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Proteolytic and non-proteolytic 
regulation of collective cell 
invasion: tuning by ECM density 
and organization
Sandeep Kumar1, Aastha Kapoor1, Sejal Desai1, Mandar M. Inamdar2 & Shamik Sen1

Cancer cells manoeuvre through extracellular matrices (ECMs) using different invasion modes, including 
single cell and collective cell invasion. These modes rely on MMP-driven ECM proteolysis to make space 
for cells to move. How cancer-associated alterations in ECM influence the mode of invasion remains 
unclear. Further, the sensitivity of the two invasion modes to MMP dynamics remains unexplored. In 
this paper, we address these open questions using a multiscale hybrid computational model combining 
ECM density-dependent MMP secretion, MMP diffusion, ECM degradation by MMP and active cell 
motility. Our results demonstrate that in randomly aligned matrices, collective cell invasion is more 
efficient than single cell invasion. Although increase in MMP secretion rate enhances invasiveness 
independent of cell–cell adhesion, sustenance of collective invasion in dense matrices requires high 
MMP secretion rates. However, matrix alignment can sustain both single cell and collective cell invasion 
even without ECM proteolysis. Similar to our in-silico observations, increase in ECM density and MMP 
inhibition reduced migration of MCF-7 cells embedded in sandwich gels. Together, our results indicate 
that apart from cell intrinsic factors (i.e., high cell–cell adhesion and MMP secretion rates), ECM density 
and organization represent two important extrinsic parameters that govern collective cell invasion and 
invasion plasticity.

In vivo, cells are known to utilize a gamut of different migration strategies for their movement. Single cell migra-
tion is the best-studied mechanism and is important in various processes including development, immune sur-
veillance and cancer metastasis1–3. In epithelial cancers, invasion is often triggered by conversion from a cell–cell 
adhesion-rich ‘epithelial state’ to a cell–cell adhesion-weak ‘mesenchymal state’ in a process termed epithelial to 
mesenchymal transition (EMT)4. Collective cell migration5,6 and collective cell invasion7,8 represent a second 
mode of cell movement wherein cell–cell adhesions remain intact and cells move collectively9,10. During collective 
cell motility, a front-rear asymmetry is maintained whereby leader cells at the front row sense extracellular guid-
ance cues through a combination of chemotaxis and haptotaxis and dictate the overall direction of movement for 
the cell cohort. A common feature of both single and collective cell invasion is the requirement for extracellular 
matrix (ECM) remodeling, achieved primarily through matrix degrading enzymes like matrix metalloprotein-
ases (MMPs), which generate paths via ECM degradation11,12. Interestingly, inhibition of degrading machin-
ery or blockage of cell–matrix adhesions leads to amoeboidal mode of migration wherein cells squeeze through 
pre-existing pores in the matrix using actomyosin contractility13. Thus, instead of arresting cell invasion, altera-
tions in cell–cell adhesions, cell–matrix adhesions and proteolytic machinery lead to alterations in the strategies 
used by cancer cells to invade.

In addition to the molecular properties of tumour cells themselves, the ECM is itself a major determinant of 
the mode of cell invasion. In interstitial tissues, ECM organization can differ significantly from one location to 
another depending on the density and orientation of collagen I, the major constituent of the interstitial ECM14. 
During invasion, cancer cells manoeuvre through both sparse matrices comprised of randomly oriented fibres 
with large pore sizes, and dense matrices comprised of aligned collagen bundles with pore sizes of few microns. 
The tumour microenvironment itself is known to undergo drastic alterations in composition and organization 
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during cancer progression15. Similar to fibrosis, many malignancies are associated with increased deposition of 
fibrillar collagens16,17, with increased expression of collagen I associated with increased risk of cancer metasta-
sis18,19. In many epithelial tissues, the organization of collagen fibrils also changes from curly to linear effected 
by cancer cell-secreted crosslinking enzymes like lysyl oxidase (LOX)20. Increase in ECM density and crosslink-
ing progressively stiffen the ECM, which in turn influences cell motility through increased integrin signalling21. 
Interestingly, integrin signalling also influences ECM remodeling via activation of MMPs, which generate migra-
tion tracks by proteolytic cleavage of the ECM through membrane-localized as well as soluble MMPs11,22,23. Given 
the wide heterogeneity in ECM organization, invading tumour cells are confronted with different extracellular 
structures, which in turn are likely to influence the mode of motility in multiple ways. Some of the critical ECM 
features influencing the mode of cell motility include confinement (set by pore size)24,25, fibre alignment (along 
which cells may align and migrate)26,27 and bulk properties of the matrix20,21,28,29.

As detailed in the above paragraphs, ECM density and orientation, cell polarity, cell–cell contact strength, and 
cell–ECM interactions interdependently control efficiency and the mode of cancer cell invasion13,30. However, 
due to the enormous biological and biophysical complexity of this cell–ECM ensemble, it is extremely difficult 
to experimentally gauge how these interactions contribute to cancer cell invasion. Hence, it seems appropriate to 
use mathematical and simulation tools, which have contributed significantly to our understanding of cancer31–34, 
to understand plasticity in cancer cell invasion. Several classes of computational models have been developed to 
address various aspects of cell invasion during cancer progression. Of the various types of models, discrete mod-
els, such as cellular automata, cellular Potts model (CPM) and agent based models, are particularly well suited for 
studying multiscale population dynamics35,36. Of special interest is the cell-based, CPM, a multi-particle lattice 
description, that is capable of modeling cell–cell and cell–ECM interactions37. In CPM, physical properties of bio-
logical entities (e.g., cell, ECM fibre, etc.) can be taken into account by modeling them as multi-pixel deformable 
objects and evolving their position/state as per experimentally motivated predefined rules38–40. Further, it is pos-
sible to combine these models with other mechanistic rules as well as partial differential equation (PDE)-based 
reaction–diffusion systems for capturing phenomena occurring at different length-scales and time-scales37,41–43.

Despite the existence of many models that have been developed for the purpose of understanding cancer inva-
sion, several questions remain unanswered. For example, Bauer et al.41,42 used a hybrid CPM to understand the 
role of cell migration, growth and adhesion to understand tumour induced angiogenesis. However, the migration 
in their model was a result of directed chemotaxis, whereas cells can undergo migration due to self-polarization 
even in the absence of chemokine gradients44. The CPM developed by Kabla45 incorporates polarity and migra-
tion potential of single cells in order to understand migration patterns of cell collectives. However, the effects of 
cellular microenvironment, which are crucial for cancer cell invasion, were missing in this description. Most of 
these drawbacks were addressed by Szabo et al.46 in their concise description that takes into account all the cru-
cial ingredients – cell–cell and cell–ECM interactions, cell polarization and ECM topography – and their role in 
cancer cell invasion. Modeling along similar lines was also done in refs 47–49. Despite these modeling efforts, var-
ious questions remain unanswered, and warrant explanation. For example, what is the role of cell–cell adhesion 
with respect to ECM remodeling and maintaining invasiveness of cancer cells? What is a more efficient mode of 
invasion (single or collective), and when would the cells prefer to switch from one mode to the other? How does 
ECM confinement and proteolytic abilities collectively dictate the mode and efficiency of cell invasion? In short, 
although the existing models indeed address the effect of various aforementioned factors on avascular cancer cell 
invasion, they do not elucidate how these factors conspire together to dictate the mode and efficiency of invasion, 
and what invasion strategies cells may flexibly follow upon tuning these factors13,30.

In this paper, we probe the contributions of cell–cell adhesion, MMP dynamics, ECM density and organi-
zation on the mode of cancer cell invasion, and attempt to address the issue of cell invasion plasticity13,30. Our 
computational framework uses CPM-based formalism to model a cell aggregate positioned at the centre of an 
ECM lattice of given density and organization. Cells possess intrinsic motility and history-dependent polarity 
(preferred direction of motion). Rule-based mechanistic formulation was used to implement MMP-mediated 
ECM fibre degradation. Pre-existing gaps and spaces created by ECM degradation allow for movement of cells 
within the lattice. Using this formulation we found that the overall speed and pattern of cell invasion depended 
greatly on cell–cell adhesiveness and MMP secretion rates. While greater cell–cell adhesiveness was required for 
collective cell invasion, higher cell–cell adhesion was also associated with less amount of ECM degradation. The 
increase in MMP secretion rate at intermediate fibre densities was observed to make individual invasion more 
effective as compared to collective cell invasion. On the other hand, high MMP secretion rates foster collective 
cell invasion at high fibril densities. Aligned matrices, which provide contact guidance cues to cells, serve as an 
exception to the requirement of high MMPs where invasion is possible even at low MMP secretion rates. Finally, 
we have compared some of our in-silico predictions with experiments by tracking the invasion of MCF-7 human 
breast cancer cells using sandwich cultures. Taken together, our results suggest that the interplay between cell–cell 
adhesion, MMP secretion rate and ECM organization, which can be thought of as intrinsic tuning parameters of 
cancer cells, can lead to plasticity in cancer cell invasion.

Materials and Methods
Cellular invasion through dense ECM networks is influenced by several factors including steric hindrance from 
the environment, formation of migration tracks by ECM proteolysis (mediated by MMPs), self motility of cells, 
and adhesion energies between different entities (e.g., cell–cell adhesion, cell–matrix adhesion, etc). One of the 
major bottlenecks in understanding cell invasion is attributed to the multiscale nature of processes involved. 
While cell invasion is a cell-scale phenomenon, changes in interface energies associated with local cell move-
ment, MMP secretion, MMP diffusion and ECM degradation occur at the sub-cellular level. Thus, for simulating 
cell invasion, it is important to develop a framework which combines multiple processes occurring at differ-
ent length-scales and time-scales. Cellular Potts models (CPMs), also called Graner-Glazier-Hogeweg (GGH) 
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models, are cell-based models that provide a convenient way to integrate cellular mechanics with sub-cellular 
reaction diffusion dynamics38–40. To tackle the multiscale phenomena of cell invasion, we have developed a 
Monte Carlo simulation-based CPM integrated with reaction–diffusion dynamics of MMP molecules. In our 
model, diffusing MMP molecules degrade ECM fibres and change cell–ECM interactions thereby integrating 
reaction–diffusion dynamics of MMP with GGH algorithm. Models like these, which integrate processes occur-
ring at different length and times scales and obey different dynamics (e.g. GGH algorithm and reaction–dif-
fusion dynamics), are referred to as multiscale hybrid models43,50,51. In our model, cells are placed on top of a 
non-degradable substrate and surrounded by an interstitial ECM network comprised of ECM fibres and inter-
stitial fluid (Fig. 1A). The software package CompuCell3D (CC3D)40 was combined with custom written C+ + /
python routines for implementing our model.

Model components. Making use of the spherical symmetry of solid tumours/tumour spheroids, 
2-dimensional (2D) computational models have been used for studying various aspects of 3-dimensional (3D) 
tumour invasion including 3D branching, angiogenesis and cell migration41,42,52. Using a similar approach in this 
study, we have developed a 2D model of cancer invasion, wherein ECM fibres and cells were placed inside a 2D 
lattice (1 mm ×  1 mm size) (Fig. 1A). Making use of the symmetry property of 3D spheroids helped us in simpli-
fying the complexity of cancer cell invasion in 3D and developing a computationally tractable model of cellular 
invasion, wherein we simulate invasion of a group of cells placed at the centre of our simulation grid. This setup 
only mimics metastatic dissemination of a group of cancer cells, and does not model cancer progression. The 
lattice size was selected such that each cell had to migrate at least 400 μm (double the population length scale) 

Figure 1. Model schematic (A) ECM was modeled as a 2D space (Ω ) of 1 ×  1 mm2. Ω  is discretized into pixels 
of dimensions 2 μm ×  2 μm. ECM fibres were represented by straight lines 1 pixel (2 μm) thick and 30–40 μm 
long. Each cell was represented by a 2D area ≈ 400 μm2 (coloured 2D boxes). Pixels that neither belong to a cell 
nor to an ECM fibre were considered as fluid pixels. MMP molecules were modeled by a continuous field. (B) 
Cells were modelled as active particles with intrinsic motility. The direction of cell motility, also referred as cell 
polarity (p̂), was calculated based on the average of the cell displacements in the last 10 Monte Carlo steps 
(MCS). (C) Distinct adhesion energies were defined for interfaces between adjacent entities, that is Jcf (cell–
fluid), Jcc (cell–cell), Jce (cell–ECM), Jee (ECM-ECM), Jef (ECM–fluid) and Jff (fluid–fluid). (D) Soluble MMP 
molecules, secreted by cells, can undergo diffusion, and also degrade the ECM fibre, when the number of MMP 
molecules at any pixel increases beyond a threshold value of 1. Subsequently, the fibre is deleted from that pixel 
by changing the pixel type to ‘fluid pixel’.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:19905 | DOI: 10.1038/srep19905

before touching the lattice boundary. ECM was represented by a meshed network of fibres, with each fibre repre-
sented by a straight line 2 μm in thickness and 30–40 μm in length. In our model, all ECM fibres were aligned in 
a 2D plane instead of having 3D positioning. This approximation helped us to incorporate the effect of mechani-
cal hindrance in our model with an increasing number of ECM fibres providing greater hindrance (as a cell can-
not cross over a fibre without degrading it). While the fibre orientation was assumed to be random for most of the 
simulations (unless indicated otherwise), the effect of fibre density was incorporated in our model by changing 
the total number of fibres in the lattice. Cells were represented as 2D deformable surfaces of mean area ≈ 400 μm2, 
comparable to the size of biological cells53. Cells are capable of changing their position and morphology over time, 
subject to area and perimeter constraints. While the area constraint prevents the cell area from becoming too 
large or too small, the perimeter constraint ensures that cells do not undergo excessive deformations. Cells were 
assumed to possess intrinsic motility, modeled by associating a preferred direction of migration (i.e., polarity, p̂) 
and motility strength (μ0). The polarity (p̂) was calculated based on the last 10 displacements (Fig. 1B) as done 
elsewhere45. After placing ECM fibres and cells in the lattice, the remaining free pixels were considered as ‘fluid’ 
pixels, which represent the interstitial fluid between the ECM pores42. Adhesion energies were used to model the 
extent of adhesion between adjacent entities, i.e., between two ECM fibres (Jee), cell–ECM (Jce), ECM–fluid (Jef), 
cell–cell (Jcc), cell–fluid (Jcf) and fluid–fluid (Jff) (Fig. 1C). While high values of adhesion energy represents weak 
adhesion, strong adhesion was modeled by low values of adhesion energy.

Interactions and evolution in CPM. Spatiotemporal evolution of the simulation lattice was governed by 
the random movement of individual pixels subject to transition probabilities based on the Monte Carlo method40. 
Algorithmically, during each move, two neighboring pixels were chosen randomly, with one designated as the 
source pixel and the other one as the target pixel. An attempt to update the lattice was made only when both 
the source and the target pixels represented either a cell pixel or a fluid pixel. In other words, ECM fibre pixels 
did not participate in the random Monte Carlo updates. Further, if both pixels belonged to the same cell (i.e., 
σ(source) =  σ(target)), then also no changes were made to the lattice. Otherwise, the source pixel attempted to 
occupy the target pixel based on Monte Carlo acceptance probability. To do this, the total system energy associ-
ated with the configuration before the move (Ei) and the configuration after the move (Ef) were calculated as per 
the following equation:
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( )σ σ

τ σ τ σ
∀ , ( )≠ ( )

( ( )), ( ( ))
∀ ∀ ∀

E J a c a p c p w c
1i j i j

i j a ptotal
and cells

0
2

cells
0

2

cells

where,
σ(i): ID of the cell to which pixel i belongs
τ(σ): type of the cell σ
Jτ1,τ2: boundary energy per unit length between cells of type τ1 and τ2
λp: perimeter constraint of a cell
λa: inverse compressibility or area constraint of a cell
a(c): current area of the cell c
p(c): current perimeter of the cell c
a0: target (preferential) area of a cell
p0: target (preferential) perimeter of a cell
w(c): energy due to active motility of the cell c
Between two different configurations, if Δ E =  (Ef −  Ei) <  0, the proposed move was always accepted. Else, the 

move was accepted with a probability p calculated using the expression = (−∆ / )p e E Tm . Using this dynamics, the 
system tries to move towards a lower energy configuration with Tm representing the likelihood of accepting a 
thermodynamically unfavorable move (i.e., it increases the system energy instead of decreasing). This expression 
of probability of accepting a move is based on the widely used Boltzmann acceptance function54, with Tm referred 
to as Boltzmann temperature. In CPM, Tm does not reflect any conventional thermal temperature; instead, it 
represents the strength of noise in the dynamics45. Low values of Tm makes the system evolution highly determin-
istic raising the possibility of the system getting trapped at a local minima. In contrast, a very high value of Tm 
causes the system to accept any proposed move. Further, owing to the fact that agitation of cell membrane in 
biological systems plays a role similar to that performed by temperature in thermodynamics, Tm is also called the 
magnitude of effective membrane fluctuations40–42. High values of Tm may lead to increase in cell body 
re-arrangements and motility40. In contrast, low values of Tm correspond to cells with very low fluctuations in cell 
boundary. A successful move increased the volume of the cell containing the source pixel and decreased the vol-
ume of the cell containing the target pixel by one pixel. Each Monte Carlo step (MCS) corresponded to repeating 
this exercise N times (N being the total number of lattice pixels that can be evolved) irrespective of whether the 
moves were accepted or not.

In the above expression, four different energy terms contribute to the total energy of the system (Etotal). These 
are due to adhesive interactions between different entities (e.g., cell–cell, cell–matrix, cell–fluid, etc.) and energy 
associated with changes in cell size, changes in cell perimeter and with the intrinsic motility of cells. Adhesive/
repulsive dynamics between different entities as well as between two species of the same entity was accounted for 
by considering an interface energy (e.g., Jcc, Jce, etc.) (Fig. 1C). Lower values of interface energies represent greater 
adhesion and higher values model the lower adhesion. If the cell–cell adhesion energy (Jcc) is lower than the cell–
matrix (Jce) or cell–fluid (Jcf) energies, any move (movement of a pixel of a cell) resulting in an increase of contact 
surface area between two neighboring cells will be accepted as it will decrease the system energy. Conversely, if Jcc 
is higher than Jce or Jcf, any proposed move resulting in increase of cell–cell adhesion will be rejected due to the 
high energy of the proposed state40. Physically, lower values of Jcc represent stronger cell–cell adhesion (e.g., 
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higher membrane concentration of E-cadherin-β-catenin complexes55). Next, each cell was assigned a target area 
(a0) with changes in cell area from this value being energetically unfavourable. Area constraint has been used to 
model bulk cell stiffness (or inverse compressibility), and is related to the internal pressure40. Similarly, the perim-
eter constraint (λp) forces the cell to maintain its perimeter close to the preferred perimeter (p0) and ensures that 
cells do not develop extreme deformed configurations. Hence, this constraint can be used to model the ease with 
which a cell can change its shape, and is therefore related to the line tension/cortical stiffness of the cell. While 
bulk stiffness can be estimated using Atomic Force Microscopy (AFM) experiments of cell indentation, cortical 
stiffness can be estimated using micropipette aspiration experiments. In our simulations, all cells have 
a0 =  400 μm2 and p0 =  35 μm. The last term w(σ) in Equation (1) accounts for the intrinsic motility of cells and is 
given by the expression µ .( ) = − ˆw c p rc c0

45. Here, μ0 represents the strength of cell motility, p̂c represents the 
unit vector in the direction of preferred polarity for cell c and vector rc represents centre of mass of the cell c. 
While μ0 was kept constant in all simulations, the value of p̂c at any time t was modeled as an adaptive quantity set 
as the average of the displacements during the the previous τ MCS normalized to unity45 (Fig. 1B). Specifically, 
Equation (2) was used to find the preferred polarity of the cell c at time t, and was updated after every MCS.
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where,
τ: time scale of polarity evolution.
displacement(t): displacement of cell’s centre of mass c between tth and (t +  1)th MCS.
The parameter τ can be tuned to model persistence of cell migration. While we have used τ =  10 in all our 

simulations as done elsewhere45,56, one set of simulations were performed to study the effect of τ on cell invasion 
dynamics (Supp. Fig. S2).

MMP dynamics and ECM degradation. In addition to the Metropolis equation based copy index events 
governed by Equation (1), a GGH algorithm can be integrated with other objects such as chemical field(s)40. The 
dynamics of a chemical field can be described by reaction–diffusion systems. Such chemical field can then be 
integrated into the main GGH algorithm by modeling the effect of this field on other system components. This 
approach has been used to model processes such as growth factor-dependent cell growth and oxygen-dependent 
cell apoptosis43. In our model, a separate field was maintained for soluble MMPs which are secreted by cells when 
they come in contact with ECM fibres (Fig. 1D). Whenever a cell comes in contact with ECM fibre(s) it secretes 
MMPs at the rate of λ per second at the site of ECM fibre(s), where λ represents the intrinsic MMP production 
rate. This ECM-dependent MMP secretion rule was chosen in line with our observations that increase in ECM 
density enhances MMP secretion23. Similar ECM density-dependent MMP secretion profile was observed when 
MCF-7 cells were cultured on collagen with varying densities (Supp. Fig. S1). Further, since the actual values of 
the MMP secretion rates are not known for cancer cells, the effect of λ was studied by varying its value from 0.01 
to 0.1 s−1 57. This secretion dynamics of MMP was modelled using CC3D ‘Secretion plugin’58. These secreted 
MMP molecules then diffuse in the medium with a diffusion coefficient (D) of 1.0 ×  10−9 cm2.s−1. In addition 
to secretion and diffusion, soluble MMPs have a defined lifetime and degrade after some time. Therefore, MMP 
degradation (with a degradation rate δMMP of 0.002 s−1) was also considered in the MMP dynamics. Diffusion and 
degradation of MMP molecules were modelled using reaction–diffusion dynamics given by equation-(3).

δ
∂ ( , )

∂
= ∇ ( , ) − ( , ) ( )

t
t

D t tx x x[MMP] [MMP] [MMP] 3
2

MMP

where, [MMP](x, t): MMP count at pixel x and time t
D: Diffusion coefficient of MMP
δMMP: degradation rate of MMP
The diffusion coefficient and degradation rate were kept constant across all the simulations. Since the rate of 

all the MMP events (i.e. MMP secretion, MMP diffusion and MMP degradation) have units of sec−1, and one 
MCS corresponds to 36 seconds (see below), the PDE solver, used to solve the reaction–diffusion system, was 
called 36 times in a single MCS. Forward Euler method-based PDE solver, available as part of CC3D package, 
was used to solve reaction diffusion system of MMP dynamics40. Since one pixel in our model represents a higher 
order ECM structure instead of a single fibril molecule, instead of modeling the exact ECM degradation reaction, 
a threshold-based approach was used to model ECM degradation. Precisely, after every MCS, ECM degradation 
was effected at all pixel locations where MMP count was greater than or equal to 1 (Fig. 1D). A threshold of 1 was 
chosen as MMP secretion was also performed on a single pixel basis. A similar approach has been used to model 
cell quiescence and necrosis in multiscale model of cancer stem cell-driven phenotypical heterogeneity59. Growth 
factor-dependent cell growth, oxygen-dependent cell apoptosis can also be modelled using this approach43. At 
these locations, to mimic ECM degradation, ECM fibres were removed by changing the pixel type to fluid, and 
the count of MMP at that pixel location was reduced by 1. Removal of ECM fibres from the lattice is expected to 
influence cell–ECM adhesion and GGH dynamics thereby integrating MMP reaction–diffusion dynamics with 
GGH-based cell mechanics model.

Parameter values and assumptions. All parameters used in the model were either chosen from the liter-
ature or determined by optimizing the model to recapitulate previously observed phenomena. Specifically, values 
of all adhesion energies (JXX), inverse compressibility (λa) and strength of noise in the dynamics or magnitude 
of effective membrane fluctuations (Tm) were taken directly from the literature42. The value of the perimeter 
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constraint (λp) was assumed in the simulations. The strength of intrinsic motility μ0 was chosen such that the 
cells showed rotational motion when confined within a non-degradable circular geometry56 (Supp. Video-V1), 
and showed translational motion when placed in ECM with pre-existing paths. Subsequently, the value of MCS 
was estimated to be 36 seconds so as to obtain cell speeds (≈ 23 μm.h−1) comparable to experiments56,60 (Supp. 
Text). MMP diffusion timescales were estimated from the literature61. Since the exact life time of MMP molecules 
is not known, MMP degradation rate was taken from previous computational model57. Finally, cell–cell adhesion 
energy (i.e., Jcc) and MMP secretion rate (λ) were varied to explore the effect of cell–cell adhesion and MMP 
secretion rate on cell migration dynamics. To probe the role of cell–cell adhesion in cell invasion, three values 
of Jcc (i.e., 1, 16 and 40) were chosen. These values were choosen so that (i) at the lowest value (i.e., Jcc =  1), cells 
have a higher propensity to adhere to other cells as compared to ECM fibres or fluid, (ii) at the moderate value 
(i.e., Jcc =  16), cells have equal propensity to adhere to other cells or ECM fibre and (iii) at the highest value (i.e., 
Jcc =  40), cells have more propensity to adhere to fluid or fibre as compared to other cells. Finally, to dissect the 
role of MMP secretion rate in mediating cell invasion, MMP secretion rate was varied from 0.01 s−1 to 0.1 s−1 to 
cover one order of magnitude as done before57. Although we have defined our model in generic terms by focus-
sing mainly on cellular phenotype rather than particular cell type, the model parameters can be tuned to mimic 
the behavior of specific cell types. For example, high MMP secretion (λ) and low cell–cell adhesion (Jcc > >  1) can 
be used to model the behavior of highly invasive cancer cells. Similarly, low MMP secretion rate and high cell–cell 
adhesion can be used to mimic the behavior of less invasive cells. Other parameters, which we have kept constant 
in all our simulations to avoid an excess number of parameters, can be used to model other biophysical properties 
of the cells. For example, the fact that MDA-MB-231 cells are softer than MCF-7 cells62 may be modeled by using 
lower values of λa and λp for MDA-MB-231 cells. In our simulations we kept λa and λp constant as our intention 
was to probe the collective influence of cell–cell and cell–ECM interactions on cell invasion. Lastly, since the pres-
ent model was aimed at studying cancer invasion only, two factors relevant to cancer progression – cell division 
and/or continuous supply of cells from tumour mass – were not taken into consideration in our model. Though 
the CC3D steppable ‘MitosisSteppable’ can be used to implement cell division40, not taking cell division into 
account helped us in reducing the parameter space of our model. In one set of preliminary simulations performed 
by taking cell division into account, results did not deviate much from those obtained in the absence of cell divi-
sion (Supp. Section-5). Also, to study the potential role of cell supply from primary tumour on cell invasion, a set 
of simulations were performed where cells were continuously added to the primary cell site. While the pattern of 
invasion could not be compared due to very large number of cells, MMP secretion and ECM degradation profile 
showed simlar behaviour in the presence of cell supply (Supp. Section-6).

Quantification of invasion. Four quantities including the total distance moved by a cell (d), cell transloca-
tion (D), radius of gyration (RoG) and percentage ECM degradation were used to quantify cancer cell invasion. 
While the first three quantities were used to determine the spreading or migration capabilities of a cell, the fourth 
metric was used to quantify MMP-mediated ECM degradation. While d was used to track the mobility or dyna-
micity of a cell, D represents the displacement of a cell from its initial position and is a measure of migration 
persistence. In contrast to d and D which are cell level measures, RoG was determined to calculate the population 
scattering. Further, since loss of basement membrane has been used as a metric of tumour invasiveness63, percent-
age ECM degradation was also quantified in our simulations to assess cancer cell invasion.

We tracked individual cell trajectories during the simulations. The population averaged total distance travelled 
by cells (d) in 1800 MCS (≈ 18 hours) was calculated by adding the centroidal movements between successive 
MCS steps (i.e., 36 seconds) for each of 69 cells, and then averaging, i.e.,

∑ ∑= ,
( )=

=

=
,d

N
d1

4j

j N

t
j t

1 0

1800 MCS

where dj,t corresponds to the distance travelled by the jth cell at MCS time step t, and N represents the total number 
of cells in the population (N =  69 in our case). In addition, the population averaged net translocation (D) was 
determined by calculating the distance between the initial (t =  0) and final (i.e., after 1800 MCS or t ≈  18 h) posi-
tion of each cell, and then averaged for the whole cell population, i.e.,
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where Position(j,t) corresponds to the position of jth cell at MCS time t. To quantify the extent of cell scattering at 
the end of simulations (after ≈ 18 hours), RoG with respect to the initial population centre was also quantified as 
per the following expression:

=
∑

,
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N

RoG 6
i
N

j1
2

where, N corresponds to the total number of cells in the population and dj is the distance of the jth cell from the 
initial tumour centroid ((250, 250) in our case). Finally, ECM degradation was quantified by calculating the differ-
ence in the number of fibre pixels between the initial and final simulation steps. The percentage ECM degradation 
was then quantified with respect to the initial number of fibre pixels.
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Sandwich Gel Invasion Assay
For the sandwich gel invasion assay, cells were plated on collagen-coated glass-bottom dishes (HiMedia), and 
layered with 3D collagen I (Corning) gel on top. Coverslips were functionalized by treating with 0.1 N NaOH and 
silane (Sigma) for 15 minutes each followed by 0.5% glutaraldehyde (50%, Sigma) for 20 min, at room temperature. 
Functionalized coverslips were coated with 1 μg/cm2 of rat tail 2D collagen I (C3867, Sigma). MCF-7 cells were 
plated on the coverslips in DMEM media (Gibco) supplemented with 10% FBS (HiMedia) and allowed to incubate 
for 3 hours in the CO2 incubator. Cells were plated at two specific densities (5 ×  103 and 25 ×  103 cells per cm2)  
so as to have a predominance of single cells at the lower density and groups of cells at the higher density. Post 
incubation, media was aspirated and cells were layered with 3D collagen type I on top at three different densities 
of 0.5, 1 and 2 mg/ml, respectively, as per previously established protocols64. 3D collagen was allowed to gel by 
keeping the entire set up at 37 °C in the CO2 incubator for 30 minutes. Post gel formation, fresh media was added 
on top and kept for incubation for 24 hours. For protease inhibition drug studies, fresh media was supplemented 
with 5 μM of GM6001 drug (Merck). Imaging was done with an inverted phase contrast microscope (Olympus) at 
20×  magnification over a period of 12 hours at 20 minutes interval. Total cell translocation (distance moved from 
initial position) was calculated after 12 hours using the manual tracking plugin of ImageJ (NIH). For single cell 
migration, trajectories of individual cells were tracked. For collective cell migration, trajectories of cells moving 
in groups were quantified to determine the net translocation. Atleast 20 cells per condition were analyzed and the 
experiments repeated twice.

Results
Collective cell invasion requires lesser ECM degradation than single cell invasion. Cell-cell 
adhesions represent one of the key factors governing cancer metastasis. While loss of cell–cell adhesion is known 
to trigger EMT65–69, overexpression of cell–cell adhesion checks EMT70–72. In contrast to the single cell mode of 
invasion where cell–cell adhesion does not play any role, many cancer cells are also known to exhibit collective 
invasion wherein cell–cell adhesions remain intact73. To see if our model can recapitulate the influence of cell–cell 
adhesion on the mode of invasion, we performed simulations for varying values of cell–cell adhesion energy (Jcc), 
that is Jcc =  {1, 16 and 40}, with Jcc =  1 corresponding to high cell–cell adhesion, Jcc =  16 corresponding to medium 
cell–cell adhesion, and Jcc =  40 corresponding to low cell–cell adhesion. In these simulations, MMP secretion rate 
(λ) was kept constant at λ =  0.05 s−1. All other parameters were kept fixed (as described in Table 1). For these sim-
ulations, a cell aggregate of 69 cells of initial diameter 20 μm each were placed at the centre of a randomly aligned 
ECM lattice (Fig. 2A left-most). The ECM lattice was generated using a custom written C+ +  utility (Supp. Text). 
For comparing the cell invasion patterns obtained for different values of Jcc, simulations were run for 1800 MCS 
(≈ 18 hours), and repeated 10 times per condition for statistical comparison between the different cases.

The Jcc values chosen to mimic different extents of cell–cell adhesion successfully recapitulated the different 
modes of invasion (Fig. 2A, Supp. Videos V2–V4). While cells were found to scatter in different directions when 
cell–cell adhesion was low (i.e., Jcc =  40) (Fig. 2A right-lower panel), cells moved collectively when cell–cell adhe-
sion was high (i.e., Jcc =  1) (Fig. 2A right-upper panel). To get a quantitative estimate of the mode of cell invasion 
for varying cell–cell adhesion, clustering of cell population was quantified by counting the number of clusters 
and the size distribution of the clusters at the end of the simulation (i.e., after 1800 MCS). While the population 
having larger cluster size and lower number of clusters resembles the collective mode of migration, the population 
with smaller cluster size and higher number of small clusters is indicative of individual mode of migration. The 
quantification showed that the loss of cell–cell adhesion, i.e., increase in Jcc values, triggered the breaking of the 

Parameter Value Remark

Lattice size 1 ×  1 mm2 (500 ×  500 pixels2) Assumed

Initial population size (diameter) 200 μm Assumed

Target cell size 400 μm2 Typical cell size

Fiber count (ξ ) 400, 600 and 1000 Varied

Fiber orientation (ψ ) Random and aligned Varied.

Adhesion energies (Jcc, Jce, Jcf, Jef, Jee, Jff) =  (1–40*, 16, 
32, 35, 5, 35) kBT/L

42, *: Jcc =  1, 16 and 40 were used 
to model different extents of cell–

cell adhesion.

Area constraint (λa) 1.0 kBT/L4 42

Noise strength in the dynamics 
(or effective membrane 
fluctuations) (Tm)

0.01 kBT 42

Perimeter constraint (λp) 0.5 kBT/L2 Assumed

Strength of motility (μ0) 50 kBT/L Determined, Supp. Text

Simulation step (MCS) 36 seconds Determined, Supp. Text

MMP Diffusion coefficient (D) 1.0 ×  10−9 cm2.s−1 61

MMP Degradation rate (δMMP) 2 ×  10−3 s−1 Based on previous computational 
study57

MMP Secretion rate (λ) 0.01–0.1 s−1 Varied.

Table 1.  Values of parameters used in simulations. L is the dimension of the pixel (2 μm) over which Monte 
Carlo moves are performed.
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population into large number of smaller clusters, thereby leading to the individual cell invasion (Fig. 2B). These 
results successfully recapitulate the observed EMT process where loss of cell–cell adhesion triggers mesenchymal 
model of migration65–68.

Since cell invasion requires ECM degradation, the simulation data was analyzed to determine the extent of 
ECM degradation for different extents of Jcc. This was done by quantifying the percentage reduction in the total 
number of fibre pixels at the end of 1800 MCS. Surprisingly, in spite of having identical MMP secretion rate (i.e., 
λ =  0.05 s−1) and no direct dependence of fibre degradation on cell–cell adhesion, the population of cells with 
differing cell–cell adhesion propensities showed significant difference in ECM degradation, with minimum deg-
radation observed at highest cell–cell adhesion and maximum degradation observed at lowest cell–cell adhesion 
(Fig. 2C). Since fibre degradation is mediated by MMP molecules, to check the basis for lesser degradation at 
higher cell–cell adhesion, the temporal profile of total MMP count was tracked for different values of cell–cell 
adhesion. Interestingly, though all cells possessed the same MMP secretion capabilities, MMP secretion was high-
est at lowest cell–cell adhesion (Fig. 2D) indicating that the lower degradation at higher cell–cell adhesion was due 
to decrease in levels of MMP secretion. This decrease in MMP density for population of cells with high cell–cell 
adhesion may be due to lower cell–ECM interaction, i.e., the number of ECM fibres in contact with single cells is 
greater than when the cells are in clusters, leading to greater MMP secretion by single cells than cells in groups.

Given that cell scattering leads to greater ECM degradation, we next tested if this enhanced degradation led to 
enhanced invasion. Invasion was characterized by two different metrics: the total distance moved by the cells (d) 
and the net cell translocation (D) (i.e., displacement of cells from their respective initial positions to their final 
positions) after 1800 MCS. While greater d implies greater movement, it may not imply greater invasion, as it is 
possible for a cell to return to it’s starting point, particularly if it moves diffusively. Hence, D was tracked as a 
metric of effective invasion. The total distance travelled by cells (d) was maximum when cells moved collectively, 
and dropped sharply with decrease in cell–cell adhesion (Fig. 2E). Greater distance moved by cells in groups was 
due to dynamic rearrangements within the group wherein cells constantly changed their positions within the 

Figure 2. Influence of cell–cell adhesion energy (Jcc) on invasion efficiency. (A) Temporal patterns of 
invasion of a group of cells enmeshed in a fibrillar ECM network for different levels of cell–cell adhesion. Upper 
Panel: High cell–cell adhesion (Jcc=1). Middle Panel: Medium cell–cell adhesion (Jcc =  16). Lower Panel: Low 
cell–cell adhesion (Jcc =  40). Model components: Blue pixels represent fluid, yellow pixels represent ECM fibres 
and coloured boxes represent cells. (B) Quantification of cell migration pattern with number of clusters and 
average size of cell cluster after 1800 MCS. (C) percentage ECM degradation for different values of Jcc.  
(D) Temporal profile of total number of MMP molecules present in the lattice for varying values of Jcc. (E) Total 
distance moved by cells (d) and net cell translocation (D) for different values of Jcc. Inset shows representative 
trajectory of a single cell. Error bars: ± standard error of mean (SEM).
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cluster as they moved collectively (Supp. Video V2). However, single cells moved by a lesser distance compared to 
cells in groups suggestive of more persistent invasion by single cells, achieved through higher ECM degradation 
(Fig. 2E)74. Compared to d, the net cell translocation (D) was less sensitive to changes in cell–cell adhesion, with 
minimum value observed at highest cell–cell adhesion (Fig. 2E). The net cell translocation was also dependent on 
the time scale of polarity evolution (τ), with increase in τ values leading to increase in cell translocation for all 
values of cell–cell adhesion (Supp. Fig. S2, materials and methods). In addition to d and D, RoG, another indicator 
of cell scattering, was also quantified and found to have cell–cell adhesion dependency similar to D (Supp. Fig. S3A).  
Additionally, the big error bars in D and RoG measures arise due to the heterogeneity in the distribution of cell 
translocation (Supp. Fig. S3B). Together, our results suggest that while loss of cell–cell adhesion leads to individ-
ual mode of migration, our model predicts that the collective invasion requires lesser ECM degradation than 
single cell invasion, with dynamic re-arrangements occurring in groups of collectively moving cells.

MMP secretion rate influences cell invasiveness and invasion pattern. Though no direct 
inter-dependence between cell–cell adhesion and MMP secretion rate was assumed, our simulation results 
demonstrate that lesser degradation is achieved when cells move collectively. While the above simulations were 
performed for a fixed MMP secretion rate (λ  =  0.05 s−1), given that different cell types possess different proteo-
lytic abilities, it is possible that MMP secretion rate may dictate the pattern of invasion. To test this, simulations 
were performed for varying cell–cell adhesion (Jcc =  1, 16 and 40) and varying MMP secretion rates (λ  =  0.01–0.1 s−1). 
As before, quantification was done after 1800 MCS. As expected, increase in MMP secretion rate led to increase 
in both cell movement and cell translocation for all values of Jcc (Fig. 3A–C), with greatest amplification at lowest 
cell–cell adhesion (i.e., Jcc =  40). A similar influence was observed for cell scattering quantified using RoG of 
the cell population (Supp. Fig. S4). This enhancement in invasion at higher MMP secretion rates was associated 
with greater ECM degradation (Fig. 3D). Further, quantification of cluster size and number of clusters revealed 

Figure 3. Collective influence of MMP secretion rate (λ) and cell–cell adhesion (Jcc) on cancer cell 
invasiveness and migration pattern. (A) Represented images of cell migration pattern for varying cell–cell 
adhesion (Jcc) and for varying MMP secretion rates (λ) after 1800 MCS. (B) Total distance moved by cells for 
varying λ  and Jcc. (C) Net translocation of cells from their respective initial positions. (D) percentage ECM 
degradation at different MMP secretion rates and cell–cell adhesion. (E,F) Mode of invasion quantified by 
tracking number of clusters (E) and cluster size (F) after 1800 MCS. Error bars: ± SEM.
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differences only when cell–cell adhesion was weak (i.e., Jcc =  40), with increase in MMP secretion rate leading 
to further scattering indicative of single cell invasion (Fig. 3E,F). Together, these results suggest that increase in 
MMP secretion rate leads to increased invasion and ECM degradation23.

Increase in MMP secretion rate increases efficiency of collective invasion in dense matrices. In 
the simulations thus far, fibre density was kept constant. However, density of the tumour-associated ECM has 
been shown to play a pivotal role on cancer progression13,23–25,65,75, with increased deposition of fibrillar ECM 
proteins like collagen and fibronectin reported in various epithelial cancers16,76,77. Such an increase in ECM den-
sity has been shown to cause increased ECM degradation via increase in MMP secretion rates23. Increased ECM 
density has also been shown to foster collective cell migration through cell jamming78. However, the combined 
influence of cell–cell adhesion and ECM density on cell invasiveness is incompletely understood. To address this 
question, simulations were performed at varying fibre densities for varying extents of cell–cell adhesion. MMP 
secretion rate was kept constant at λ =  0.05 sec−1. ECM fibre density was varied by varying the number of ECM 
fibres (ξ) in the lattice (ξ =  400, 600 and 1000, respectively) (Fig. 4A). Simulation results suggested that the inva-
sion dynamics was significantly altered with change in fibre density, with increase in ECM density limiting the 
extent of invasion (Fig. 4B). Given that in our simulations, the total number of MMPs secreted is proportional to 
the number of ECM fibre pixels in contact with the cells (Materials and Methods), higher fibre densities should 
lead to greater MMP secretion and higher ECM degradation. While this was found to be true (Supp. Fig. S5A, 

Figure 4. Combined influence of MMP secretion rate and ECM density on invasion. (A) Position of cell 
cluster at the beginning of simulation for three different fibre densities (ξ =  400, 600 and 1000, respectively). 
(B) Pattern of cell scattering at the end of 1800 MCS at varying fibre densities and varying Jcc. MMP secretion 
rate was kept constant at λ =  0.05 s−1. (C) Net translocation of cells at varying fibre densities and varying Jcc. 
(D) Net translocation of cells at varying fibre densities and varying Jcc for λ =  0.1 s−1. Error bar: ± SEM.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:19905 | DOI: 10.1038/srep19905

S5B), the net translocation was still minimum at the highest fibril density (i.e., ξ =  1000), demonstrating the dom-
inant influence of ECM density in limiting invasion (Fig. 4C). Similar to D, the RoG-based assessment of popula-
tion scattering also suggested that the cell scattering was suppressed greatly at the highest fibre density (i.e., 
ξ =  1000) (Supp. Fig. S5C). Moreover, increase in cell–cell adhesion further amplified the effect of fibre density, 
with higher cell–cell adhesion leading to greater reduction in the extent of invasion.

In our model, in addition to fibre density, MMP secretion also depends on the MMP secretion rate (λ). Since 
fibre density-mediated MMP secretion alone was not able to circumvent the effect of steric hindrance on cancer 
invasion, we next investigated if increase in MMP secretion rate can promote cancer invasiveness. To test this, sim-
ulations were performed with a two-fold higher value of MMP secretion rate (i.e., λ =  0.1 sec−1 (Supp. Fig. S5D).  
Increase in MMP secretion rate led to increase in the extent of ECM proteolysis (Supp. Fig. S5E) and translocation 
across all the conditions, with greatest increase observed when cell–cell adhesion was high (Fig. 4D). Together, 
these results suggest that while increase in ECM density hinders cell invasion, increase in MMP secretion rate fos-
ters it. Interestingly, it was observed that while two fold increase in MMP secretion rate was sufficient to suppress 
the effect of increase in ECM density (from ξ =  400 to ξ =  1000) at moderate and high cell–cell adhesion (i.e., 
Jcc ≤  16), only partial suppression was achieved at low cell–cell adhesion (i.e., Jcc =  40). Cell scattering, quantified 
using RoG, was also increased with increase in MMP secretion rate and showed similar dependence on cell–cell 
adhesion (Supp. Fig. S5F). Together, these results indicate that when cells invade collectively through dense matri-
ces, increasing the MMP secretion rate may be one of the strategies to increase invasion efficiency. Conversely, if 
the MMP secretion of the cells is on the lower side, cells can invade more effectively if they migrate individually 
by undergoing EMT.

Alignment of ECM fibres can sustain invasion without proteolysis. In addition to alterations 
in ECM density, ECM organization also undergoes significant alterations during cancer progression15. This is 
brought about by enzymes like lysyl oxidase (LOX) which crosslink the matrix and make it more linearized20. 
Such alignment of matrix has been shown to trigger EMT and increase cancer invasiveness63. Simulations per-
formed with aligned ECMs at the highest density (i.e., ξ =  1000, to mimic stiff matrices) in the presence of pro-
teolysis showed that loss of cell–cell adhesion indeed increased cell translocation and ECM degradation (Supp. 
Fig. S6). These results are consistent with recent findings where induction of EMT (which causes loss of cell–cell 
adhesion)79 and ECM stiffness were shown to increase tumour invasiveness63. While secreted MMPs degrade 
tumour ECM, thereby making tracks for migration, crosslinking of fibres may enable cells to make use of aligned 
fibres as a contact guidance cue and migrate with minimum ECM proteolysis utilizing the space available between 
neighboring sets of crosslinked fibres. To test the hypothesis that matrix alignment can sustain cell migration 
by providing contact guidance, simulations were performed without proteolysis at different fibre densities and 
two fibre orientation(ψ): random and aligned (Fig. 5A). To generate aligned matrices, C+ +  routine was used to 
generate a mesh of fibres with all fibres aligned in the horizontal direction (Supp. Text). The generated *.PIFF files 
were then used as input in the CompuCell3D model. In these simulations, in addition to varying fibre density 
and orientation, cell–cell adhesion was also varied to test how single cell invasion and collective cell invasion 
fared under these conditions. In the absence of proteolysis, in matrices with randomly aligned fibres, cell trans-
location was limited to the same extent for all values of cell–cell adhesion, with highest translocation observed 
at the lowest fibre density (Fig. 5B,C-left, Supp. Videos V5–V8). Translocation was significantly enhanced when 
fibres were aligned, with maximum translocation observed at lowest fibre density and highest cell–cell adhesion 
(Fig. 5C, Supp. Fig. S7A, Supp. Videos V9–V12). Consistent with greater translocation in aligned matrices, cell 
scattering also increased in aligned matrices (Supp. Fig. S7B). In addition to increase in invasiveness, contact 
guidance was quite observable in aligned matrices where cells moved in the direction of fibre alignment (Supp. 
Videos V9–V12). Our model results predict that ECM fibre alignment can sustain both singly invading cells and 
the cells invading in groups. To assess the role of cell–ECM adhesion in sustaining this invasion, simulations 
were performed where cell–ECM adhesion energy (i.e., Jce) was set equal to cell–fluid interface energy (i.e., Jcf) 
to model a case where cells had no preference to adhere to an ECM fibre. On quantification, except for a mild 
increase (specifically for ξ =  1000, Jcc =  1), no major changes in cell translocation were observed upon decreasing 
the cell–ECM adhesion (Supp. Fig. S8). Together, our results suggest that ECM alignment is capable of sustaining 
both single cell and collective cell invasion even in the absence of ECM proteolysis.

Comparing model results with experiments: invasion of MCF-7 cells using sandwich gels. Our 
in-silico results have demonstrated the contributions of cell–cell adhesion (Jcc), MMP secretion rate (λ), ECM 
density (ξ) and ECM alignment (ψ) in regulating tumour cell invasion. In these simulations, to maintain general-
ity of cell invasion, we focused mainly on variation in cellular phenotype (Jcc and λ) and ECM properties (ξ and ψ)  
without focusing on specific cell line. To compare and contrast our simulation results with a particular cell line, 
we performed invasion studies with MCF-7 cells using sandwich gels. Similar to our computational framework 
wherein cells invade outward into the surrounding matrix, for the experimental studies, MCF-7 cells were plated 
on collagen coated glass coverslips and overlayed with 3D collagen (Fig. 6A) so as to create a sandwich. To study 
the influence of ECM fibre density on cell invasion, three densities of 3D collagen (0.5, 1.0 and 2.0 mg/ml) were 
used. Cell invasion was studied using MCF-7 cells plated at two densities (5 ×  103 and 25 ×  103 cells per cm2) to 
study invasion by both single cells and cells moving in groups (Fig. 6B, Supp. Videos V13 and V14) (Materials 
and methods). Cell invasion was tracked for 12 hours and cell translocation (displacement from initial position) 
was determined using the ‘Manual Tracking’ plug-in of ImageJ. For single cell migration, trajectories of individual 
cells were tracked. For collective cell migration, trajectories of cells moving in groups were quantified (Fig. 6C).

Consistent with our simulation results (Fig. 4), increase in collagen density caused a drop in cell translocation 
for singly invading cells. However, almost no difference was observed for collectively invading cells (Fig. 6D). 
Specifically, for singly invading cells, increase in collagen density from 0.5 mg/ml to 1 mg/ml caused a significant 
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drop (~50%) in cell translocation. A similar trend was observed in our simulations for λ =  0.05 and 0.1 s−1 and 
Jcc =  40 (low cell–cell adhesion) when ECM fibre density (ξ) was increased from 400 to ≥ 600 (Fig. 4C,D). When 
experiments were performed with the MMP inhibiting drug GM6001 on 1 mg/ml collagen gels, in line with our 
simulation results (Fig. 5C-Left), a drop in cell translocation was observed in both singly moving and collectively 
moving cells, highlighting the direct contribution of MMPs in sustaining invasion (Fig. 6E). Similar to our results, 
GM6001 treatment has also been shown to inhibit the invasion of MDA-MB-231 cells from 3D spheroids embed-
ded in 3D native type 1 collagen gels81. In conclusion, in line with our simulation predictions, our experimental 
results demonstrate the influence of ECM density in providing steric hindrance to cell movement and the role of 
MMPs in reducing this hindrance by proteolysis.

Discussion
Cell invasion is central to cancer metastasis with ECM properties regulating the efficiency and pattern of invasion. 
In this paper, we present an in-silico model to understand the modes of cancer cell dissemination from a group of 
cells. Our study demonstrates the importance of ECM density and organization in fostering collective invasion 
through both proteolytic and non-proteolytic mechanisms. Our model makes two important predictions. First, 
our model predicts that collective cell invasion requires lesser ECM degradation compared to individual cells 
for achieving similar invasion, suggesting collective cell invasion may be more efficient than single cell invasion. 

Figure 5. Aligned matrices can sustain cell invasion even without ECM proteolysis. (A) Position of cell 
cluster at the beginning of simulations for two different fibre orientations (ψ) (random and aligned) (ξ =  1000). 
(B) Representative images for cell migration pattern for aligned matrices at varying ECM densities and cell–cell 
adhesion. MMP secretion was turned off. (C) Net translocation of cells at varying fibre densities and varying Jcc 
in random and aligned matrices. Error bar: ± SEM.



www.nature.com/scientificreports/

13Scientific RepoRts | 6:19905 | DOI: 10.1038/srep19905

While increase in ECM density inhibits collective cell invasion, higher MMP secretion rate is required for sus-
taining it, particularly in dense matrices. Additionally, although increase in MMP secretion enhances both single 
and collective cell invasion, inhibition of MMP secretion in individually migrating cells causes a transition to col-
lective cell invasion as observed experimentally78. Secondly, our results suggest that both single and collective cell 
invasion can be sustained without any proteolysis in aligned matrices. In line with our in-silico predictions, our 
experiments demonstrate the influence of ECM density in restricting the invasion of MCF-7 cells by providing 
steric hindrance and the necessity of MMP activity for sustaining invasion. Collectively, our study highlights the 
importance of ECM density and organization in dictating cell invasiveness, and illustrates the multiple mecha-
nisms for collective invasion to be sustained (Fig. 7).

Although both single and collective cell invasion have been observed during cancer progression, a direct com-
parison between the two modes of invasion has not been done due to experimental challenges. Further, since both 
modes of invasion require cells to move by degrading the surrounding ECM, how ECM degradation is altered 
between single and collective cell invasion remains unclear. Our results suggest that, at moderate to high ECM 
densities, collective invasion is more efficient compared to single cell invasion as cells moving in groups invade 
to the same extent with lesser ECM degradation (Fig. 2C,E). This was also observed experimentally at collagen 
densities of 1 mg/ml and higher. Spheroid invasion experiments in 3D gels often show groups of cells invading 
radially outward with few isolated individual cells invading outward faster. Given the higher degradation poten-
tial of single cells, it is possible that these single cells serve as ‘leader cells’ and increase the efficiency of collective 
invasion by reducing steric hindrance and creating small migration tracks that can be subsequently widened by 
collectively moving cells with lesser degradation11. Alternatively, it is also possible that collective cell invasion 
may be possible without any leader cells. This is clear from our simulations wherein collective invasion was unal-
tered even though cells continuously switched places within the group (Supp. Video V2). Though such motion 
of cells within the group during invasion is yet to be experimentally demonstrated, epithelial cells are known to 
exhibit rotational motion under confinement both in vitro and in vivo81. This rotational motion is attributed to 
our polarization evolution rule, which tends to align the polarization of any cell with its velocity and allows for 

Figure 6. Invasion of MCF-7 cells in sandwich cultures. (A) Cells were cultured on collagen-coated glass 
coverslips and overlaid with a layer of 3D collagen so as to create a sandwich. (B) Representative images of cell 
positioning at t =  0 at two different cell densities. (C) Tracks of cell migration for singly invading cells and cells 
invading in groups. (D) Translocation of MCF-7 cells moving singly and in groups. (E) Translocation of MCF-7 
cells in sandwich gels fabricated with 1 mg/ml collagen in the presence of the broad spectrum MMP inhibitor 
GM6001. Errorbar: ± SEM. ‘**’ indicates statistical significance (p <  0.05).
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cells to continue to move even in confined geometries56 (Supp. Video V1). The continuous movement of cells 
moving collectively within the group also implies that for achieving invasion to the same extent as that of single 
cells, collectively moving cells take a more circuitous route, therefore suggesting that collective cell invasion is less 
persistent than single cell invasion.

Higher MMP secretion is typically associated with enhanced ECM degradation11,23,57,82. Though basal value 
of MMP secretion rate is a cell type-specific property, the absolute number of MMPs secreted by a given cell is 
sensitive to several intrinsic and extrinsic factors. While integrin-mediated cell–ECM signalling can increase 
MMP activity83, MMP secretion can be inhibited or abolished pharmacologically using protease inhibitory drugs 
like GM6001 and SB3-CT11,23. Though increase in MMP secretion rate increased the efficiency of both single 
and collective cell invasion, our results suggest that single cell invasion at low to intermediate ECM density is 
more sensitive to MMP secretion rate (Fig. 3C,D). This may be due to greater contact of single cells with the 
surrounding ECM as opposed to collectively moving cells, where only the outer layer of cells are in contact with 
the matrix. Higher invasive potential of cells upon EMT may also be attributed to greater cell–ECM interactions 
leading to greater ECM degradation84,85. Together, these results highlight the sensitivity of single cell invasion to 
MMP secretion rate.

In vivo, the collagen-rich interstitial matrix is known to inhibit cell invasion. Paradoxically, cancer progres-
sion is associated with increased deposition of fibrillar collagen, with increase in ECM density correlated with 
increased malignancy. Increased invasiveness of cancer cells in dense matrices may be driven by enhanced integ-
rin signalling, which in turn activates MMP-mediated ECM degradation86–90. Thus, cancer invasiveness depends 
both on ECM density and levels of MMP secretion. To study their collective influence on invasion, simulations 
were performed at different ECM fibre densities and moderate levels of MMP secretion. Our results demon-
strate that increase in ECM density suppresses single cell invasion to a greater extent. In contrast, collective cell 
invasion is less sensitive to changes in ECM density (Fig. 4B,C). Similar to our simulation results, invasion of 
MCF-7 cells on sandwich collagen gels of varying densities also showed a significant decrease in cell translocation 
for individually moving cells and almost no change in cell translocation for collectively moving cells (Fig. 6D). 
Additionally, our simulation results also illustrate that increase in MMP secretion rate can mitigate the effect of 
increase in ECM density thereby fostering invasion. For example, the suppression in collective invasion effected 
by an increase in ECM density from ξ =  400 to ξ =  1000 is completely abolished by a 2-fold increase in MMP 
secretion rate (Fig. 4D). Such increase in MMP secretion can be induced by ECM density itself, as observed in 
experiments of MDA-MB-231 cells cultured on substrates of varying collagen density23. However, for single cells, 
the two-fold increase in MMP secretion rate only partially overrides the increase in steric hindrance effected by 
increase in ECM density. Thus, these results suggest that invasiveness is collectively regulated by ECM density and 
MMP secretion rate, and cells can switch between single and collective mode of invasion depending on the levels 
of MMP secretion in order to invade effectively.

In the presence of MMPs, loss of cell–cell adhesion and alignment of ECM fibres have been shown to increase 
cell invasion63. Consistent with these observations, our simulations for aligned and dense matrices showed greater 
ECM invasion for cells with low cell–cell adhesion (Supp. Fig. S6). In contrast to MMP-mediated proteolytic 
invasion, inhibition of MMPs induces cells to opt for a non-proteolytic mechanism of cell migration, wherein 
cells use actomyosin contractility to squeeze through pre-existing pores in the matrix91. It is possible that the 

Figure 7. Regulation of cell invasiveness and mode of invasion. Cancer cells can switch between different 
strategies to invade. Collective invasion is the more efficient form of invasion since it requires lesser overall 
secretion of MMP and ECM fibril degradation, when compared to individual cell invasion. Increased ECM 
density for randomly aligned fibres provide greater confinement for the migrating cells and reduce their 
invasion. However, the cells can increase their MMP secretion rate to counter this effect and still invade 
collectively. If the cells cannot secrete enough MMP, then they can undergo EMT by loss of cell–cell adhesions 
(i.e., increasing cell–cell adhesion energy, Jcc) and invade individually. If the cells have lower MMP secretion 
rate, then they can align the ECM fibrils for effective invasion, irrespective of cell–cell interaction energies.
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efficiency of such non-proteolytic modes of invasion can be further enhanced by alignment of ECM fibres, which 
serve as contact guidance cues. Such linearization of matrices has been documented in vivo via crosslinking of 
collagen fibres through enzymes like LOX20. However, the extent to which MMPs may be necessary for this mode 
of invasion is unclear. Our simulations of invasion in aligned matrices without any MMP activity suggest that 
aligned matrices can provide suitable contact guidance cues that can sustain invasion even without any proteol-
ysis (Fig. 5). Interestingly, our results also suggest that collectively migrating cells can maximally use the contact 
guidance provided by aligned ECM fibres as ECM alignment induced faster invasion at high cell–cell adhesion.

Although our model was used for studying cell invasion in the context of carcinomas, this model can easily be 
extended to understand invasion in other types of cancers. First, many of the components of our model are also 
applicable for other types of cancers. For example, cell–ECM adhesion plays a critical role in invasion in other 
types of cancers as well including, gliomas and sarcomas92. Thus, invasion of glioma cells embedded as spheroids 
in collagen gels, can also be explored using multiscale CPM computational models93. Further, the case of Jcc =  40 
which models single cell invasion is applicable for all cells invading individually, and is hence applicable to nearly 
all types of cancers91,94. Further, this model can easily be extended to study the influence of other physiological 
structures that play a part in cancer invasion. For example, similar to tissue specific cells modeled in42, one can 
easily incorporate non-degradable tissue specific structures (e.g., cells or other interfaces) to model tracks such as 
subpial glial space and vessel walls which are used by invading cells to invade the brain94.

In summary, this paper demonstrates the multiple ways in which collective cell invasion can be sustained by 
tuning several cellular and sub-cellular processes and ECM features. However, no cellular heterogeneity within 
the tumour population was assumed in these simulations. Given the existence of cellular heterogeneity within the 
tumour population95, understanding the effect of ECM density and organization on cancer invasion of a hetero-
geneous population will be one of the future directions of this work.
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