and in mustard oil responsive neurons (mean6SEM).
doi:10.1371/journal.pone.0007383.t004
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in TRPA1 positive neurons during inflammatory pain. An increased

level of Ca2+ via activation of Ca2+ signaling pathways by

inflammatory mediators would serve to increase the sensitivity of

TRPA1 to its agonists [19].

A surprising aspect of our results is that we observed no

differences in any parameters of cold sensitivity post-injury. This is

in contrast to some studies examining cold sensitivity in the SNL

and CCI models or neuropathic pain [40,49,50]. Using the SNL

model, it was reported that while cold responses remained

constant in injured neurons, a proportion of uninjured neurons

of the L4 DRG developed sensitivity to cold after injury. Similarly,

in the CCI model a small population of capsaicin-sensitive neurons

developed cold sensitivity after injury. These novel populations of

cold sensing neurons could potentially contribute to cold allodynia,

however our data suggests that this is unlikely to be a universal

mechanism for cold hypersensitivity. In support of this, using an

experimental neuroma model in mice, Roza et al. [51]

demonstrated that cold sensitivity of axotomized fibers does not

change from pre-injury levels.

Our data indicate that an alteration in the number of cold

sensitive DRG neurons is not a mechanism for cold allodynia in

the CCI model of neuropathic pain. However, it does not exclude

the possibility that changes in cold sensitivity might occur in the

peripheral terminals of sensory neurons. For example, it is possible

that CCI alters the transport of cold sensitive channels to the

periphery leaving a deficit of mRNA at the level of the DRG.

Similarly, alterations in cellular context could shape the response

of cold sensitive neurons at their peripheral terminals. Recently

Madrid et al. [52] demonstrated a correlation between expression

level of IKD (a current dependent upon Shaker-like Kv1 channels)

and threshold of activation by cold. Blocking IKD shifted the

activation threshold of noxious cold activated neurons to higher

temperatures and it was argued that a similar mechanism could

account for cold allodynia.

In the absence of a peripheral mechanism for cold allodynia, a

modification of central processing of cold stimuli after nerve injury

could underlie the emergence of cold hypersensitivity. In a recent

fMRI study of healthy human volunteers, it was reported that cold

allodynia induced by 40% menthol, recruited the bilateral

dorsolateral prefrontal cortex and the midbrain to cold pain

processing, regions not normally associated with cold sensation [53].

Changes at the spinal cord level could also trigger cold allodynia

and several spinal mechanisms such as structural reorganization,

central sensitization of dorsal horn neurons, and disinhibition of

nociceptive circuitry have been postulated to contribute to

neuropathic pain states [1]. Interestingly, a number of human

studies have shown that cold pain sensation is under tonic

inhibitory control. Thus blockade of myelinated fiber conduction

during cooling has been demonstrated to abolish innocuous cold

sensation and induce burning and stinging pain rather than

coolness [54]. Similarly, fibers transmitting innocuous cold might

also exert inhibition, a hypothesis that is supported by the

observation that some neuropathic pain patients are unable to

perceive cold but report burning pain on cold exposure [55].

Intriguingly, the central terminals of TRPM8 expressing neurons

have been demonstrated to overlap with glutamic acid decarbox-

ylase 65 (GAD65) in lamina I of the spinal cord [56]. GAD65

synthesizes the inhibitory enzyme GABA, suggesting that TRPM8

positive cold sensory neurons could form contacts with inhibitory

dorsal horn neurons. From our results we are unable to identify

the central mechanism of cold hypersensitivity, however it is

interesting that we observed decreases in TRPM8 expression. If

this were to occur selectively in cool sensing neurons involved in

the suppression of cold pain, it could lead to an unmasking of cold

nociceptive pathways. A shift in the balance of inhibitory to

excitatory input would allow TRPM8 activation, either by

menthol or cold, to evoke pain.

Materials and Methods

Surgical procedures
All experiments were conducted on C57/B6 mice or Wistar rats

with the approval of the state animal care and use committee

(Landesamt für Arbeitsschutz, Gesundheit und Technische

Sicherheit Berlin). A chronic constriction injury (CCI) of the

sciatic nerve was used to model neuropathic pain. Briefly, the right

sciatic nerve was exposed at mid-thigh level under isoflurane

anesthesia. 3 loose silk ligatures were tied around the nerve and the

incision was closed. For sham controls, the sciatic nerve was

exposed but not ligated.

Intraplantar injection of Complete Freunds Adjuvant (CFA) was

used to model inflammatory pain. 20 ml CFA (50 mg of desiccated

M. Butyricum diluted into 20 ml Incomplete Freunds Adjuvant

from Difco Laboratories Detroit, USA) was injected into the right

hind paw under brief isoflurane (Rhodia Organic Fine Ltd.,

Bristol, UK) anesthesia. The inflammation was confined to the

right paw throughout the observation period. Animals were killed

after 48 hours and tissue was prepared as described below.

Behavioral experiments
For all behavioral experiments, mice were habituated to the test

procedure for 7 days before surgery. Responses were taken 1 day

prior to surgery and at 2, 4, 7 and 14 days postoperative.

The acetone test was used to assess cold allodynia in mice. In

this test, evaporative cooling of locally applied acetone is used to

evoke nociceptive behavior in CCI mice [57,58]. 40 ml of acetone

was applied to the dorsal hind paw ipsilateral to the injury and the

behavior was assigned an arbitrary score. A score of 0 indicated no

response, 0.5, a licking response, 1, flinching and brushing of the

paw, 2, strong flinching, and 3, strong flinching and licking.

Behavior was observed during the first 30 seconds after acetone

application and measurements were repeated 2 times with a 1

minute interval to obtain a mean value. Dorsal root ganglia from

animals displaying cold allodynia were used for qRT-PCR, in situ

hybridization and calcium imaging assays.

To assess the effects of menthol on nociceptive behavior in CCI

mice, 40 ml of 250 mM (-)-menthol (Sigma, Germany) dissolved in

90%DMSO and 10%PBS or vehicle alone was applied to the

dorsal surface of the ipsilateral hind paw. Mice were observed for 5

minutes and the time spent licking the hind paw was measured.

Experiments were repeated in control mice.

Quantitative reverse transcription-PCR
Lumbar L3-L6 dorsal root ganglia (DRG) were dissected from

CCI and control mice, pooled and total RNA extracted using the

RNeasy mini kit (Qiagen, Germany). Samples were quantified

using a spectrophotometer (Gene Quant II, Pharmacia Biotech,

UK) and reverse transcribed with AMV-reverse transcriptase

(Roche, Germany). Quantitative PCR was performed using the

Lightcycler system (Roche, Germany) utilizing SYBR green to

detect amplification. PCR primers were designed to amplify

400 bp regions from TRPM8, TRPA1, TREK-1, galanin and the

housekeeping gene GAPDH as a reference. These primers were

tested at a range of annealing temperatures and were found to

amplify 1 PCR product as determined by melting curve analysis

and agarose gel electrophoresis. A standard concentration curve

for each cDNA was constructed from serial dilutions of linearized
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plasmid DNA. Experiments were performed in triplicate and data

was normalized to GAPDH levels.

In further experiments, individual L4 and L5 ganglia were

dissected from control and CCI rats and processed as above for

qRT-PCR of TRPM8, TRPA1 and GAPDH mRNA.

In situ hybridization and immunohistochemistry
Mouse tissue was fixed by transcardial perfusion of 4%

paraformaldehyde (PFA) in PBS. Lumbar L3-L6 DRG were

dissected, post-fixed for a further 2 hours in PFA and cryoprotected

overnight in 30% sucrose. Non-radioactive in situ hybridization was

performed using digoxygenin (DIG) (Roche, Germany) labeled

RNA probes on 10 mm frozen sections. Antisense probes corre-

sponded to nucleotides 562–1465, 262–808, 673–1087 and full

length for TRPA1 and 963–1533, 242–870 and full length for

TRPM8. Equivelant sense probes displayed no signal.

Sections were treated with 1 mg/ml proteinase K (Sigma,

Germany) for 5 minutes, acetylated for 10 minutes with 0.25% (v/

v) acetic anhydride in 0.1 M triethanolamine, prehybridized for

4 hours at 56uC and hybridized with RNA probes overnight at

56uC. Following post hybridization washes and blocking, sections

were incubated for 30 minutes in 1:100 anti-DIG antibody

conjugated with horseradish peroxidase (Roche, Germany) and

signal was visualized using tyramide signal amplification (Perki-

nElmer, Germany). Immunohistochemistry and isolectin B4 (IB4)

staining followed in situ hybridization. FITC-labeled IB4 (Sigma,

Germany) was used at a concentration of 10 mg/ml, anti-CGRP

(polyclonal, Sigma, Germany) at a 1:2000 dilution, and anti-

NF200 (clone N52, Sigma, Germany) at 1:4000 dilution. All cell

counts and quantification were conducted by an observer blinded

to the experimental condition.

Calcium imaging
Mouse lumbar L3-L6 DRG were dissected from CCI and control

mice and incubated with 1 mg/ml collagenase IV (Sigma,

Germany) and 0.05% trypsin (Biochrom, Berlin, Germany) for 30

minutes each at 37uC. The DRG were suspended in DMEM/

Hams-F12 medium (Invitrogen, Germany) containing 10% heat-

inactivated horse serum (Biochrom, Berlin, Germany), 1 mM

glutamine (Invitrogen, Germany) 0.8% glucose (Sigma, Germany),

100U penicillin, and 100 mg/ml streptomycin (Biochrom, Berlin,

Germany). DRG were dissociated using 18G, 22G, 25G needles,

and debris was removed with a 40 mm cell strainer (BD Biosciences

Europe, Belgium). Cells were plated in a droplet of medium on poly-

L-lysine (100 mg/ml, Sigma, Germany) coated coverslips and left to

adhere for 30 minutes before the coverslip was flooded. Experi-

ments were conducted 1–3 hours after plating of cells.

Ratiometric calcium imaging was performed with FURA-2/AM

dye (Invitrogen, Germany) and analyzed using Tillvision software

(Till Photonics, Germany). Cells were loaded with 3 mM Fura-2/

AM and placed in a recording chamber containing calcium imaging

buffer (CIB: 140 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM

MgCl2, 5 mM Glucose, 10 mM HEPES, pH 7.4). Pairs of images

were collected every 2 seconds at alternating exposures of 340 nM

and 380 nM (exposure time 70 ms) using a Polychrome V

monochromator and CCD Imago camera (Till Photonics, Ger-

many). Following subtraction of background fluorescence the ratio

of fluorescence at 340 nm and 380 nm was calculated.

Coverslips were superfused with CIB buffer at approximately

2 ml/min. Drugs were applied via a gravity driven perfusion

system that allowed rapid exchange of solutions. Cold stimuli were

applied using a peltier device (ESF electronic, Germany) and

temperature changes were monitored with a thermocouple placed

within the flow of buffer and close to the cells.

Following selection of a suitable field of view, coverslips were

maintained at 31uC for 5 minutes. A cold stimulus was then applied

which cooled the cells from 31uC until an endpoint of 8uC had been

reached. Cooling occurred at approximately 1uC per second and

was reproducible such that in more than 95% of experiments the

cold endpoint was reached within 30 seconds. After a recovery

period of 5 minutes at 31uC, either (-)-menthol (100 mM unless

indicated), or in separate experiments, mustard oil (50 mM based on

dose response date (not shown)) was applied for 1 minute. Drugs

were washed out for 3–5 minutes before 40 mM KCl was applied

for 10 seconds to determine the total number of living cells.

A response was designated as a 20% increase in fluorescence

ratio from baseline. The number of responders to cold, (-)-menthol

or mustard oil was expressed as a percentage of KCl responsive

cells. The maximum amplitude of the response, the temperature

threshold of cold responses and the cell diameter were also

determined. Cold threshold temperatures were calculated as the

temperature at which fluorescence ratio increased by 0.5% upon

cooling. These relatively stringent selection criteria for cold

responsive cells plus the fact that we started our recordings at

31uC (rather than 35–37uC used by some researchers) may

account for the low temperature thresholds we observed.

Data analysis
Statistical analysis was performed using Sigmastat software

(Systat, San Jose, CA). Significance was tested using a two-way

repeated measures ANOVA in behavioral experiments, and a

Student’s T-test or Mann-Whitney-U-test in expression and

calcium imaging experiments.
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